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Abstract. A comparative analysis of various methods and architectures used to
solve the problem of object detection is carried out. This allows so-called one-
way neural networks architectures to provide high quality solutions to the
problem. A neural network algorithm for labeling images in text documents is
developed on the basis of image preprocessing that simplifies the localization of
individual parts of a document and the subsequent recognition of localized
blocks using a deep convolutional neural network. The resulting algorithm
provides a high quality of localization and an acceptable level of subsequent
classification.
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1 Introduction

Deep learning is a very effective technique in the domain of machine learning and has
been successfully applied to many problems referring to artificial intelligence, namely
object detection, natural language processing, data visualization, etc. Different
techniques for deep neural networks learning exist [1-4]. We address to the object
detection in text images using deep learning techniques in this paper.

To detect objects in images it is necessary to select separate blocks of an image
referring to certain predefined classes. A model that performs such an operation
receives an image at the input, and gives back the coordinates and dimensions of
rectangular areas including the objects being searched for as well as the probability of
referring the included object to a certain class.

The solution to such a problem is one of the challenges in computer science. In
fact, due to this functionality, it is possible to analyze photos and video images in real
time by placing labels on certain objects and performing predefined processing



operations. At the same time, it is necessary to distinguish between the object
detection problem and the semantic segmentation problem that is actually the
classification of each image pixel.

The object detection task can be logically divided into two subtasks — the
localization of the object and its classification. Many existing approaches to detecting
objects in images allow us to combine these two distinct stages in a single neural
network, which performs both tasks simultaneously and gives the final result at the
output (Fig. 1). This makes it possible to solve the problem much faster and receive a
result with the information about all the detected objects without the need for their
sequential processing. However, one should not completely abandon the classical
approaches as there are tasks solving which by such methods provide better results.
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Fig. 1. General view of the neural network model used to solve the problem of detecting objects
in an image [5]

The assessment of the quality of the solution to the object localization problem is
performed by calculating the IoU (Intersection over Union) metric [6].

We had to solve the problem of detecting objects in documents represented by
images. Actually, for such a case, the problem of detecting objects is reduced to the
task of labeling electronic document, highlighting its components. An example of the
analyzed document from the Doxima7000 sample provided by CIB Software [7] is
shown in Fig. 2.

It can be seen in the presented image that the document consists of certain logical
units (in particular, company logo, table, text, bank data, address, etc.) that can be
detected and further processed (for example, text blocks can be recognized
converting them into a format that can be more easily analyzed and interpreted using
a computer.

The Doxima7000 data set consists of approximately 7000 documents in German.
These documents can be classified into 3 main categories: invoices, receipts and
business cards. The distribution of individual categories of documents varies greatly.
So, the most numerous is the group of “Text” objects, and the less common are
objects of the “Sign” and “Contacts” classes. Comparative distribution of objects of
different classes in the first 100 documents of the data set can be seen in Fig. 3.
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Fig. 3. Objects distribution in Doxima7000 data set




This data set was not originally intended for training and testing neural network
detection models, therefore it does not include the document labeling. Thus, the
labeling was done manually, by highlighting the corresponding block of the document
and assigning it to a certain predefined class.

For training and testing classic neural network detection models, data set of 145
and 36 documents, respectively, were used. However, in the proposed neural network
model, the labeling and submission of the whole documents was not compliant with
the model architecture. Therefore, we used a training data set of 2500 images of
individual blocks of documents for neural network learning. This allows us to ensure
a balanced sample with respect to the main classes of blocks.

2 Application of Conventional Architectures

2.1  Faster R-CNN

The first neural network model used by us for the detection of individual blocks of
documents was the Faster R-CNN [8]. This model consists of three parts (Fig. 4). The
first part is the ResNet-50 (ResNet-101) classifier, which was trained on the COCO
data set [9]. The second part is the RPN network that generates the candidate regions.
Finally, the third part is the detector, which is represented by additional fully
connected layers that generate the coordinates of rectangular areas containing the
desired objects and class labels for each of such areas. The speed and efficiency of the
analysis is significantly influenced by the RPN network, at the input of which the
feature maps obtained by the preceding convolutional layer are fed. Due to this,
candidate regions generation is faster than the use of the original full-size image.
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Fig. 4. Faster R-CNN structure [8]



2.2 SSD (Single-shot detector)

The SSD model [10], as well as YOLO [11], belongs to the category of single-pass
methods that allow solving the problem of detecting objects within a single network.
Schematic representation of the architecture is shown in Fig. 5.
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The main features of this model:

e [t accumulate information about objects position and scale through subsequent
convolutional layers. Each of this layers detects objects of specific size. (Fig.6).

