CEUR-WS.org/Vol-2376/NLP4RE19_paper02.pdf

Determining Domain-specific Differences of Polysemous
Words Using Context Information

Daniel Toews Leif Van Holland
Fraunhofer FKIE Fraunhofer FKIE
Wachtberg 53343 Wachtberg 53343

daniel.toews@fkie.fraunhofer.de leif.van.holland@fkie.fraunhofer.de
Abstract

In this paper we describe our early work with determining domain-
specific differences of polysemous words. The goal is to determine
whether a word has different meanings in two different text corpora.
Previous work tried to identify such words by training word embeddings
specific for those domains and then comparing the resulting vectors.
Our use case, however, does not contain enough text to train word em-
beddings. Thus, we present a novel method that is able to make use of
context information and determine domain-specific differences of words
without generating word embeddings.

1 Introduction

When managing multiple related projects with different stakeholders, it is difficult to maintain a consistent usage
and interpretation of words. Requirement sets are elicited over a long time span by multiple different people,
each using different words, or the same words with different meanings. Additionally, if the projects are related,
similar words may be used in each of the requirement sets, but may have slightly different meanings. Such words
are called polysemous words. To prevent confusion, maintaining a good overview over such a project structure
is critical. We were tasked to design automated software that is able to identify polysemous words.

This confronted us with one of the biggest problems in natural language processing, which is the inherent
ambiguity of natural language. It is difficult for software to determine the intention of one sentence, as well as
the differentiating nuances when comparing similar requirements, as they strongly depend on the context. Words
that are different can have similar meanings, while one word can have multiple interpretations.

An important contribution to the field of NLP are word embeddings. Popularized by Mikolov et al. [MCCD13]
[MSC*13], machine learning algorithms can generate such word embeddings, which are able to place words into
a vector space in a meaningful manner. Words that are similar to each other will be close to one another, while
words that are not similar will be further apart. This allows for more accurate distance calculations between
requirements that use similar, but unequal words. Thus, they are able to incorporate information on how words
are generally used.

However, word embeddings, as well as other methods [DDF*90], fail to capture words that have multiple
interpretations. Those polysemous words, like group, which can be used to describe a criminal gang, a political
party, a musical band or nearly any other collection of related objects, will be poorly represented as they will
be a mixture of their different meanings. In our use case, this could cause confusion about the connection of
different elements between projects, as the same words are used, but not the same part of the project is meant.

Copyright © 2019 by the paper’s authors. Copying permitted for private and academic purposes.

In other cases it could lead to miscommunication during requirement elicitation [FDG17], or low accuracy for
requirement tracing [WNLN18].

This problem can be avoided when using domain-specific texts for training, which match the domain of the
requirements, as that would generate a more specific representation of problematic words. Yet, in certain cases
it is unrealistic to train word embeddings for niche (sub)domains (in which requirements are often described,
as they are highly specific), since collecting enough suitable text material is often infeasible. For example, the
word server, which would be part of the computer science domain, can even have two meanings in this domain.
First, the server can be a service on the internet that provides a response to user requests. Second, the server
can be a physical device composed of processor units and other hardware. And even though, both instances
of the word can refer to the same object, both aspects will have different types of requirements that have to
be solved by different people. Segregating those two meanings with specific word embeddings means collecting
and curating enough texts containing different interpretations of this word. We can assume that the related
projects mentioned above are all part of the technical or computer science domain. However, the computer
science domain is too broad to allow for a precise interpretation of requirements. In our case, one requirement
set describes infrastructure to distribute information in areas without internet connection, while the second set
describes applications that are built upon this infrastructure. Curating a text corpus to train representative
word embeddings for those two cases would require laborious work from experts.

