
Agent-Oriented Information Technology for Assessing

the Initial Stages of the Software Life Cycle

Tetiana Hovorushchenko
1[0000-0002-7942-1857]

, Artem Boyarchuk
2[0000-0001-7349-1371]

,

Olga Pavlova
3[0000-0003-2905-0215]

and Kira Bobrovnikova
4[0000-0002-1046-893X]

1, 3, 4 Khmelnytskyi National University, Instytutska str., 11, Khmelnytskyi, Ukraine
2 National Aerospace University "Kharkiv Aviation Institute"

1
tat_yana@ukr.net

2 a.boyarchuk@csn.khai.edu
3 olya1607pavlova@gmail.com

4 bobrovnikova.kira@gmail.com

Abstract. The paper presents the development of agent-oriented information

technology (AOIT) for assessing the sufficiency of information at the initial stag-

es of the software life cycle. This AOIT performs automatic assessments and pro-

vides improving the level of sufficiency information of requirements for determi-

nation of each non-functional characteristic separately and all non-functional

characteristics together, with the result that the gap in knowledge about non-

functional characteristics for software is reduced. In addition, the developed AOIT

minimizes the impact of the human factor and simplifies the performance of this

assessment both by the developer and the customer. The developed agent-oriented

information technology also provide: automation of the tedious, time-consuming,

fatiguing and error-prone task of parsing the SRS; instantly show where re-work

of requirements is needed; speed training for new systems engineers and project

managers; the authoring of high-quality requirements; the correction and elimina-

tion of the requirements errors where they originate – during the early stages of

the project; the tool for choosing the more qualitative software requirements spec-

ification; free online access, at any time, without any registration.

Keywords: Software Requirements, Software Requirements Specification

(SRS), Sufficiency of Requirements Information, Non-Functional Software

Characteristics, Ontology-Based Intelligent Agent (OBIA), Agent-Oriented In-

formation Technology (AOIT).

1 Introduction

Humanity is now increasingly relying on software when it comes to solving complex

problems and the number of software projects with a high cost is growing rapidly.

Today in the world more than 250 billion USD is spent annually on the development

of approximately 175 thousand software projects. The average cost of a software pro-

ject for the large company is 2.322 million USD, for the average company – 1.313

million USD, and for the small company – 434 thousand USD [1, 2]. At the same

mailto:tat_yana@ukr.net
mailto:olya1607pavlova@gmail.com

time, a significant number of software projects are unsuccessful (with overtime, over

costs, lack of functional or canceled to completion and never used). On average, only

16-29% of software projects are executed within the scheduled time and budget (for

large companies - 9-16% of projects); software projects of the largest US companies

have only about 42% of the required capabilities and functions [1, 2] – Fig.1 [3].

Fig. 1. Comparative statistics on the success of software projects in 1992 and 2017, according

to The Standish Group International [3].

A significant quantity of bugs is introduced into the software at the early stages of the

life cycle due to information losses due to the incomplete and different understanding of

the needs and information context (10-23% of all bugs) [4, 5]. The authors of [6] give

an even bigger percentage – 56% of all defects of software projects are introduced dur-

ing the requirements definition stage. About 50% of requirements defects are the result

of poorly written, unclear, ambiguous or incorrect requirements; the other 50% is due to

the incompleteness of specification (incomplete, insufficient and omitted requirements)

[6]. So, deficient requirements are the single biggest cause of software project failure.

The study on the relative cost of fixing engineering errors during the various phases of

a project development cycle provided one finding common conclusion to all the software

studies they examined and all the systems development projects they studied: the cost to

fix software defects rose exponentially with each successive stage of the project life cycle

[6]. This is one more compelling argument in favor of finding and correcting requirements

errors where they occur – at the very beginning of the software project.

