
Classification of Diversity for Dependable and

Safe Computing

Viacheslav Frolov1[0000-0002-5860-7193], Oleksandr Frolov2[0000-0002-0230-0790],

Vyacheslav Kharchenko3[0000-0001-5352-077X]

1-3National Aerospace University named after N. Y. Zhukovsky "KhAI", Kharkiv, Ukraine

v.frolov@csn.khai.edu,o.frolov@csn.khai.edu,

v.kharchenko@csn.khai.edu

Abstract. The article deals with generalization of diversity and version redun-

dancy application to protect security and safety critical systems. The main prob-

lem for such systems is the occurrence of common cause failures (CCF). It is

shown that as dependable computing is combining of reliable, safe and secure

computing a principle of diversity can be applied to minimize risks of CCF and

assurance of requirements to all attributes. It is reported about need to respond

to new technologies and challenges in this area by improvement exist classifica-

tions of diversity. It is given the facet-hierarchical representation of the most

representative schemes of diversity. The united classification of types of diver-

sity from different domains is proposed. The classification scheme is based on

the NUREG-7007. A possibility to assess and assure security and safety by us-

ing the resulting classification is discussed for clouds systems and other tech-

nologies.

Keywords: diversity, NUREG, facet-hierarchical classification, united classifi-

cation, common cause failures, critical systems.

1 Introduction

1.1 Motivation

Development and implementation of dependable software and hardware components

becomes more and more important for safety and security critical systems. The main

problem for such applications is to reduce the risk of common cause failures (CCF).

CCF is coincidental failure of two or more structures, systems or components is

caused by any latent deficiency from design or manufacturing, from operation or

maintenance errors, and which is triggered by any event induced by natural phenome-

non, plant process operation, or action caused by man or by any internal event in the

instrumentation and control system [1-3].

One of the most effective solutions to the CCF problem is diversity, which makes

each version of the system unique, that means the probability of occurrence of CCF is

minimized [2]. Diversity is a principle in instrumentation systems of sensing different

parameters, using different technologies, using different logic or algorithms, or using

different actuation means to provide several ways of detecting and responding to a

significant event [2, 3].

Thus, solving the same problem in different ways, for example using different pro-

gramming languages or different development teams, you can avoid system failure

due to one error. Since in this case the faults will be various in each version, which

means that the probability of CCF is significantly reduced.

Given the importance of effective implementation of diversity, there is a need to

evaluate and select the most appropriate type of diversity. However, with the devel-

opment of information technology, such task becomes more and more difficult, as the

question arises as to how to use diversity and how to evaluate the security of multi-

version systems when using such technologies. In addition, designers are trying to

apply new technologies to provide diversity. This leads to a difficult choice of the

type of diversity for a particular application.

To make this choice, a clear, ordered structure is needed to narrow the search cir-

cle. There are a large number of different classifications that represent various aspects

of diversity [2-9]. Despite this, over time emerges a need to update and generalize

them with considering of new technologies and challenges.

1.2 State of the art

Currently, there are many different classifications of diversity, each of which deals

with a narrow aspect of the security of a particular system. However, such a deep

detail prevents to look at the situation as a whole. Consequently, it have to combine

the most well-known classifications, which cover a sufficiently large number of types

of diversity.

The most representative on this topic are following works. The technical report of

the diversity of critical systems in the nuclear power industry NUREG-7007 [2],

which in fact got status of standard, considers the protection of both software and

hardware components. At the same time, software diversity is limited to N-version

programming. The paper “The Multiple Faces of Software Diversity ...” [4] structures

the research devoted to software diversity. It is the most complete overview of works

on software diversity, although it does not contain its exhaustive classification. In

addition, there is the article describing where and when it is possible to apply diversi-

ty to protect the software “SoK: Automated Software Diversity” [5]. Besides, authors

analyze automated techniques of software diversity beyond the scope of N-version

programming and suggest the classification of diversity based on software life cycle.

However, it is not enough to describe all types of diversity.

There is a number of works, which clarify some aspects of diversity. The mono-

graph [6] considers diversity to assure software fault tolerance. It is a classic work on

this topic, although it is somewhat outdated at the moment. The article [7] offers a

model of multi-version (n, m) – version systems that details the structure of N-version

programming. An extension of the classification [2] was proposed in [8].