We propose a new method, which is able to calculate the domain- and subdomain-specific differences of words
without using different word embeddings. This provides a more flexible and application-friendly solution. The
remainder of the paper is structured as follows. Section 2 provides a brief overview of the related work, as well
as an explanation of the previous research that is used for our method. In section 3, we present our proposed
algorithm. The algorithm is verified in section 4. In section 5, we describe the advantages and shortcomings of
our method and how it fits into our application. Section 6 concludes the paper with a summary and a short
outlook into future work.

2 Related Work

Today, sophisticated word embedding algorithms, like word2vec [MCCD13], GloVe [PSM14] and fastText
[BGIJM16], are able to place words in a vector space that contains semantic information about the words.
Similar words will be placed close to each other and form groups of words. Therefore, the distance between two
words in this space can describe how semantically similar they are. For example, synonyms of a certain word will
be placed close to each other, while non-related words will have a higher distance. Additionally, the words have
a fixed dimensionality (generally orders of magnitude lower than the number of different words in the corpus).
Previous work in requirement analysis discusses the possibility of integrating Word Embeddings [FDE*17] or
integrates them in classification approaches [WV16]. Additionally, Lucassen et al. also use the approach for
clustering requirements [LDvdWB16].

Looking closer at word2vec, the models are generated by reading large sources of text, such as Wikipedia,
and trying to determine the word positions of word x by looking at words used around x. In short, the model
is trained by looking at n words before and after = to estimate z (other methods like the Skip-Gram Model
[MSC*13], GloVe [PSM14] or fastText [BGJM16] prove to be more precise, but would be too extensive in this
report). Thus the position of z in the vector space is determined by the words often used with z. The assumption
is, that similar words are used with the same surrounding words. Because of this training, we assume that the
model trained with an appropriate data set contains finer nuances of words like server, as the surrounding words
will catch the different meanings and contexts.

When trying to determine the polysemy of words in requirement sets, different methods were proposed
[FDG17], [WNLN18], [FEG18]. In the first method, domain-specific word embeddings of two different domains
are merged into one corpus. Certain hand chosen words are marked with a suffix to distinguish the domains. All
instances of chosen word a will be replaced with agomaini in the texts from the first domain and with agomain
in the second domain. The word a will receive two different vector representations, one for each domain, which
can be compared. The higher the resulting distance, the more different are the interpretations of the word in
the domains. However, this means that controversial words need to be known beforehand, as they have to be
marked manually. Another method [FEG18] tries to identify polysemous words by looking at a words and its
neighbors in a certain domain and then comparing it to the neighbors of the same word in another domain. This
means that no preprocessing of words is needed, but it requires one completely trained word embedding for each
domain that is involved.

In [DvdSL18|, Dalpiaz et al. describe a method to determine how similar words are used in a set of user stories.
The goal is to improve the quality of the data set by ensuring only clearly defined terms are used and they are
independent from each other. For example, the words broadcast and transmit can both be used similarly in the
computer science domain. User stories for one project, generated from different sources, can contain both words
with identical meanings. Using both words however, may cause problems, as the precise nature of user stories, as
well as requirements, would suggest that when both words are used, they mean different things. Otherwise only
one of those words would be needed. To determine whether words a and b might potentially be interchangeable,
the word embedding distance of both words is considered, as well as the contextual distance. For this, the usage
of words a and b in the data set are determined by looking at the other words in the same sentence. The more
the words in the sentences differ, the higher the resulting contextual difference is. Following formula was used:

Given two terms ¢ and ts:

2 % stmy, 1, + SIMCy, 1,

3 b
with simy, 4, being the similarity between ¢; and t3 and simcy, 4, being the context similarity. For the context
similarity, all sentences that contain ¢; are collected and compared against the sentences that contain ¢5. If those
collections use similar words, the simc of t; and t5 is high.

ambigr, 1, =

3 Approach

As described above, word embeddings, as well as simc as presented by Dalpiaz et al. [DvdSL18], provide a higher
distance between words that have differing contexts. In word embeddings this happens during training, which
results in vector representations that are further apart. This means, using simec, in comparison to calculating
the vector distance on the same data set as the word embedding was trained upon, would give different values,
but the ordering and relative values will strongly correlate. However, if simc is used on texts that differ from the
trained word embedding, it indicates whether the word was used differently in this specific text. Furthermore, it
is also possible to use simc on one word across different texts. For example, using simc, two texts from different
domains will result in a lower similarity if the word is used differently in those domains.