Consequently, the issues of the analysis and evaluation of the initial stages of the life

cycle have a critical impact on software projects and on the success of their

implementation. Then today, when the number of high-budget software projects is

rapidly growing, the analysis of the software requirements specifications (SRS) and the

possibility of the automated evaluation of the level of elaboration of the initial stages of

the software life cycle are actual problems – in particular, identifying and eliminating

the disadvantages of the initial stages of the software life cycle and the facts of the

insufficiency of information of requirements to software (moreover special attention

needs information about the non-functional characteristics of software).

2 Related Works

Today the following approaches for assessing the sufficiency of information of

requirements to the software are known – Table 1. The review of the known infor-

mation technologies, tools and intelligent agents for analyzing the software require-

ments is given in Table 2.

Table 1. The review of approaches to assessing the sufficiency of information of requirements

to software

The approach Limitations of the approach

Model for validation of sufficiency of safe-

ty requirements, focusing on sufficiency of

hazard identification, hazard analysis, and

software safety requirements traceability

[7, 8]: several different metrics have been

introduced, in particular, Percent Software

Safety Requirements – as the ratio of the

number of software safety requirements to

the total number of software requirements;

the authors suggest comparing this metric

with a similar metric for implemented

software, on the basis of this comparing the

conclusion about the sufficiency of soft-

ware safety requirements is made

On the basis of the proposed metric,

only the sufficiency of the number of

safety requirements can be assessed, but

not the sufficiency of their information;

the impossibility of interpretation by

comparing the proposed metric for

fundamentally new software; there is no

tool for automatically identifying and

calculating the safety requirements in

the SRS

Evaluation of testing sufficiency as the

achievement of the test coverage levels

recommended or mandated by safety

standards and industry guidelines [9]

The approach is aimed only at verification

of software and requirements, but not at the

validation of the developed software and

customer needs; the approach uses the SRS

solely as an input for the developed tool,

but doesn't check the requirements of the

specification for their sufficiency

Theoretical and applied principles of

evaluating the sufficiency of the

information on quality in the SRS [10]

Automation of such evaluation is not

realized. This approach will be evolved

during further solving the task of

automated analysis of SRS

Table 2. The review of information technologies, tools and intelligent agents for software re-

quirements analysis

Information technology (IT) or tool or

intelligent agent (IA)

Limitations of the IT or tool or IA

1 2

CORE: enables the user to extract the

requirements from the source documenta-

tion and then analyzes them for complete-

ness, consistency and testability [11]

Checks the completeness of the SRS

with respect to business requirements,

but doesn't provide to check business

requirements for their completeness

1 2

Visure – checker of requirements quality

using natural language processing and

semantic analysis [12]

Doesn't provide validation of

compliance with the requirements of the

SRS to the needs of the customer

Accompa: provides automatic require-

ments gathering; automatically detects &

track dependencies between requirements

[12]

Commercial tool – costs at just

$199/month with no installation and

maintenance [13]; doesn't check if all

needs and requirements of the user have

been reflected in the SRS

Innoslate: analyzes requirements using natu-

ral language processing technology [12]

Commercial tool – Innoslate Cloud is

priced at $49/user/month and Innoslate

Enterprise – $199/user/month [13];

doesn't provide quantitative assessments

of the properties of SRS information

ReqView: organizes requirements into a

tree hierarchy, uses rich text format for

requirements description [12]

Doesn't verify and validate the

requirements of the specifications for

the needs of the customers

Modern Requirements4TFS: runs tracea-

bility analyses to ensure quality and find

gaps or dependencies in requirements [12]

Doesn't identify the needs of the user that

were not reflected in the requirements;

doesn't provide visualization of the found

gaps in the requirements

Natural language processing (NLP) Re-

quirements Analysis Tools (for example,

QVscribe): automate and significantly

speed the searching the possible errors in

natural language documents with require-

ments; provide visual scoring of each

assessed requirement [6]

Doesn't reveal information losses in the

formation of requirements

Requirements Analysis Tool: uses of user-

defined glossaries to extract structured

content; Semantic Web technologies are

leveraged for deeper semantic analysis of

the extracted structured content to find

various kinds of problems in requirements

documents [14]

