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Abstract. An algorithm to construct a generalized Voronoi diagram (VD) in the 

presence of fuzzy parameters is proposed with optimal location of a finite 

number of generator points in a bounded set of n-dimensional Euclidean space 

n . The algorithm is based on the formulation of the corresponding continuous 

problem of optimal partitioning of a set (OPS) from 
n  into non-intersecting 

subsets with a partitioning quality criterion providing the corresponding VD 

form with fuzzy parameters. The algorithm was developed using a synthesis of 

methods for solving OPS theory problems, neuro-fuzzy technologies and 

modifications of the N.Z.Shor’s r-algorithm for solving non-smooth 

optimization problems. 

Keywords: generalized Voronoi diagram, problem of optimal partitioning of 
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1 Introduction 
 

As is known [1, 2], a Voronoi diagram (VD) of a given finite set { , ,..., }1 2 NM      

of points in a plane (space), which are called generator points, is a mathematical 

object representing such a partitioning of a plane (space) at which each domain 

(Voronoi cell) of this partitioning forms a set of elements located closer to one of the 

points of set M  than to any other point of this set. 

Voronoi diagrams in two- and three-dimensional spaces are used in various 

fields of applied sciences [3, 4]. Currently, there are several hundreds of references on 

VD and their applications in various fields. Substantive reviews of some of them are 

given in [3-5]. There one can also find a general review of recent technical results and 

applications with links to primary sources. Despite the fact that many well-known 

algorithms for VD constructing cost ( log )O N N  time, and some of these algorithms 
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even use ( )O N  time, all of them are very complex. As for the VD for the case of a 

space of arbitrary dimension, its construction is associated with significant 

algorithmic problems. Indeed, it is known [2] that for a given number N  of generator 

points, the number of elements needed to describe VD increases exponentially 

depending on the space dimension. 

This paper is devoted to describing an algorithm to construct a generalized VD  

in the presence of fuzzy parameters with optimal placement of a finite number N  of 

generator points in a bounded set   of n-dimensional Euclidean space 
n  ( 2)n  . 

The algorithm is developed on the basis of a synthesis of methods for solving OSP 

theory problems (see [3-5]) with neuro-fuzzy technologies (methodologies) (see [6-

10]) and modifications of the N.Z.Shor’s r-algorithm for solving non-smooth 

optimization problems [11, 12]. This algorithm is based on: 

 formulating the corresponding problem of optimal partitioning of a set (OPS) 

of 
n  into non-intersecting subsets with a partitioning quality criterion providing the 

corresponding VD form with fuzzy parameters; 

 applying the mathematical and algorithmic apparatus described in [3] to 

solve such a problem, which includes the N.Z.Shor’s r-algorithm [11, 12] as a part; 

 using a neuro-fuzzy technology [6-10]. 

The basis of the above mathematical and algorithmic apparatus is the 

following general idea [3-5]. The initial OSP problems that are mathematically 

formulated as infinite-dimensional optimization problems, are reduced through the 

Lagrange functional to auxiliary finite-dimensional non-smooth maximization 

problems or non-smooth max-min problems, for the numerical solution of which 

modern efficient methods of non-differentiable optimization are used, namely, various 

modifications of the Shor's r-algorithm. The peculiarity of this approach is the fact 

that the solution of the initial infinite-dimensional optimization problems can be 

obtained analytically in an explicit form, and the analytic expression can include 

parameters that are sought as an optimal solution of the above-mentioned auxiliary 

finite-dimensional optimization problems with non-smooth target functions. 

 

2 Review of the Literature 
 

The algorithms to construct the standard VD with fuzzy parameters and its various 

generalizations that are proposed in [3-5] and in cited there sources have some 

advantages compared with those known in scientific literature [2, 13-20]: 

− do not depend on the dimension of space Еn containing the partitionable 

bounded set into subsets (the problem is only reduced to the calculation of 

multidimensional integrals); 

− do not depend on the geometry of the partitionable set; 

− due to their high calculation speed, they are applicable for large dimensional 

problems (100, 200, 300 or more generator points); 

− are applicable not only for the Euclidean metric, but also for the metrics of 

Chebyshev, Manhattan and others; 

− the complexity of VD constructing algorithms based on the described 

approach does not increase while increasing numbers of generator points; 



 

− are applicable to the construct not only VD with given number of generator 

points with their fixed location, but also with the optimal location of these points in a 

bounded set of space Еn; 

− the result of this universal approach is the ability to easily construct not only 

the already known VD, but also new ones. 