The semantic folding theory [DSW15] is another method to place words in a semantic vector space [DvdSL18].
In our approach we use word embeddings, but the theoretical idea behind it and the work of Dalpiaz et al. applies
to both methods.

In [DvdSL18], no exact method is given on how to calculate sime (a method provided by cortical.io! is used
in the paper), so we devised our own formulation for word embeddings. Let D; and Dy be text corpora from
two different domains. Given a term ¢ € D1 N Do, its contexts ¢; C D1 and c; C Dy consist of all words from
sentences that contain ¢. Furthermore, let v,, be the vector representation of a term w in a given embedding.
We calculate the context similarity of ¢ as

center(cy) - center(cz)

sitmey =

1
, where center(c) = [Z IDFp(w) - .
c

|lcenter(c1)]| - ||center(c2)|| =

In other words, we calculate the cosine similarity of the mean vectors of all words from ¢; and ¢o. This method
of determining a sentence representation was previously shown to be effective for capturing and distinguishing
semantic meaning [BCM™14]. In addition to this, each word w is weighted by its inverse document frequency
IDFp(w) from the corpus D the context was taken from.

Even though this method requires some word embedding to be trained, it is not necessary to use a word
embedding trained on either Dy or D, as the specific nuances of the word in those domains are represented by
the formula.

4 Verification

To evaluate the described approach, we tested it on corpora that were retrieved analogously to the work of Ferrari
et al. [FDG17]. We crawled topic pages of the English Wikipedia to retrieve pages from six categories: Computer
Science (CS), Electronic Engineering (EEN), Mechanical Engineering (MEN), Literature (LIT), Medicine (MED)
and Sports (SP). We also trained a word2vec embedding on a dump of the English Wikipedia and the created
Computer Science corpus using the implementation from Gensim [RS10]. Then we calculated the similarity

Thttps://www.cortical.io/compare-text.html

scores of common nouns that are mentioned in [FDG17] using our method. More specifically, we used the CS
corpus as D; and each one the other fetched corpora as Ds. Additionally, we reimplemented the approach
proposed in [FDG17] to be more flexible in comparing our results with those reported by Ferrari et al. The goal
in this chapter is to verify if, using the same conditions as in the work provided by Ferrari et al., our method
provides a comparable ordering of terms with respect to their similarity value. This would suggest that the two
approaches provide the same results.

4.1 Wikipedia crawling

The retrieval of the six corpora was done using a Wikipedia API for Python? by fetching pages of a category
and subsequently the subcategories, until a total of 10,000 pages was reached or no all pages were found. The
raw texts of every page were concatenated to create a corpus for the given category. Apart from lowercasing the
text and removing all stopwords and punctuation (except for sentence boundaries), no further preprocessing was
applied to the corpora. The overlap between the corpora is on average lower than 0.1% and thus negligible.

4.2 word2vec training

Using a publicly available dump of the English Wikipedia, we trained a word2vec model on the raw text that
was preprocessed like the corpora described above. This resulted in a total of 74,526 unique terms. We chose
a dimension of 200 and 15 epochs to train the model. Other parameters were the default values used in the
implementation of Gensim [RS10]. We also trained a similar word embedding on the 10,000-page corpus for the
topic ” Computer Science”.

4.3 Reimplementation

We reimplemented the approach proposed in [FDG17] with two important differences. First, we used the corpora
described above, which means no lemmatization was used. On top of that, we used the 100 most common nouns
for which Ferrari et al. reported similarity values, instead of determining the most frequent nouns ourselves.