e The pre-trained network (VGG or ResNet) is used as the base element, which is
converted to a fully CNN (FCN).

e  Non-maxima suppression is used to decrease the number of detected boxes
during network operation.

e FEach feature map cell creates a group of default boxes (or anchors), differing in
scale and aspect ratio.

e The model is trained in order for each anchor to correctly predict its class and
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Fig. 6. Localization of objects in feature maps of different sizes [8]



The results of applying the SSD architecture to solving the task are shown in Fig. 7.
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Fig. 7. Example of document labeling, made by SSD model

3 The Proposed Neural Network Approach to Labeling the
Text Images

In addition to reviewing and studying standard solutions to the object detection
problem, we proposed an original approach based on the R-CNN method that includes
two processing steps [12, 13]. At the first stage, the selection of the regions of interest
is carried out; it is preferable when working with the text data. At the second stage,
the regions were classified using the classical convolutional network. Let us dwell on
the description of each processing stage.

I. The following operations are applied to the original image:

. Median filter — to remove noise in the original document, associated with non-
ideal conditions of scanning a document, printing, etc.

e  Box filter — a linear filter used to create a blur effect (necessary for suppressing
small details and highlighting regions with the same type of content).

e  Applying the threshold function for the formation of continuous regions.

e  Selecting the contour areas and localization of text blocks.

The first 3 of these operations are shown in Fig. 8.
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After performing the above-mentioned operations, we get a set of rectangular areas
containing text blocks (Fig. 9).
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Fig. 9. Results of object localization

II. Training convolutional neural network. For recognition of blocks obtained at the
first stage, a convolutional neural network is trained.

At this stage, we have created a training sample, consisting of about 2500 images,
divided into 7 classes (logos, bar- and QR-codes and signatures, etc.). The neural
network selected as a working model is shown in Fig. 10.

111118

Comvolution: 48 OUEPUTS,  Convolution: 96 outputs, e e Caiaiags FullyConnected: 512 FullyConnected: 256 FullyConnected: 4
kernel 13X13, stride 3 Kemel 5X5, outputs, kemel SX5 outputs, kernel 5X5 °;”L”lj" °:tp‘f' 2“""".;‘
ReLU, pooling (4X2, 2) Relu, pooling (464, 2) RelU =i el el igmoi

Fig. 10. Convolutional neural network for the classification of the text blocks
After completing the training, the obtained test results are presented in Table 1.

Table 1. Test results (correctly recognized objects in percentage % )

Logos, % Bar codes, % Signatures, % Other, %
97.65 100 97.76 99.29

Thus, rather high efficiency indicators for the trained classifier were obtained. Results
of identifying certain types of documents are shown in Fig. 11.

Obtained results can be used by neural network immune detectors for identification
and classification of computer attacks and malicious application detection in Android
OS [14].
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Fig. 11. Results of object detection system

4 Analysis of Results

In order to analyze and compare the different neural network approaches we have
used the standard metrix mAP.

The mAP (mean average precision metric) [15] in context of this work was used to
evaluate the quality of detection of document parts. Sometimes mAP is used with its
modifications computed for various values of JoU (Intersection over Union, Jaccard
index). IoU is calculated in the following way (Fig. 12):
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where S determines the area of the reference block, which is used for

ground _true

labeling the testing set, and S, _ is the area of the detected block.
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Fig. 12. Calculating loU metrics

For objects detection task, the number true-positive detection results defines based on
the total number of rectangular blocks for which the value of IoU exceeds some
threshold (usually the threshold of 0.5 is chosen). TP-results are calculated for real
block (ground-true block). If real block has several detections, for it is selected only
one block with largest value of loU and other blocks are considered as FP.
The averaged value for all values of recall gives the AP:
1Y TP

AP=— i _ )
N~ TP +FP

where N is the number of equally spaced recall values.
The value of mAP is obtained from AP by averaging over all classes of objects.
The results of object detection in text images for different approaches are shown in
the Table 2.

Table 2. Comparison of different approaches

Model mAP FPS
Faster R-CNN 0,9184 10
SSD (Inception v2) 0,8321 23
Preprocessing + CNN 0,8955 21

As can been seen from the Table 2 the proposed approach has the best results
concerning Frames per Second (FPS) and acceptable accuracy of object detection.
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Conclusion

The neural network algorithm for labeling images in text documents based on image
preprocessing was developed. The algorithm simplifies the localization of individual
parts of a document and the subsequent recognition of localized blocks using a deep
convolutional neural network. The resulting algorithm provides a high quality of
localization and an acceptable level of subsequent classification. In addition, a
comparative analysis of various methods and architectures used to solve the object
detection problem was carried out. This allows so-called one-way neural networks
architectures to provide high quality solutions to the problem.
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