The universality of proposed in [3-5] approach to construct VD is confirmed 

by that models and methods to solve OSP problems can be generalized to the case of 

fuzzy specification of initial parameters of the problem or to the case of requirement 

of a fuzzy partitioning of the set, where VD also may be fuzzy. 

We first give some information from [3-5] on constructing generalized VD 

with clear parameter on the basis of the above-mentioned mathematical apparatus. 

As is known [2, 4], the standard (classical) Voronoi diagram  of a finite set 

1 2{ , ,..., }N nM E      of generator points (1) (2) ( )( , ,..., )n

i i i i     , 1, ,i N  in n-

dimensional Euclidean space  ( 2)n n   is the set of Voronoi polytopes: 

      :  , , , 1, ,   , 1, ,i n i jVor x c x c x j N j i i N             (1) 

predefined points 
1,..., N  , where  ,c x y  is a metric in 

n , which may be defined as 

Euclidean, Manhattan and Chebyshev one [4]. In other words, VD of a finite set 

1 2{ , ,..., }NM      from  ( 2)n n   is the following set: 

 

   ,
i

iVor Vor
 

       (2) 

where  ( ) ( ) 0i jmes Vor Vor   , , 1,   ( )i j N i j  ;  ( )mes   is a Lebesgue 

measure. 
n  space partitioning into Voronoi polytopes  iVor  , 1,i N  of given set 

1 2{ , ,..., }NM      is monosemantic. 

A brief review of some generalizations of the standard VD available in the 

scientific literature is given in book [4], for example: 

– Additively Weighted VD of a set 1 2{ , ,..., }N nM E     : 

     ,
i

iAW Vor AW Vor
 

    

  ( ) :  ( , ) ( , ) ,  1, ,   i n i i j jAW Vor x с x w с x w j N j i          , 1,i N , 

where each generator point Mi   has a weight 0iw   ( 1,i N ) added to the 

function specifying the distance while measurement; 

– Multiplicatively Weighted VD of a set 
1 2{ , ,..., }N nM E     : 

     ,
i

iMW Vor MW Vor
 

    

where each Voronoi polytopes 

  ( ) :  ( , ) / ( , ) / ,   1, ,   i n i i j jMW Vor x с x w с x w j N j i        , 



 

1,i N , is a set of points in space, the weighted distance from which to the generator 

point Mi   does not exceed the weighted distance to any other point of M ( 0iw  , 

1,i N   as before are given weights). 

Some other generalizations of the standard VD (1), (2) are also mentioned in 

[4] such as the Laguerre diagram (Power VD), approximate (fuzzy) VD, VD with 

constraints on the power of generator points, dynamic VD etc. There is also a table of 

correspondence between a specific VD version with clear parameters and the 

mathematical model of the OSP problem, the solution of which gives this diagram. 

 

3 Problem Statement 
 

We now turn to the mathematical formulation of the problem of constructing a 

generalized VD in the presence of fuzzy parameters with the optimal location of a 

finite number of generator points. 

Let   be some given bounded set from
n  and let 

1 2, ,..., N    be a finite set 

of generator points in  . In cases when the location of points 
1 2, ,..., N    in   is 

unknown and they need to be located (selected) in  , we enter another VD version 

on set 
n  , namely, VD of a finite number of points optimally located in a 

bounded set. 

We define [4] the Voronoi diagram of a finite number of generator points 

1 2, ,..., N    optimally located in a bounded set 
n   with fuzzy parameters as a 

set of Voronoi polytopes 

      : , / , / , , 1,i n i i i j j jVor x c x w a c x w a i j j N           ,    (3)  

1,i N , 

of points 
1 2, ,..., N    where the total weighted distance from points of set   to 

corresponding generator points 
1,..., N   is minimal, so the functional 

  1

1 ( )

,..., ( ( ,  ) / )

i

N

N i i i

i Vor

F c x w a dx
 

          (4) 

gets the minimum value. Here 0iw   ( 1,i N ) are given numbers (weights); 0ia   

( 1,i N ) are given numeric parameters that are fuzzy and will be formalized using 

the bell-shaped membership function [6, 7]. We will consider parameters ia , 1,i N , 

in (4) as parameters depending on fuzzy factors , 1,j j q   in the form 

1( ,..., )i i qa a   . For example, in terms of the well-known location-allocation 

problem with fuzzy parameters, parameter ia  ( ,i 1 N ) makes sense of a cost of the 

i -th enterprise to produce a unit of output and depends on fuzzy factors , 1,3j j  , 

where 
1  is a cost of production means (production capacity and means of labor); 

2  

is a cost of labor resources; 3  is a cost of natural resources (raw materials and 

energy). 