Limitation of the glossary on which the

tool is based

QARCC (Quality Attribute Risk and Con-

flict Consultant): is the tool for supporting

conflict identification and requirements

negotiation; it is a knowledge-based tool

used to identify and analyze the conflicts in

early development cycle [15]

Doesn't check the sufficiency of SRS

requirements (in particular, non-

functional requirements)

Requirements Assistant: identifies the

missing requirements and inconsistency in

requirements; detect the lack of some type

of non-functional requirement such as

reliability, security, safety [16]

Commercial tool; doesn't provide

quantitative assessments (metrics) about

missing non-functional requirements

1 2

QuARS Requirements Analysis Tool:

provides screening of the requirements on

consistency, completeness; identifies 37%

of requirements defects [15, 17]

Commercial tool

DESIRe: ensures that the rules of com-

pleteness, non-ambiguity and comprehen-

sibility are respected [18]

Commercial tool

RQV Tool (Requirement Quality Verifica-

tion Tool) [18]: a semi-automatic verifica-

tion tool for SRS based on a comprehen-

sive quality model; can help in the verifi-

cation of the quality of the SRS on the

basis of ISO 29148:2011

Provides assessments of the quality of

SRS information, but not its

completeness or sufficiency

The ontology-based intelligent agent

(OBIA) for eliminating the ambiguity in

gathered software requirements and for

facilitating the communication with the

stakeholders [19]

Doesn't check whether all user needs

have been reflected in such

requirements, whether the requirements

of the SRS are sufficient

The OBIA-based tool that uses instantiat-

ed ontological designs to generate pro-

gramming code on the basis of the SRS

[20]

Doesn't verify and validate the STS

requirements for the needs of the

customers, doesn't assess the sufficiency

of the available information in the SRS

requirements, doesn't identify the needs

that were not reflected in the requirements

(in particular, non-functional)

Information technology for assurance of

veracity of quality information in the SRS:

evaluation of the sufficiency of the volume

of the quality information in the SRS [21]

The required SRS, which is structured

according to ISO 29148:2011 [22]. This

IT will be evolved during the further

automated analysis of the SRS

The review of known information technologies, tools and intelligent agents for the

SRS analysis has shown, that there are a number of effective solutions, but they all

belong to different methodological approaches and are designed to different tasks.

But, there is currently no information technology for assessing the sufficiency of

information at the initial stages of the software life cycle. The actuality of the task of

automated evaluation of the level of elaboration of the initial stages of the software

life cycle on the basis of the analysis of specifications (in particular, the automated

assessment of the sufficiency of information in the SRS), and the lack of information

technology for assessing the sufficiency of information at the initial stages of the

software life cycle causes the need of development of agent-oriented information

technology for assessing the sufficiency of information at the initial stages of the

software life cycle. This ІТ will be based on natural language processing (NLP) and

will significantly reduce the cost of fixing requirements errors by finding them earlier

and faster, and to free experts of the concrete subject domain from tedious, time-

consuming tasks that waste their expertise.

3 Agent-Oriented Information Technology (AOIT) for

Assessing the Sufficiency of Information at the Initial Stages

of the Software Life Cycle

Agent-oriented information technology (AOIT) for assessing the sufficiency of infor-

mation at the initial stages of the software life cycle solves the task of assessing the suffi-

ciency of requirements information for determining only non-functional characteristics of

software, which are software quality characteristics. According to ISO 25010 [23], such

non-functional characteristics are reliability, functional suitability, performance efficiency,

compatibility, maintainability, portability, security, usability. Subcharacteristics of such

non-functional characteristics are also determined by ISO 25010 [23]. Attributes, on the

basis of which such non-functional characteristics and their subcharacteristics are

calculated, are determined by ISO 25023 [24]. Then, the sufficiency of requirements

information for determining above non-functional characteristics is determined by the

presence in the SRS all the attributes, which are necessary for determining the non-

functional characteristics (203 attributes, including 138 different attributes).

