
Linear Recursion in G-CORE

Valentina Urzua and Claudio Gutierrez

Department of Computer Science, Universidad de Chile and IMFD.

Abstract. G-CORE is a query language with two key characteristics: It
is closed under graphs and incoporates paths as first-class citizens. Cur-
rently G-CORE does not have recursion. In this paper we propose this
extension and show how to code classical polynomial graph algorithms
with it.

Keywords: G-CORE, Recursion, Graph Query Language

1 Introduction

G-CORE is a graph database query language designed by a working group be-
longing to the Linked Data Benchmark Council [1]. One of its most novel features
is the ability to express paths as first-class citizens. However, path queries are
still not enough to express a wide variety of ”natural” queries, particularly clas-
sical graph algorithms like topological sort, BFS, Eulerian circuit, etc.

We propose to extend G-CORE with (linear) recursive functionalities by
introducing a syntax and a semantics that essentially follow the ideas of similar
constructs in SQL and SPARQL1. What is more novel is that we take the core
basic polynomial algorithms in graph theory and show, first, that they cannot
be coded in standard G-CORE; and second, how to write queries that code
them in G-CORE extended with linear recursion. Finally, we tested the code
in an evaluator for G-CORE that is being developed by Roberto Garćıa at the
University of Talca.

Basic Notions. A Path Property Graph (PPG) is an edge and node labeled
graph where edges and nodes additionally have property-value pairs. In addition,
a PPG may also have a collection of paths, where a path is a concatenation of
existing, adjacent, edges in the graph.

A basic G-CORE query is an expression of the form:

CONSTRUCT f MATCH γ ON G WHERE ξ (1)

where f is a full construct pattern, γ is a full graph pattern and ξ a Boolean con-
dition [2]. The core of a G-CORE query consists in the complete graph pattern
γ that defines the content of the MATCH clause. The MATCH clause is evaluated
against the PPG G and returns a set of bindings that are filtered with the WHERE
clause, to finally build a new PPG H with the CONSTRUCT clause.

1 Ongoing research



2 Valentina Urzua and Claudio Gutierrez

Related Work. Adding recursion to database query languages has been ex-
tensively studied both from a theoretical [3] as well as from a practical point
of view (e.g. SQL, SPARQL [4, 5]). In SQL it was included in the SQL-99 stan-
dard and was developed via common table expressions (CTE'S) that have a base
SELECT statement and a recursive SELECT statement, that allows to express
graph queries like DFS, BFS, topological sort, connected components, etc. Since
queries must be linear and many interesting queries are not [6], optimizations
have been proposed in [7, 8] (r-sql proposal) that allow only linear recursion and
not the explicit negation that is a limitation when implementing recursion [3].

The graph algorithms BFS and DFS were implemented in [9] with the recur-
sive SQL operator, where only trees were allowed as input since otherwise the
query would loop infinitely. The topological order was studied in [10], making a
BFS starting from the node whose outdegree is zero. In the case of the connected
components it is shown in [11] how to obtain them adding recursion.

For SPARQL, Reutter et al [5] proposed a recursion operator based on SQL
and make a comparison with property paths. In their study they formalize the
syntax of the recursive operator and develop algorithms for evaluating it in
practical scenarios. Also, a comparative study of the expressiveness of property
paths and the recursive SQL operator was made in [6].

2 Adding a Recursive Operator to G-CORE

Among the main issues when adding recursion to query languages are the com-
plexity of the evaluation, the expressiveness and the efforts to keep the declar-
ative character of queries. From a theoretical point of view, recursive operators
are based on the theory of least fixed points [3], that is, the increasing accu-
mulation of results until eventually the evaluation does not add anything else
and stops. Our proposal follows these ideas and is based both on the recursive
SPARQL operator defined by Reutter et al [5] and the recursive SQL operator
[4].

Proposed Syntax of linear recursive queries.

WITH RECURSIVE t AS { qbase UNION qrec } qout, (2)

where t is a temporary PPG, qbase is a usual G-CORE query, qrec is a positive G-
CORE query that can use the temporary graph t and qout a recursive G-CORE
query itself.

Semantics of recursive queries. First, recall that the queries qbase and qrec are
usual G-CORE queries, therefore, are of the form (1). Second, recall that the
evaluation of a usual query of the form (1) against a PPG G outputs a binding
table M(G), and from it the CONSTRUCT clause returns the PPG consisting of
the union of f(`) for each ` ∈ M(G). In what follows we will denote by Mb

the binding table and by Cb(`) the PPG returned by the CONSTRUCT clause of
over the row ` of Mb of the base query qbase. Similarly we denote Cr and Mr

respectively for the query qrec.



Linear Recursion in G-CORE 3

Proposed Semantics of linear recursive queries. Let q be a recursive G-CORE
query (like (2)) and G be a PPG. The answer ans(q,G) of the query corresponds
to the least fixed point of the sequence given by:

G0 = G, G−1 = ∅,
Gi+1 = Gi ∪ {ans(qrec, G+ (Gi −Gi−1))},

where: (1) the difference (Gi−Gi−1) is similar to the G-CORE difference operator
defined in [2], except that the difference of the sets of nodes is redefined as
(Ni\Ni−1) ∪ {a ∈ Ni−1 : a is adjacent in Gi to a node in Ni\Ni−1}; and (2)
the semantics of ans(q,G + H) means the match of q can use G or H or both
(note that ans(q,G ∪H) would not the same).