 

Note: By specifying values of parameters 
1,..., Nw w  and a type of function 

( ,  )ic x   in formula (4), one can obtain various VD versions in the presence of fuzzy 

parameters with the optimal location of generator points (multiplicatively weighted, 

additively weighted, etc.). 

We present an approach to constructing VD with fuzzy parameters, based on 

applying the apparatus of the theory of continuous OSP problems [3] and neuro-fuzzy 

technologies [6-10]. 

To do this, we first formulate the corresponding problem of optimal 

partitioning of a set from n-dimensional Euclidean space Еn into subsets with fuzzy 

parameters in the target functional and with previously unknown coordinates of some 

specific for each subset points, called "centers" of subsets. Such a problem is a 

generalization of the problem from [3]. 

Let Ω be a bounded, Lebesgue measurable set in n-dimensional Euclidean 

space. We name a set of Lebesgue measurable subsets 
1,..., N   from 

n   as a 

possible partitioning of set Ω into its non-intersecting subsets 
1,..., N   if 

 
1

,  0,  , 1,   ( )
N

i i j

i

mes i j N i j


       ,                   (5) 

where  mes   is a Lebesgue measure. 

We denote [3] by N

  the class of all possible partitions of a set Ω into non-

intersecting subsets 
1,..., N   that is 

   1

1

,..., :  ,  0,  , 1,   ( )
N

N

N i i j

i

mes i j N i j



 
            

 
. 

We introduce the functional 

    1 1

1

,..., , ,..., ( ( ,  ) / ) 

i

N

N N i i i

i

F c x w a dx
 

          (6) 

where  , ic x   is a given real function bounded on Ω×Ω, measurable by 

 (1) ( ),..., nx x x   for any fixed  (1) ( ),..., n

i i i     , for each 1,i N ; 0iw   

( 1,i N ) are given numbers (weights); 0ia   ( 1,i N ) are given fuzzy numeric 

parameters. 

Here and in the following, integrals are understood in the sense of Lebesgue. 

We assume that the measure of the set of boundary points of subsets 
i , 1,i N , is 

equal to zero. 

We name the following problem as a continuous problem of optimal 

partitioning of a set Ω from Еn into its non-intersecting subsets 
1,..., N   (some 

of which may be empty) with fuzzy parameters in the target functional with 

finding the coordinates of centers 
1 2, ,..., N    of these subsets, respectively [3]. 

Problem A. To find          
1

1

1 1
{ ,..., }  ,

{ ,..., }  

min ,..., , ,...,
N

N
N

N

N NF
   

   

    , 



 

where the functional  1 1{ ,..., },{ ,..., }N NF      is defined by (6); the coordinates 

(1) ( ),..., n

i i   of centers  (1) ( ),..., n

i i i i     , 1,i N  are not predefined and should 

be determined. 

We define a pair  1 1{ ,...,  },  { ,..., }N N

        that minimizes functional (6) on 

set N N

   as an optimal solution to Problem A. Wherein partitioning 

1{ ,...,  } N

N

 

    we define as an optimal partitioning of the set 
n   into N  

subsets, and set  1 ,..., N

N

        of centers 
i i

   , 1,i N  as optimal centers 

of the subsets 
i

 , 1,i N  in Problem A. 

Let us illustrate a partitioning of Ω Е2 into three subsets Ω1, Ω2, Ω3 with 

corresponding centers 
1 2 3, ,    on Fig.1. 

 
Fig.1. Partitioning of set Ω into three subsets 

 

4 Materials and Methods 
 

To solve Problem A for each fixed 
ia  ( 1,i N ), we introduce the characteristic 

functions of subsets 
i : 

1,  ,
( ) 1, ,

0, \ ,

i

i

i

x
x i N

x


  

 
    

and rewrite Problem A in terms of characteristic functions in the following form. 