Hence, there are a lot of classifications and applications of diversity in safety and

security critical domains during last twenty years. However, there is not general clas-

sification of diversity and techniques to join different version redundancy types.

1.3 Goals and structure

The goal of the paper is to develop the unified classification of diversity. For this, we

first consider the basic principles of the construction of classifications and describe

the general approach to the representation of diversity in the facet-hierarchical struc-

ture (Section 2). Next, a plan for combining classifications is disclosed and the pro-

cess of building a unified classification of diversity is described (Section 3). Results

of the united classification development are presented (Section 4). Last section con-

cludes and presents future steps of research.

2 Principles of classification

2.1 Type of classifications for diversity

The main types of classifications are faceted, hierarchical and facet-hierarchical (FIC)

[10]. The basis of the facet classifications is the emphasizing of classification features

in the subject domain under consideration, which are called facets. All terms from this

area attribute to a particular facet.

The hierarchical classification method consists in dividing the whole set of terms

from the subject domain into groups, which are further divided into subgroups, and

these in turn can be further divided. Thus, subordination is established between the

classification groups, which has the form of a hierarchy.

FIC consists of taxons and classification attributes. First, a set of objects form tax-

ons, which are divided into groups according to classification features, which in turn

are arranged in a certain hierarchy. The taxons themselves are also divided into sub-

groups, thus forming a subordination between taxons.

2.2 General approach

Depending on the type of classification, the approach to its construction is somewhat

different, but there is a general principle for constructing any classification.

First of all, the formation of a set of studied objects is occurred. Each element of

which must be deterministic and should be given a semantic description. After that,

the set is divided into subsets according to certain attributes, which are unique for

each subset. At the same time, depending on the type of classification, subordination

is established between subgroups or this is not required.

Thus, works on diversity that contain classification schemes can be analyzed.

These schemes are presented in the form of FIC. After that, they have been combined

into a unified classification to cover the overall picture, taking into account modern

technologies.

3 Integrating of classification schemes

3.1 Faсet classifications

The example of extending faceted classifications is obtaining NUREG-7007 [2] from

NUREG-6303 [1] by splitting one facet (Equipment diversity) into two (Equipment

manufacturer diversity and Logic processing equipment diversity), as well as chang-

ing the semantic content of the other two facets (Software diversity and human diver-

sity). Software diversity has come to be called the logic diversity and human diversi-

ty, respectively, is called the life-cycle diversity. Thus, the main changes in these

classifications are shown on figures 1 and 2 according with technique described in

[10].

Fig. 1. NUREG-6303 based diversity classification.

Fig. 2. NUREG-7007 based diversity classification.

3.2 Hierarchical classifications

The example of extending of a hierarchical classification is the combination of soft-

ware diversity (SoK: Automated Software Diversity and (n, m) – version systems).

The idea of extending is to divide the Implementation stage into 4 stages (Require-

ments development, Design, Coding and debugging, Integration).

Fig. 3. Automated Software Diversity based software life-cycle.

Fig. 4. Automated Software Diversity and (n,m)- version systems based software life-cycle.

3.3 Facet-hierarchical classifications

Taxonomic structure is set, consisting of three elements [10]:

 S {A, T, Ψ}, (1)

where A — a set of classification attributes A = {Ai}i=1
n , T — a set of taxons T =

{ti}i=1
n , Ψ — relationship between elements Ai ∈ A and Ti ∈ T: i.e.: A Ψ T.

An example of the taxonomic structure is the facet classification discussed above.

The main feature of which is the independent of all facets.

Since the types of diversity are not equivalent, but are subordinate to each other, it

is advisable to use faceted hierarchical structure. In which the classification attributes

and taxons have a hierarchical form. Thus, a hierarchical component is added to equa-

tion (1).

Facet-hierarchical structure is set, consisting of three elements [10]:

 SH = {AH, TH, ΨH}, (2)

where AH = {AHi}i=1
n — a set of classification attributes in hierarchical structure, TH

= {... {tij...k} ...} — a set of taxons in hierarchical structure, ΔT = {ti} — subset of

taxons in hierarchical structure, which appropriate to classification attribute, Ψ: ∀AIi

↔ ΔTIi ⊂ TI —relation between taxonomic classification attributes and a variety of

taxons in a hierarchical structure.