4.4 Scoring

To calculate the scores of the 100 nouns, we used the formula described in chapter 3. The scores represent the
calculated similarity score between the CS corpus and each of the other corpora. Table 1 shows the ten terms
with highest and lowest similarity scores for each of the five corpora EEN, LIT, MEN, MED and SP, compared
to CS. It is important to note, that there is no clear threshold when words are used ambiguously or not. For our
examples in chapter 5 we used relative values and the rankings of the words as suggestions which words seem to
be used polysemous and thus are problematic.

For example the results show that the term file is used in similar contexts in the CS and the EEN corpus,
whereas the similarity value is much lower for non-technical categories (LIT, MED, SP). This may point to the
fact that EEN and MEN refer to files of a file system in a computer, contrary to physical documents. Likewise,
the term web has higher similarity values in LIT, MED, SP than in the more technical categories (EEN, MEN),
which could be interpreted as web being a more nuanced term in technical areas compared to non-technical
descriptions. Furthermore, the word software is in the ten most similar words across all corpora.

4.5 Correlation

In a second step, we compared the values yielded by our reimplementation of the method proposed by Ferrari
et al. with the values they reported in [FDG17] and our results using different embeddings. More precisely, we
calculated the Spearman rank correlation comparing the reimplementation with the results found in [FDG17]
(Table 2a) and our results on the CS-embedding (Table 2b), the Wikipedia embedding without using IDF-
weighting (Table 2¢) and with the weighting enabled (Table 2d). The rank correlation coefficient p denotes
the strength and direction of the monotonic relationship, values > 0 representing a monotonous increasing and
values < 0 a monotonous decreasing relationship. The p-value represents the probability of the correlation being
non-existent (p = 0), therefore p < 0.05 is commonly considered a desired result.

Values in Table 2a show a moderate but significant correlation between the original values and our reim-
plementation. Differences in the calculated values are presumably caused by not applying lemmatization while

2https://pypi.org/project/Wikipedia-API/

Electr. Engineering Literature Mech. Engineering Medicine Sports
science 0.9954 | conference 0.9799 university = 0.9894 project 0.9921 science 0.9789
code 0.9899 software 0.9786 award 0.9852 software (0.9874 computer 0.9699
security 0.9898 data 0.9755 conference 0.9835 google 0.9858 software 0.9651
memory 0.9874 user 0.9750 program 0.9835 web 0.9856 research 0.9647
file 0.9873 computer 0.9737 | programming 0.9828 interface 0.9856 human 0.9645
language 0.9870 research 0.9731 science 0.9823 | computer 0.9773 data 0.9608
algorithm 0.9867 program 0.9718 algorithm 0.9822 server (0.9766 input 0.9591
database* 0.9864 google* 0.9718 model 0.9812 | university 0.9765 work 0.9586
software 0.9859 database®* 0.9716 data 0.9804 user 0.9763 device 0.9578
user 0.9858 web 0.9682 software (0.9803 security 0.9743 web 0.9572
see 0.9619 feature 0.9137 interface 0.9439 | technique 0.9321 window 0.8995
structure 0.9617 point 0.9103 field 0.9430 | solution 0.9320 solution 0.8980
type 0.9605 device 0.9068 machine 0.9430 include 0.9300 non (.8931
input 0.9581 solution 0.9055 support 0.9429 line 0.9282 network 0.8916
reference 0.9559 non (0.9051 include 0.9413 set 0.9261 security 0.8902
source 0.9529 algorithm 0.9032 text 0.9378 function 0.9254 field 0.8895
technology 0.9465 set 0.8961 input 0.9316 type 0.9249 | programming 0.8854
game 0.9458 file 0.8915 type 0.9302 link 0.9241 server 0.8837
field 0.9447 window 0.8838 web 0.9292 non (0.9129 microsoft 0.8632
non 0.9238 security 0.8828 non 0.9190 file 0.9012 file 0.8498