Problem B. To find    
N(λ( ),τ) 1

min (c( , τ ) λ ( ) 
N

i i i i
i

x ) / w a x dx
  

 , 

where   
1{ ( ) ( ( ),..., ( )) :Nx x x       *

1

λ ( ) 1
N

i
i

x


  for a.a. x ,  λ ( )=0 1i x   

for a.a. x , 1, }i N ;   1

N

τ=τ ,...,τ Ω ... Ω N
N      . 

For Problem B, the theorem was proved in [3], which established the form of 

an optimal solution (λ ( ), τ )  . 

To remove fuzziness in Problem A, we apply the method of neuro-linguistic 

identification [6]. Since, as stated above, parameters ia , 1,i N , in (6) depend on 

fuzzy factors , 1,j j q   in the form 1( ,..., )i i qa a   , we rewrite Problem A with 

fuzzy parameters as follows: 



 

1

1

1
{ ,..., }  ,

1
{ ,..., }  

( ( ,  ) / ( ,..., )) min
N

N
Ni

N

N

i i i q

i

c x w a dx
   

 
   

       

under condition (5). 

To simplify the description of the neuro-linguistic identification method 

proposed in [6], we denote each parameter 
ia , 1,i N  as a  and consider the 

functional dependence of an output a  on the identification object inputs 
1,..., q   in 

the form: 

1( ), ( ,..., )qa a      .                                     (7) 

For the identification problem, we assume to be known: domains of inputs 

1,..., q  , a range of output a  change for (7), and expert-experimental information 

about the dependency (7) in the form of a sample of data on the object inputs and 

output. The problem of identifying (recovering) a complex nonlinear dependence of 

the form (7) is considered as constructing an object model from expert-experimental 

data on the input-output interrelationships and is usually solved in two stages [7-10]: 

– structural identification: the formation of a fuzzy knowledge base about an 

object and building on its basis a fuzzy object model with several inputs and one 

output that roughly reproduces the dependence of an output on inputs using the 

linguistic rules "IF-THEN" generated from experimental data; 

– parametric identification (customization): search for such parameters of a 

fuzzy model that minimize the deviation of model values from experimental ones. 

The first stage of the neuro-linguistic identification method (structural 

identification), which implies constructing a fuzzy model of an object with several 

inputs and one output, consists of the following blocks: fuzzification, fuzzy inference, 

defuzzification. At the fuzzification stage, in order to find dependence (7) in an 

explicit form, we will consider input variables ,   1,i i q   and output variable a  as 

linguistic variables, for the evaluation of which we will use terms from the following 

term sets [7]: 

–  { }kD D  is a term-set of variable a , where 
kD  is the k-th linguistic term of 

variable a ,    1,k L ;  L is a number of different classes of output a ; for each class 

kD  we define its center 
k kd D ; 

–  { }i ir    is a term-set of variable 
i , where 

ir  is the r-th linguistic term 

of variable 
i , 1, ;   1,i q r t  ; t  is a number of terms in term-set 

i  of variable 
i . 

We obtain values of linguistic terms 
kD  and 

ir  based on expert-linguistic 

information about the modeled object. We define each term, like a fuzzy set, by its 

bell-shaped membership function in the form (10) below. The constructed fuzzy 

knowledge base based on expert-linguistic information about the modeled object 

consists of production rules 1 2( , ,..., )k

j qp     and is used when executing a fuzzy 

inference block (here k  ( 1,k L ) is an output a  class number; j  ( 1, kj s ) is a 

rule number in the k -th class; 
ks  is a number of rules in the k-th class). 



 

As a result of executing the fuzzy inference block, we obtain the membership 

function ( )
Dk

a  of output variable a  to class 
kD  in the form 

1 2 1 2

1 1

( , ,..., ),   if  ( , ,..., ) 1,
( )

1,   otherwise,

k k

Dk

s s
k k

j q j q

j j

p p
a  


      

  



 
                (8) 

where 

1 2

1

( , ,..., ) ( ), 1, , 1,
q

k k k

j q j ij i k

i

p v j s k L


        ,             (9) 

2

1
( ) , 1,  

1

k

ij i
k

i ij

k

ij

i q
b

e

   
  

   
 

,                                (10) 

k

jv  is a weight of the j -th rule in the k -th class of output a ; ( )k

ij i   is the bell-

shaped membership function of variable 
i  to term 

ir  in the k -th class of output a ; 

k

ijb  is a maximum coordinate, k

ije  is a concentration coefficient of this membership 

function ( 1, kj s ; 1,k L ; 1, ;   1,i q r t  ). 