The example of applying facet-hierarchical classification is construction the main

part of software diversity from NUREG-7007 [2], Automated Software Diversity [5]

and (n,m)- version systems [7]. The idea is to distribute the techniques of software

diversity according to the stage of the life cycle to which they apply. This example

can be represented as a matrix showing the relationship between attributes and taxons.

The result is presented in Table 1.

Table 1. FIS matrix representation.

Classification

attributes

Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5 Taxon 6

1. Software

diversity

Post-

distribution

Pre-

distribution

1.1 Software

life-cycle

Installation Loading Executing Implemen-

tation

Compila-

tion and

Linking

Updat-

ing

1.1.1 Stages

of implemen-

tation

Require-

ments devel-

opment

Design Codding

and debug-

ging

Integration

1.2 Implemen-

tation and

Installation
techniques

In-place

diversifica-

tion

N-self

checking

program-
ming

Recovery

Blocks

N-Version

program-

ming

1.2.1 Types of

N-Version
programming

Different

algorithms,
logic

Different

timing
and/or order

of execution

Different

runtime
environ-

ment

Different

functional
representa-

tion

Then a hierarchy is built up between taxons according to their correlation. As a result,

a scheme describing some types of software diversity has been obtained (see Figure

5). Further, using the described procedure, the program diversity has been supple-

mented. In particular, for the stages of Compilation and Linking, Updating, the tech-

niques that are used on them have been described.

Fig. 5. The main part of software diversity.

4 Case study

4.1 Basic classification schemes and features of integration

To develop a generalized classification, the schemes described in [2-9] have been

selected. After that, they have been systematized into groups: Software, Hardware,

Information management system. Human diversity, which can be used for any system

and consists in using different teams of designers, developers and verifiers for each

version, is considered separately.

The above classifications have been combined into a unified semantic facet-

hierarchical structure (2). Since the process of combining classifications is not fully

formalized in terms of the semantic component, expert support was used. To build a

unified classification, the following procedure can be used:

 Presenting the selected classifications in the form of FIS;

 Preparing the initial data for the united (classification attributes and taxons);

 Establishing the equivalences between attributes;

 Establishing the taxon equivalences for each attributes;

 Clarifying the hierarchies between attributes and between taxons;

 Developing the final version of the classification.

4.2 Integrated diversity classification scheme

Integrated diversity classification scheme presented in the figure 6. The scheme

demonstrates a facet-hierarchical representation of diversity, where the top level con-

tains such systems as software, hardware, information management. It also includes

human diversity, which can be used for any type of system.

The general principle of construction of the scheme is the life cycle of diversified

systems .This is special clearly shown for software, where the techniques providing

diversity have been assigned to the stage of the life cycle to which they correspond.

Since the implementation stage is the most sought-after to provide protection, it was

described in more detail. Then attention was paid to fundamentally different ap-

proaches to the diversity of software, such as automated and managed diversity. The

main difference of them is the origin of the diversity. This use of naturally established

features of software, or artificial [11] introduction of a diversity.

The diversity of hardware has been structured according to the features of its oper-

ation and the most important components such as equipment, design, functioning and

signal. In particular, the diversity of equipment is divided into two groups: equipment

manufacturer and equipment processing logic. The possibility of using the principle

of diversity at the network level has also been described.

4.3 Applying diversity classification scheme in cloud computing

One of the areas in which this classification can be used is the development of appli-

cations hosted in the cloud [12]. In this case, the first thing to do is to choose at what

stage of the life cycle to apply the principle of diversity. After evaluating the most

acceptable stage in terms of costs and security level, it is necessary to get acquainted

with the techniques which are used on it and select the appropriate one.

Further, the decision is made on what type of application will be monolithic or

consisting of micro-services. In accordance with this, it is necessary to use techniques

of either managed diversity or automated one. This decision will also affect whether

different teams of developers, testers and others will be used.

Since the cloud provider ensures the hardware, its diversity does not apply. How-

ever, it is possible instead diversify the providers themselves or the geographical loca-

tion of their servers.

Fig. 6. United classification scheme.