Table 1: Highest and lowest context similarity scores per category, calculated by our proposed method using
the Wikipedia embedding to determine word vectors. High scores mean that the word is used similar in both
domains. Bold items also appear in the ten highest / lowest rated words w.r.t. the results of Ferrari et al. Ttems
marked with * are ranked highest (lowest) by our method, but are ranked lowest (highest) by Ferrari et al.

corpus (a) Ferrari et al. (b) CS + IDF (c) Wiki (d) Wiki + IDF

P P P P P P P P
Electronic Engineering | 0.5882 <0.0001 | 0.1151 0.2564 | 0.4703 <0.0001 | 0.6079 <0.0001
Literature 0.4717 <0.0001 | 0.4028 <0.0001 | 0.5844 <0.0001 | 0.5921 <0.0001
Mechanical Engineering | 0.4385 <0.0001 | -0.0452 0.6569 | 0.5442 <0.0001 | 0.5736 <0.0001
Medicine 0.4877 <0.0001 | 0.1760 0.0829 | 0.5429 <0.0001 | 0.6164 <0.0001
Sports 0.4684 <0.0001 | 0.3395 0.0007 | 0.3839 0.0001 | 0.4710 <0.0001

Table 2: Spearman correlation between our reimplementation of [FDG17] and different methods on the generated
corpora. For every combination, the Spearman rank correlation coefficient p and its p-value is given.

generating our corpora as well as by fetching pages from Wikipedia in a different order, so that our corpora might
considerably differ from the ones created by another fetching method. Also, as seen in [CDLRL18], our choice
of word2vec hyperparameters may have influenced the training significantly, resulting in dissimilar inter-corpora
embeddings.

Column b shows that using an embedding only trained on the CS corpus leads to weak and non-significant
correlations compared to the results of Ferrari et al., so the quality of the results might be sub-par, seemingly
because the embedding is unable to map semantic differences sufficiently. In contrast, correlations shown in
column ¢ and d are significant, which underlines the importance of using a general-purpose word embedding.
Furthermore, the IDF-weighting improved the correlation across all corpora, as can be seen in column d.

4.6 Bigger dataset

To examine the stability of our solution regarding the size of the corpora, we repeated the experiment using a
limit of 100,000 pages (and a maximum subcategory crawling depth of 5) and compared the results with our
findings above. Table 3 show the resulting values. We also determined the correlation between this data and the
results from Table 1 (Table 4a), the results of our reimplementation on the smaller corpora (Table 4b) and the
bigger corpora (Table 4c).

While Table 4 shows that the overall trend of the results is similar to that of Table 1, the correlation is much
weaker for corpora SP and MEN than for MED. For example the term text was ranked as one of the most similar

Electr. Engineering Literature Mech. Engineering Medicine Sports
algorithm 0.9983 google* 0.9925 game 0.9994 server (0.9954 algorithm 0.9817
game (0.9982 user 0.9914 google 0.9985 game 0.9929 google 0.9676
device 0.9965 ibm 0.9887 server 0.9979 software 0.9911 version 0.9608
database* 0.9965 software 0.9873 algorithm 0.9967 google 0.9906 software 0.9599
version® 0.9964 server 0.9864 software 0.9966 ibm 0.9847 science 0.9593
code 0.9959 game 0.9844 image 0.9963 database 0.9826 user 0.9563
ibm 0.9957 interface 0.9844 text* 0.9954 | intelligence 0.9821 human 0.9558
tool 0.9954 device 0.9809 ibm 0.9945 | engineering 0.9820 research 0.9544
project 0.9944 | application 0.9792 database* 0.9941 design 0.9818 | intelligence 0.9529
window 0.9942 | engineering 0.9768 language 0.9936 user 0.9817 ibm 0.9513
conference®* 0.9879 order 0.9349 company 0.9685 system 0.9473 process* 0.8826
source 0.9871 known 0.9327 list 0.9669 case 0.9468 state® 0.8808
solution 0.9868 point 0.9325 tool 0.9668 code 0.9460 known 0.8806
process 0.9868 text 0.9279 | application 0.9667 link 0.9458 point 0.8797
model 0.9864 set 0.9243 search 0.9648 solution 0.9454 | conference 0.8769
type 0.9848 support 0.9223 machine 0.9604 window 0.9431 form 0.8679
theory 0.9843 language 0.9162 design 0.9593 type 0.9340 set (0.8678
structure 0.9828 search 0.9097 support 0.9550 function 0.9303 server (0.8637
field 0.9822 memory 0.9067 source 0.9544 memory 0.9269 | application 0.8591
programming 0.9703 window 0.8934 type 0.9538 support 0.9247 field 0.8584