At the defuzzification stage, in order to obtain an accurate (clear) value of the 

output variable, we apply the discrete analogue of the center-of-gravity method [7]: 

1

1

( )

 

( )

k

k

L

k D

k

L

D

k

d a

a

a














.                                               (11) 

Thus, we have constructed a fuzzy model of object (7) in the form of relations 

(8) - (11), which, as noted above, roughly describes the desired relationship (7). 

At the second stage of the neuro-linguistic identification method (parametric 

identification, customization), we will apply the methodology developed in [6] using 

the N.Z. Shor’s r-algorithm [11, 12] to optimize the parameters of model (8) - (11). 

As a result of solving this optimization problem, we obtain such values k

jv  for the 

weights of rules (9) and k

ijb , k

ije  for the parameters of membership functions (10), 

for which the deviation of experimental data from the model ones obtained after 

customizing the fuzzy object model (7) reaches the minimum value. 

In relations (8) - (11), we take for ( )
Dk

a , 1 2( , ,..., )k

j qp    , ( )k

ij i   their 

values, which are calculated at the optimal values k

jv , k

ijb , k

ije  of the parameters 

obtained after customization, carried out using the N.Z.Shor’s r-algorithm [11, 12]. 

We present below theorem based on the results from [3, 6], which sums up our 

reasoning and will be used later in the formulation of the algorithm to solve 

Problem A. 

Theorem. Optimal solution of Problem B has a form 

* *1 * *( ) ( ( ),..., ( ),..., ( ))i Nx x x x     , where for a. a. x   



 

* *

* *

1,   ( , ) / ( , ) / ,

( )      1,  ( ),  then ,

0,   otherwise,

i i i j j j

i i

c x w a c x w a

x j N j i x

    


    



    1,i N           (12) 

and 
*1 *,...,  N   are an optimal solution of the problem 

1,
( ) min[ ( , ) / ] min, N

i i i
i N

G c x w a dx




      .                   (13) 

Here, each parameter 
ia  ( 1,i N ) named earlier as output a  depending on inputs 

1,..., q   in the form ( )a a  , 
1( ,..., )q    , is calculated by the following 

formulas: 

1

1

( )

 

( )

k

k

L

k D

k

L

D

k

d a

a

a


















,                                           (14) 

where 

1 2 1 2

1 1

( , ,..., ), if ( , ,..., ) 1,
( )

1,     otherwise,

k k

k

s s
k k

j q j q

j jD

p p
a

 


 


      

  



 
              (15) 

1 2

1

( , ,..., ) ( ),
q

k k k

j q j ij i

i

p v  



                                           (16) 

2

1
( ) , 1, ; 1, ; 1, .

1

k

ij i k
k

i ij

k

ij

i q j s k L
b

e







     
  

   
 

      (17) 

Here we present an algorithm to solve Problem A with neuro-linguistic 

identification of fuzzy parameters 
ia , 1,i N , which is based on the above Theorem 

and the most efficient (of the known methods of non-smooth optimization) method of 

generalized gradient descent with space expansion in the direction of the difference of 

two successive generalized anti-gradients (or the so-called N.Z.Shor’s r-algorithm 

[11, 12]) for solving problem (13), dual to Problem B, with the non-differentiable 

functional ( )G  . 

The idea of generalized gradient descent methods with space expansion is 

based on successive constructing linear operators that change the metric of space, and 

on choosing the descent direction corresponding to the anti-gradient in space with a 

new metric. 

In the iterative formula of the r-algorithm [11], which has the form 

 1

1 1 , 0,1,2,...,
T

k k k

k k k Gh B B g k  

 
           (18) 

1kB


 is an operator that maps transformed space into the main space 

NE  (
0B I   is 

identity matrix); 
kh  is a stepping factor chosen from the condition of function G  



 

minimum towards  1 1

k

k k GB B g

   ;  G kg   is a generalized gradient of function 

( )G   at point 
k . 

Here we use the r-algorithm in H-form [11], where
kH  is a symmetric matrix 

such that T

k k kH B B , and the iteration formula (18) is defined as 

 

    
11

1

, 0,1,2,...,

,

k

k Gk k

k
k k

k G G

H g
h k

H g g






    

 

 

where 

 
 

   2 1

1 1/ 1 ; .
,

T

k kk k k k

k k k k G G

k k k

H H
H H g g

H





 
        

 
 

Coefficient αk of space expansion is define as 3. To adjust stepping factor 
kh , the 

adaptive method is used described in [11]. 

