
A Hybrid Model to Rank Sentences for
Check-worthiness

Rudra Dhar1, Subhabrata Dutta1, and Dipankar Das1

Jadavpur University, West Bengal, India
{rudradharrd,subha0009,dipankar.dipnil2005}@gmail.com

Abstract. In this paper we describe a system submitted to the CLEF
2019 CheckThat Shared Task. We implement an ensemble of a logis-
tic regression model and an LSTM-based neural network model to pre-
dict the worthiness of a sentence for fact checking. Our key idea is to
train two separate models with high precision and high recall on bi-
nary classification task, and then use the binary class probability as a
check-worthiness score. Our system achieves a reciprocal rank 0.4419 and
mean average precision of 0.1162 for ranking sentences according to their
check-worthiness.

1 Introduction

With the advent of web technology, mass media have achieved a revolutionary
new form. People all around the globe share information with each other to
construct their opinion about everything, that too at an unprecedented speed.
In this age of communication, quality of information becomes utmost important.
Rumors, fake news, malicious tampering of reality can cause substantial amount
of economic as well as social calamity now more than ever. This makes fact-
checking an essential part of media and information systems. To handle such
large amount of information sharing, automation of such a system is necessary
if not mandatory.

As Hassan et al. [5] suggest, automatic fact checking can be divided into a
two-fold task: identification of check-worthy sentences, and checking their trust-
worthiness based on some reliable source. In this task, we attempt to build a sys-
tem which can assign a score to an input sentence indicating its check-worthiness.
This score can vary from 0 (not check-worthy) to 1 (fully check-worthy). The
organizers provided the required data set comprised of 16421 sentences. These
sentences are binary labelled, 0 and 1, corresponding to not check-worthy and
fully check-worthy respectively. Out of these 16421 sentences, 440 are labelled
as fully check-worthy. We insist on building a system using this training data
only. We attempt to build a classifier framework which assigns a probability
score to each sentence, and hypothesize that this probability score corresponds

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.

Table 1. Feature size for each feature.

Feature Size

Arc 4341
Bi-arc 1448
Tri-arc 479
Quad-arc 169
Subjectivity score 1
Cumulative Entropy 1
Polarity words 3
LIX score 1

to the check-worthiness of the sentence. Our framework is an ensemble of two
separately trained classifiers: one based on Long Short-Term Memory (LSTM)
networks, and another based on Logistic Regression classifier. Our key strategy
is to build one model predicting check-worthy sentences with high precision (less
false positives) and another one with high recall (less false negatives), so that
their ensemble will perform more accurately.

2 Logistic Regression Component

To train our logistic regression model, we extract the following features for each
sentence:

1. Syntactic N-grams [8] computed using Syntactic N-gram builder1; we gener-
ate the dependency parse tree of the sentence using Stanford CoreNLP [6]
and compute syntactic n-grams for dependecy paths of length one (arc), two
(bi-arc), three (tri-arc) and four (quad-arc).

2. Subjectivity score of the sentence, using TextBlob2.

3. Cumulative Entropy of the sentence as,

CE =
1

|T |
∑
t∈T

(tf(t) ∗ (log(|T |)− log(tf(t)))

where T is the set of terms in the corpus and tf(t) is the frequency of term
t ∈ T in the sentence.

4. Count of negative, neutral and positive polarity words computed using Sen-
tiWordNet [2].

5. LIX score [3] representing the readability of the sentence.

6. Count of named entities present in the sentence.

With this feature set, we train a logistic regression classifier using Scikit-
learn.

. . .

Pretrained
word
embedding

POS
embedding

Selected
features

LSTM Cell

Fully connected
layer

S1

Logistic regression

S2

Average

Final
check-worthiness

score

Fig. 1. Complete architecture of the system

2.1 LSTM component

We use GloVe [7] pre-trained word embeddings of size 300 to be used as word
representations. Along with that, we input parts-of-speech tags of the words
(tagged using Stanford CoreNLP) as one-hot vectors, which selects randomly
initialized POS embeddings. These two embeddings are concatenated and input
to an LSTM layer, which learns a many-to-one mapping from the sequence of
word-POS tag vectors to a single representation of the sentence. We also use
the manually extracted features as an input to a fully connected layer, learning
a dense low dimensional representation from the sparse feature vectors. The
output of the LSTM layer and the fully connected layer is then concatenated
and input to another fully connected layer, which outputs a probability score.

1 https://github.com/jmnybl/syntactic-ngram-builder
2 https://textblob.readthedocs.io/en/dev/

Table 2. Performance of the individual models on the validation set for positive class
(check-worthy sentences).

Precision Recall

Logistic Regression 0.07 0.78
LSTM 0.81 0.15

3 Training

As already stated, the LSTM component and logistic regression components are
trained separately. For a single sentence, if the output score of the LSTM model
is greater than 0.5, then the predicted label is 1, otherwise 0. We train the LSTM
model using the Adam optimizer, with a batch size equal to 256.

As the training data-set has high class imbalance, we train the LSTM model
with a class-weighted binary cross-entropy loss. We weigh the positive class with
weight w = log N0

N1
where N0, N1 corresponds to the number of negative and

positive class samples in the training data. The class imbalance automatically
puts a bias in the logistic regression model towards the negative class, making its
positive predictions highly precise; on the other hand, the weighted loss function
forces the LSTM model to bias towards the positive class, resulting in a higher
recall.

4 Testing

To produce the final check-worthiness score, we average the scores predicted
by the two components. We test our system on the test dataset provided by
the organizers. Test dataset contains 7080 sentences. In Table 3 we present the
evaluation results of our system for various metrics.

Table 3. Evaluation results for ranking check-worthiness

MAP RR R-P P@1 P@3 P@5 P@10 P@20

0.12 0.44 0.11 0.29 0.19 0.17 0.17 0.13

5 Conclusion

We made a system to predict the check-worthiness of a sentence for CLEF 2019
CheckThat (Task 1). We did not use any external data. Here we used a combined
logistic regression model and an LSTM-based neural network model to get a
better probability score for check-worthiness. We achieved a reciprocal rank of
0.4419 and a mean average precision of 0.1162 .

References

1. Atanasova, P., Nakov, P., Karadzhov, G., Mohtarami, M., Da San Martino, G.:
Overview of the clef-2019 checkthat! lab on automatic identification and verification
of claims. task 1: Check-worthiness

2. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical re-
source for sentiment analysis and opinion mining. In: Lrec. vol. 10, pp. 2200–2204
(2010)

3. Björnsson, C.H.: Readability of newspapers in 11 languages. Reading Research
Quarterly pp. 480–497 (1983)

4. Elsayed, T., Nakov, P., Barrón-Cedeño, A., Hasanain, M., Suwaileh, R., Da San
Martino, G., Atanasova, P.: Overview of the CLEF-2019 CheckThat!: Automatic
Identification and Verification of Claims. In: Experimental IR Meets Multilinguality,
Multimodality, and Interaction. LNCS, Lugano, Switzerland (September 2019)

5. Hassan, N., Adair, B., Hamilton, J.T., Li, C., Tremayne, M., Yang, J., Yu, C.:
The quest to automate fact-checking. In: Proceedings of the 2015 Computation+
Journalism Symposium (2015)

6. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
stanford corenlp natural language processing toolkit. In: Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations. pp.
55–60 (2014)

7. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

8. Sidorov, G., Velasquez, F., Stamatatos, E., Gelbukh, A., Chanona-Hernández, L.:
Syntactic n-grams as machine learning features for natural language processing.
Expert Systems with Applications 41(3), 853–860 (2014)