Table 3: Highest and lowest similarity scores per category, calculated on corpora from up to 100,000 Wikipedia
pages. Bold items also appear in the ten highest / lowest rated words w.r.t. the results of Ferrari et al. Items
marked with * are ranked highest (lowest) by our method, but are ranked lowest (highest) by Ferrari et al.

corpus (a) 10k Wiki 4+ IDF | (b) 10k Ferrari (c) 100k Ferrari

p P P P p p
Electronic Engineering | 0.4606 <0.0001 0.2727 0.0063 | 0.2668 0.0076
Literature 0.5088 <0.0001 0.4699 <0.0001 | 0.7027 <0.0001
Mechanical Engineering | 0.4090 <0.0001 0.4903 <0.0001 | 0.7057 <0.0001
Medicine 0.7396 <0.0001 0.5867 <0.0001 | 0.6835 <0.0001
Sports 0.3596 0.0003 0.2850 0.0047 | 0.6284 <0.0001

Table 4: Spearman correlation between the results from Table 3 and different methods. For every combination,
the Spearman rank correlation coefficient p and its p-value is given.

words in MEN for the smaller corpus size, while it is one of the least similar for the 100,000 page corpus. This
could be caused by the smaller corpora representing the categories only partially and using more Wikipedia pages
led to a more general representation of the individual topics. Interestingly, our results on the EEN corpus are
notably different from the ones our reimplementation produced (Table 4b-c). For EEN, a weaker correlation was
determined, whereas a strong monotonic relationship was found for the other corpora, especially with the results
of our reimplementation on the bigger corpora. These results can suggest the instability of word embeddings in
general or word embeddings with smaller corpus size. In conclusion, this creates the need for a more thorough
investigation in the future.

5 Discussion

Comparing the method from [FDG17] to the method presented in this work, the new method proves to be more
flexible and needs less initial effort. This stems mainly from the fact that no separate word embeddings need
to be trained for specific domains. The results in chapter 4 suggest that the best results can be achieved with
a general purpose word embedding as a basis. Thus, in an application it would be sufficient to provide the two
texts from different domains or sources and the domain-specific differences can be calculated. Notable are the
following advantages:

1. Since there is no need for word embeddings, the differences can be calculated even on small data sets
that would not provide enough data for own word embeddings. This means differences in niche domains,

P, vs. P P vs. P} Py vs. Py Ps vs. P Py vs. Py P, vs. P}
bieten 0.9874 bieten 0.9884 system 0.9717 verbund 0.9940 bieten 0.9705 | ermdglichen 0.9696
moglichkeit 0.9874 moglichkeit 0.9881 bieten 0.9690 service 0.9938 moglichkeit 0.9705 moglichkeit 0.9693
nutzer 0.9771 nutzer 0.9770 moglichkeit 0.9690 moglichkeit 0.9933 nutzer 0.9691 bieten 0.9689
fahig 0.9422 fahig 0.9622 nutzer 0.9639 bieten 0.9932 ermoglichen 0.9584 | bereitstellen 0.9685
chat 0.9397 konfigurieren 0.9618 stanag 0.9588 nutzer 0.9931 bereitstellen 0.9510 nutzer 0.9655
mission 0.9177 anzeigen 0.9052 ermoéglichen 0.9343 | informationen 0.9251 services 0.9008 maximal 0.9101
automatisch 0.8941 | durchzufithren 0.9012 bereitstellen 0.9258 endgerit 0.9148 gemdfl 0.8966 beim 0.8966
informationen 0.8637 entsprechend 0.8961 | informationen 0.9250 clients 0.8703 mobilen 0.8911 services 0.8929
service 0.8625 nutzung 0.8899 nato 0.9070 planning 0.8701 | informationen 0.8730 | priorisierung 0.8717
durchzufiihren 0.8540 service 0.8750 service 0.8978 | durchzufiihren 0.8436 plattform 0.8621 plattform 0.8269