We define the і-th component of generalized gradient vector 

        1 ,..., ,...,i N

G G G Gg g g g
        of function 

1,...,
( ) min [ ( , ) / ] ,i i i

i N
G c x w a dx




     

at point   as 

   ;  ( ) ,   1, ,i i

G c ig g x x dx i N
 



         (19) 

where  ,i

cg x


  is the і-th component of  vector of generalized gradient  ,Cg x  . In 

formulas (19), ( )i x , 1,i N , is determined for almost all x  as follows: 

1,   ( , ) / ( , ) / ,

( )      1,...,  ( ),  then ,

0,   otherwise,

i i i j j j

i i

c x w a c x w a

x j N j i x

    


    



                (20) 

where 
ia , 1,i N , are calculated by formulas (14) - (17). 

 

4.1  Algorithm 

 

Step 1. We enclose set Ω in n-dimensional parallelepiped П. Then we cover 

parallelepiped П with rectangular grid and define initial approximation (0)   . Then 

we calculate  (0) x  in grid nodes by formulas (20) at (0)    taking into account 

formulas (14)-(17) to find parameter a ; we also calculate  Gg   by formulas (19) at 

   (0)x x   , (0)   , select 
0 0h   and find 

 

    

0

11 0

0
0 0

1 ,

G

G G

H g
h

H g g


 
 

     
   
 

, 

where  РП  is a projection operator on П.  Then we go to the following step. 



 

Step (k+1), k =1, 2,…. 

1. Calculate 
   k

x  using formula (20), taking into account formulas (14) - 

(17) for calculating parameter a , with  k
   . 

2. Find values of  Gg   by formulas (19) with    ( )kx x   , ( )k   . 

3. Carry out the (k+1)-th step by the iteration formula [12] 

 

    
11

1 ,

k

k Gk k

k
k k

k G G

H g
h

H g g







 
 

     
   
 

,  

4. Go to point 5 if  
1 , 0k k       ,      (21) 

otherwise proceed to the (k+2)-th step of algorithm. 

5. Assume      *

l
x x   , ( )

*

l   , where l is an iteration number at which  

(21) holds true.  

6. Calculate ( )G   from (13) by the formula  

1,...,
( ) min [ ( , ) / ]i i i

i N
G c x w a dx




    , 

with 
*    and 

ia , 1,i N , calculated by formulas (14)-(17). 

The algorithm is described.  

Thus, as a result of solving Problem A by the described algorithm based on the 

above Theorem, we obtain a set of Voronoi polytopes (3) of generator points 
i , 

1,i N : 

      Vor : , / , / , , 1,i n i i i j j jx c x w a c x w a i j j N           , 

but instead of standard VD (1), in which points 
1,..., N   are fixed and parameters 

ia , 

1,i N , are clear, a solution of the finite-dimensional optimization problem 

1,...,
( ) min [ ( , ) / ] min, ... ,N

i i i
i N

N

G c x w a dx




           

is required to find the coordinates of generator points 
1,..., N   that are optimally 

located in 
nЕ . This optimization problem contains a non-differentiable target 

function ( )G   and parameters 
ia , 1,i N , reconstructed using the neuro-linguistic 

identification method [6]. 

 

5 Numerical validation 
 

Let us illustrate the algorithm operation to solve a Problem A for    from 
2E  with 

fuzzy parameters in the target functional by example of constructing a generalized 

additive VD with fuzzy parameters and with locating N=5 generator points in the set 
(1) (2) (1) (2)

2{( , ) : 0 1;0 1}x x E x x      . 



 

We note first that, as a result of solving Problem A with clear parameters by 

the described algorithm a generalized additive VD has constructed with located five 

generator points 
*1 *5,...,   in   and specified clear values of parameters 

1 0,07a  ; 

2 0,1a  ; 
3 0,38a  ; 

4 0,2a  ; 
5 0a  .  Function ( , )ic x   of distance from a point 

(1) (2)( , )x x x   to a generator point (1) (2)( , )i i i      was taken as follows:  

(1) (1) 2 (2) (2) 2( , ) ( ) ( )i i ic x x x       ,  1,5i  .  As a result of the described algorithm 

operation, in 46 iterations we also obtained: 

 maximum value of functional ( )G   from (13), equal to 0,26722; 

 minimum value of functional F  of Problem A, equal to 0,26789. 