Currently, web-services are actively developing. Their main components are applica-

tion layer, web server, apps server, operating system and database management sys-

tem. Web-services can be developed using cloud computing. In this case, the applica-

tion will consist of components-off-the-shelf [13]. Thus, we can use natural diversity.

It is also necessary to use the principle of diversity on the network layer. Using the

methodology of faceted hierarchical structures and the constructed united classifica-

tion, you can choose which type of diversity to apply for cloud computing. For such

systems, the classification will take the form presented in figure 7.

Fig. 7. Application of classification in cloud computing.

5 Conclusions

In the article, the most representative classifications of diversity have been analyzed,

selected, combined and supplemented. Examples of the construction of various taxo-

nomic structures have been considered. Based on the complexity of describing the

types of diversity, it is suggested to use the FIS apparatus for the unification and a

corresponding procedure was proposed

The main feature of this classification scheme is that it combines types of diversity

from different domains, takes into account new technologies that can be used in safety

critical systems. In addition, it is possible to choose ways to solve the security prob-

lem by using the resulting classification. For this is necessary to select and apply di-

versity taking into account the characteristics of domains. An example of using classi-

fication for cloud computing was considered.

Further, the diversity classification for IoT, cloud computing, AI, web-services and

other modern technologies will be detailed. To do this, it is necessary to design cer-

tain filters that will allow moving from a general classification to an individual case

of diversity applied to a particular system.

References

1. Preckshot, G.: NUREG/CR6303, Method for performing diversity and defense-in-depth

analyses of reactor protection systems. Division of Reactor Controls and Human Factors,

Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington,

DC (1994)

2. Wood, R.: NUREG/CR7007, Diversity strategies for nuclear power instrumentation and

control systems. U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regula-

tion, Washington, DC (2009)

3. Yastrebenetsky, M., Kharchenko, V.: Nuclear Power Plant Instrumentation and Control

Systems for Safety and Security. IGI Global, USA. (2014)

4. Baudry, B., Monperrus, M.: The multiple facets of software diversity: Recent develop-

ments in year 2000 and beyond. CoRR. abs/1409.7324, (2014)

5. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: Automated software diversity.

IEEE Symposium on Security and Privacy. pp. 276-291 (2014)

6. Pullum, L.: Software Fault Tolerance Techniques and Implementation. Artech House,

Norwood (2001)

7. Siora, A., Sklyar, V., Kharchenko, V.: (n, m)-version systems: Taxonomy, Models and

Technologies. Mathematical Modelling, Information Technologies and Control Systems.

10, 231-246 (2008)

8. Duzhyi, V., Kharchenko, V., Panarin, A., Rusin, D.: Diversity metric evaluation consider-

ing extended NUREG-7007 diversity classification. IEEE 9th International Conference on

Dependable Systems, Services and Technologies (DESSERT). pp. 21-25 (2018)

9. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G., Pathak, A.,

Trujillo, S., Villela, K.: Software diversity: state of the art and perspectives. International

Journal on Software Tools for Technology Transfer. 14, 477-495 (2012)

10. Kharchenko, V., Gordieiev, O., Fedoseeva, A.: Profiling of Software Requirements for the

Pharmaceutical Enterprise Manufacturing Execution System. In: Bris, R., Majernik, J.,

Pancerz, K. and Zaitseva, E. (ed.) Applications of Computational Intelligence in Biomedi-

cal Technology. Studies in Computational Intelligence. pp. 67-92. Springer, Cham (2016)

11. Just, J., Cornwell, M.: Review and analysis of synthetic diversity for breaking monocul-

tures. 11th ACM Conference on Computer and Communications Security 2004. pp. 23-32.

Proceedings of the 2004 ACM Workshop on Rapid Malcode, New York (2004)

12. Sen, J.: Security and Privacy Issues in Cloud Computing. In: Ruiz-Martinez, A., Marin-

Lopez, R. and Pereniguez-Garcia, F. (ed.) Architectures and Protocols for Secure Infor-

mation Technology Infrastructures. pp. 1-45. IGI Global, Hershey, PA (2019)

13. Totel, E., Majorczyk, F., Mé, L.: COTS Diversity Based Intrusion Detection and Applica-

tion to Web Servers. 8th International Symposium, RAID 2005. pp. 43-62. Springer, Ber-

lin, Heidelberg (2005)