Table 5: Highest and lowest context similarity scores of a pairwise comparison of four requirement datasets
Py, Py, P3 and Pj, where the latter two originate from a single project with requirements split in two parts.

subdomains as well as in different requirements sets can be compared to each other.

2. The word differences can be calculated for every word. In [FDG17] the words have to be marked before the
word embeddings are calculated. This means that either the most frequent words are taken (as is done in
the paper), or they have to be marked manually. However, this would require previous knowledge about
which words may have different interpretations in those domains. Additionally, the more words are marked,
the more tokens will be different between the domains. Thus, less words will be common during training
and the domains will completely separate from each other, resulting in less expressive distances. This is not
desirable.

One disadvantage we found while comparing the two methods is the calculation time. Determining the distance
of a word in two domains in [FDG17] requires two look-ups in the word embedding model and a simple distance
calculation between two vectors. The presented method, however, needs to determine the whole context of the
word in both domains, meaning all instances of the word have to be found and the context words in the sentence
have to be collected. This then requires multiple look-ups in the model, the calculation of the average vector and
a distance calculation. This results in approximately 120 ms per call when comparing two 10,000-page corpora
from above, and approximately 1800 ms for the bigger 100,000-page corpora, but only about 4 ms in requirement
texts with around 800 requirements. In comparison, the method devised in [FDG17] is able to calculate the
distance in less than a millisecond.

Turning to our previously described example, we compared the distances of words in four different requirement
sets. As all those requirement sets were related to each other, but discussed different parts of connected projects,
there should be multiple words that are shared between those sets, while also containing some differences in their
usage. The notation in Table 5 shows the results between those four data sets. P; describes the overarching
military project that will connect multiple sub projects, like P, and Ps;. The requirements in P, describe the
infrastructure for a mobile network that has to be able to connect multiple devices in areas without internet
connection. Ps describes devices that will work in the infrastructure provided by P,. Additionally, P} is a small
part in P that was focused separately from the rest of Ps.

The results show that in most comparisons the word service has one of the lowest similarity scores. Upon
further investigation of the requirement sets, some differences can be seen. In P; the word is mainly used on
which services should actually be used and supported for the project, while P, describes which features the
services shall integrate. The requirements for Pj, however, specify which features for the user shall be provided
and how they should be able to use them. This indicates that P, and P> are emphasizing the technical aspects
and details of the services more, while in P3 the user interaction aspect of services are emphasized. In P, the
system uses the services, while in P3 humans use the services. The word clients (which in this context was used
as a term for a computer device) had a high difference between P; and Pj, as one part was focused on what
features shall be provided by the client, while the other part specified details as the maximal weight or battery
runtime. In one case the client was used as a pure hardware product, while the other part specifies the software
part of the client. The same semantic difference was found with the word plattform which had a low similarity
between P> and Pj.

However, the results provided in this experiment may have some shortcomings. In section 4 we were able to
show that our method provides the same results as a previously established method on text corpora that are big
in comparison to this experiment. There was no qualitative study on how good the results are on smaller texts,
or whether smaller texts even contain enough information to show discrepancies in word usage.