This VD is presented in Fig. 2, where the solid line indicates boundaries of 

subsets 
i , 1,5i  , and the «●» symbol indicates an optimal coordinates of generator 

points: 
*1 =(0,28439; 0,23794); 

*2 =(0,19985; 0,76565); 
*4 =(0,81255; 0,14963); 

*5 =(0,70583; 0,65526). At that, instead of partitioning into N=5 subsets, the 

partitioning into four subsets turned out to be optimal: subset 
3  turned out to be 

empty, since the value 
3a  is much greater than

ia , 1,5i  . It is easy to see that the 

boundaries between the different cells of the additive VD presented in Fig. 2 are, as 

proved in [3], either segments of hyperbola branches, if i ja a , or straight lines, if 

i ja a , , 1,5i j  . In case 
i ja a , the Voronoi cells are convex polygons. 

 

Fig.2.  Voronoi diagrams for the model problem 

6 Results and Discussion 
 

We now turn to illustrating the approach described in this paper to solve the same 

problem, but with fuzzy parameters 
ia , 1,5i  , in the target functional. 

After applying the neuro-linguistic identification method to reconstruct (before 

customization) parameters 
ia , 1,5i  , we got the following their values: 

1 0,07493a  ; 
2 0,19432a  ; 

3 0,33743a  ; 
4 0,21138a  ; 

5 0,04007a  . Further, 

5
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as a result of applying the described algorithm to solve Problem A with these 

reconstructed values of parameters 
ia , 1,5i  , in 44 iterations we obtained: 

 additive VD with located in   generator points 
*1 *5,...,  , that is presented 

in Fig. 2, where the dashed line indicates boundaries of subsets 
i , 1,5i  , and the 

«■» symbol indicates an optimal coordinates of the corresponding generator points: 

*1 =(0,28883; 0,27976); 
*2 =(0,17024; 0,80697); 

*4 =(0,81631; 0,16100); 

*5 =(0,69535; 0,68627); 

 maximum value of functional ( )G   from (13), equal to 0,30075; 

 minimum value of functional F  of Problem A, equal to 0,30299. 

And finally, after reconstructing values of parameters 
ia , 1,5i  , using the 

neuro-linguistic identification method [6] and after the subsequent applying the 

described above algorithm to solve the considered Problem A with the reconstructed 

after customizing values of parameters 
1 0,07000a  ; 

2 0,10000a  ; 
3 0,38000a  ; 

4 0,20000a  ; 
5 0,00000a  , in 46 iterations, the same results were obtained (within 

the specified accuracy 0,0001 ), as for the case with clear parameters, namely: 

 the corresponding VD presented in Fig. 2, where the solid line indicates 

boundaries of the obtained subsets 
i , 1,5i  , and the «●» symbol indicates an 

optimal coordinates of generator points: 
*1 =(0,28439; 0,23794); 

*2 =(0,19985; 

0,76565); 
*4 =(0,81255; 0,14963); 

*5 =(0,70583; 0,65526); 

 maximum value of functional ( )G   from (13), equal to 0,26722; 

 minimum value of functional F  of Problem A, equal to 0,26789. 

Comparing the numerical and graphical results of solving this model problem, 

which are obtained for clear parameters 
1 5,...,a a  in the target functional and for fuzzy 

parameters 
1 5,...,a a  reconstructed using the neuro-linguistic identification method, 

we see that optimal solutions of these problems coincide with the sufficient degree of 

accuracy. That is, the proposed approach to construct a generalized VD with fuzzy 

parameters is reasonable and gives reliable results. 

 

7 Conclusions 
 

A new method and algorithm to construct a generalized VD in the presence of fuzzy 

parameters with the optimal location of a finite number of generator points in a 

bounded set of  
n  are proposed. The method is based on formulating the 

corresponding problem of optimal partitioning of a set of 
n  into non-intersecting 

subsets with locating the centers of these subsets with fuzzy parameters in the target 

functional and with a partitioning quality criterion that provides the corresponding 

form of VD with fuzzy parameters. The method of solving the above-mentioned OSP 

problem is based on applying the mathematical apparatus developed in [3] and on 

using the neuro-linguistic identification method developed in [6] to obviate fuzziness 

in the OPS problem. 
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