The answer ans(q,G) of the recursive G-CORE query q over G is given by
the following procedure:

Algorithm 1 Computing the answer of a recursive query in G-CORE

Data: PPG G, Queue of PPG'S Q = ∅, PPG t = ∅
for each row l of the binding table Mb(G) do

Insert(Cb(l), Q)

while Q 6= ∅ do
Set r ← Extract(Q)
t← t ∪ r
for each row l of the binding table Mr(G + r) do

Insert(Cr(l), Q)

return ans(qout, t + G)

The idea is simple: first with the base query we construct the base case. Then
with the recursive query we recursively construct a temporary graph which codes
the solution that the output query will use.

Thus, first we begin with the queue Q empty and the temporary graph t
empty. Then we evaluate the matching clause of qbase and for each row of the
produced binding table Mb(G), insert Cb(l) into Q. Then we enter the while loop.
As long as Q 6= ∅, we extract the top element of Q and update the temporary
graph with it. Then for each row ` of the binding table Mr(G+r) obtained from
the query qrec against G+r (recall that this means that it could use the original
graph G as well as the recently obtained graph r), we insert into the queue Q
the new results obtained by the recursive construct Cr(l). When we exhaust the
queue Q the temporary graph t is finally ready to be used, and the query qout is
evaluated against t+G. If qout is a standard G-CORE query the process outputs
the result. If qout is a recursive G-CORE query, we proceed as before again.

Notice that the fixed point exists whenever the query is monotone. On the
form of query definition in (2) and tis semantics restricts queries to be linear
[3–5, 11], that is, you can consult only the new elements added to t.



4 Valentina Urzua and Claudio Gutierrez

3 An Example: Topological Sort

In graph theory there are problems that have been widely studied and can be
solved recursively in polynomial time. Due to space restriction, we will show as
an example how the case of topological sort can be coded in recursive G-CORE.

Fig. 1. A PPG G that represents hierarchy of a company

The classic algorithm to obtain the topological sort given an acyclic directed
graph is Kahn algorithm (1962). It is not difficult to see that topological sort
cannot be expressed in G-CORE. The next query illustrates with the graph of
Fig. 1 how to code topological sort in G-CORE:

WITH RECURSIVE t AS (

CONSTRUCT (n) SET n.depth :=0,

MATCH (n) ON G,

WHERE NOT EXISTS (CONSTRUCT (y),

MATCH (n)-[:BossOf]->(y) ON G)

UNION{

CONSTRUCT (x) SET x.depth:=n.depth+1,

MATCH (x) ON G,

(n) ON t

WHERE EXISTS (CONSTRUCT (x),

MATCH (x)-[:BossOf]->(n) ON G)}

SELECT z.id,

MATCH (z) ON t,

ORDER BY MAX(z.depth) DESC

The above query first looks for those nodes which have no outgoing edges (base
case) and are assigned with depth equal to 0 as a property. Then the recursive
case comes and the nodes which have out edges to the nodes of the base case are
added with property depth equal to 1 and so on until all the nodes in G have
been added. Finally, we order by depth and we take the maximum value of the
property depth.



Linear Recursion in G-CORE 5

References

1. LBDC. http://ldbcouncil.org/.
2. Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan
Sequeda, Oskar Van, Alex Averbuch, Hassan Chaa, Irini Fundulaki, Alastair
Green, Josep Lluis, Larriba Pey, Jan Michels, Raquel Pau, Arnau Prat, Tomer
Sagi, and Yinglong Xia. G-CORE A Core for Future Graph query Languages
Designed by the LDBC Graph query Language Task Force *. In: SIGMOD, 2017.

3. Richard Hull Serge Abiteboul and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

4. Jim Melton and Alan R Simon. SQL: 1999-Understanding Relational Language
Components. Morgan Kaufmann, 2001.

5. Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. Recursion in SPARQL.
pages 19–35, Berlin, Heidelberg, 2015. Springer-Verlag.

6. N Yakovets, P Godfrey, and J Gryz. Evaluation of SPARQL property paths via
recursive SQL. CEUR Workshop Proceedings, 1087, 01 2013.

7. Gabriel Aranda, Susana Nieva, Fernando Sáenz-Pérez, and Jaime
Sánchez-Hernández. Formalizing a broader recursion coverage in SQL. pages
93–108, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

8. Carlos Ordonez. Optimization of linear recursive queries in SQL. IEEE
Transactions on Knowledge and Data Engineering, 22, 2010.

9. Devin W. Homan. Transitive Closure in SQL.
http://dwhoman.com/blog/sql-transitive-closure.html.

10. FusionBox. Graph Algorithms in a Database .
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-
recursive-ctes-and-topological-sort-with-postgres/620/.

11. Torsten Grust. Advanced SQL. https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ss17/advanced-sql/slides/advanced-sql-05.pdf.