6 Conclusion

In this paper we discussed the potential problems that may arise from polysemous words in requirements. Those
different interpretations of a word can lead to confusion when working with requirement sets. Different methods
were suggested that solve this problem by comparing domain specific word embeddings. However, it is not always
possible to train word embeddings due to text limitations. The method proposed in this work is able to calculate
domain specific differences by comparing the two different text corpora without training word embeddings. This
results in a more flexible method that needs less initial work. We verify our work by comparing it to a previously
established method in this field and prove that our method, albeit a bit slower in calculation, provides similar
results. In our experiment we show the usefulness of our method, as it is able to calculate word differences even
on requirement sets that contain less than 1000 sentences. In the future we would like to conduct a qualitative
analysis of the usefulness of our results. This means the method needs to be integrated into a tool for users to
interact with. Additionally we want to see how users can implement this information to find differences in the
interpretation of polysemous words.

References

[BCMT14] Carmen Banea, Di Chen, Rada Mihalcea, Claire Cardie, and Janyce Wiebe. Simcompass: Us-
ing deep learning word embeddings to assess cross-level similarity. In Proceedings of the Sth
International Workshop on Semantic Evaluation (SemEval 2014), pages 560-565. Association for
Computational Linguistics, 2014.

[BGIM16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. arXiv preprint arXiv:1607.04606, 2016.

[CDLRL18] Hugo Caselles-Dupré, Florian Lesaint, and Jimena Royo-Letelier. Word2vec applied to recommen-
dation: Hyperparameters matter. In Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys "18, pages 352-356, New York, NY, USA, 2018. ACM.

[DDF*90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harsh-
man. Indexing by latent semantic analysis. Journal of the American society for information
science, 41(6):391-407, 1990.

[DSW15] Francisco De Sousa Webber. Semantic folding theory and its application in semantic fingerprinting.
arXiw preprint arXiw:1511.08855, 2015.

[DvdSL18] Fabiano Dalpiaz, Ivor van der Schalk, and Garm Lucassen. Pinpointing ambiguity and incomplete-
ness in requirements engineering via information visualization and nlp. In International Work-
ing Conference on Requirements Engineering: Foundation for Software Quality, pages 119-135.
Springer, 2018.

[FDE*17] Alessio Ferrari, Felice Dell’Orletta, Andrea Esuli, Vincenzo Gervasi, and Stefania Gnesi. Natural
language requirements processing: A 4d vision. IEEE Software, 34(6):28-35, 2017.

[FDG17] A. Ferrari, B. Donati, and S. Gnesi. Detecting domain-specific ambiguities: An nlp approach
based on wikipedia crawling and word embeddings. In 2017 IEEFE 25th International Requirements
Engineering Conference Workshops (REW), pages 393-399, Sep. 2017.

[FEG18] Alessio Ferrari, Andrea Esuli, and Stefania Gnesi. Identification of cross-domain ambiguity with
language models. In 2018 5th International Workshop on Artificial Intelligence for Requirements
Engineering (AIRE), pages 31-38. IEEE, 2018.

[LDvdWB16] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak Brinkkemper. Visualiz-
ing user story requirements at multiple granularity levels via semantic relatedness. In International
Conference on Conceptual Modeling, pages 463—-478. Springer, 2016.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[MSC+13]

[PSM14]

[RS10]

[WNLN18]

[WV16]

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111-3119, 2013.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532-1543, 2014.

Radim Rehtifek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45-50,
Valletta, Malta, May 2010. ELRA.

Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. Enhancing automated requirements trace-
ability by resolving polysemy. In 2018 IEEE 26th International Requirements Engineering Con-
ference (RE), pages 40-51. IEEE, 2018.

Jonas Winkler and Andreas Vogelsang. Automatic classification of requirements based on con-
volutional neural networks. In Requirements Engineering Conference Workshops (REW), IEEE
International, pages 39-45. IEEE, 2016.