Taking into account the theoretical principles of the information technology for

evaluating the sufficiency of information on quality in the SRS [10] and the

movement of information flows in the process of assessing the sufficiency of

requirements information for determining the non-functional characteristics, the

AOIT for assessing the sufficiency of information at the initial stages of the software

life cycle is developed (as a set of processes using tools and methods of accumulation,

processing and transmission of primary information for obtaining information of new

quality on the status of the object, subject or phenomena) – Fig. 2.

The purpose of the developed AOIT is the automation of a quantitative assessment

of the level of sufficiency of requirements information for determining the non-

functional characteristics, minimization of the impact of the human factor, facilitation

of the implementation of this assessment both by the developer and the customer.

AOIT provides the identification of the need for forming the query to add attributes,

which are necessary for determining the non-functional characteristics, and, if

necessary, forms and visualizes its contents. The developed AOIT automatically

processes available knowledge (non-functional requirements of the SRS) and generates

new knowledge (conclusions about the sufficiency of requirements information, about

the level of information sufficiency, recommendations for improving the level of

information sufficiency in the SRS). As can be seen from Fig. 2, the developed AOIT

is based on the ontology-based intelligent agent (OBIA) for semantic parsing of the

SRS [25] and OBIA for assessing the early stages of the software life cycle [26].

The OBIA for semantic parsing the SRS accepts the SRS as the input data and

automatically parsing the SRS on the subject of finding the attributes, which are necessary

for determining the non-functional characteristics of the software. The SRS template,

which demonstrates all the necessary attributes for determining the non-functional

characteristics, and their location in the SRS, is proposed to the user in the form of the

base ontology of domain "Software Engineering" (part "Software Requirements

Specification (attributes)"), developed in [21] on the basis of ISO 29148 [22].

Fig. 2. AOIT for assessing the sufficiency of information at the initial stages of the software

life cycle.

After the parsing of the SRS, this OBIA forms the set of attributes, which are

available in the parsed real SRS. Using the developed in [21] base ontology for the non-

functional characteristics (as the known fact) and the obtained set of the available

attributes, this OBIA generates the ontology for real software, which transmits as input

data to other OBIA (to OBIA for assessing the early stages of the software life cycle).

OBIA for assessing the early stages of the software life cycle carries the comparison

of the base ontology for non-functional characteristics (known fact) with the obtained

ontology for real software. As a result of this comparison, this OBIA, according to the

developed in [26] method, forms the subsets of non-functional characteristics and their

subcharacteristics, which can not be calculated on the basis of the attributes of the real

SRS; concludes about the sufficiency or insufficiency of requirements information for

determining non-functional characteristics; calculates numerical assessments of the

level of sufficiency of the requirements information for determining each non-functional

characteristics and all non-functional characteristics together; provides visualization of

gaps in knowledge about non-functional characteristics.

If the level of information sufficiency is 100% (for example, for critical software)

or is acceptable for the customer (but we recommend the level of sufficiency no less

85% with the purpose of minimization of information losses during the initial stages

of the software life cycle), then the further work on the software project is performed;

otherwise, the SRS developers are requested to add the required attributes to the SRS

(with visualized hints, which attributes should be added), after which the SRS may be

re-analyzed by the developed AOIT.

The developed AOIT makes it possible to compare different SRS for software

projects with the same cost and duration; to guarantee the inclusion in the requirements

of the information, which are necessary for the further determination of non-functional

characteristics, thereby reducing the gap in knowledge about non-functional

characteristics for software projects. The main advantage of the developed AOIT is the

automation of the processes of parsing the SRS and of assessing the sufficiency of the

requirements information for determining the non-functional characteristics, due to this

eliminating the subjective influence of the person, and saving the information in the

software company in the event of dismissal of a specialist.

Another important advantage of the developed AOIT is low cost of parsing

(translating) the human-spoken (natural language) requirements, because it provides the

analysis of the requirements on the subject of identification of the availability or

absence (miss) of attributes, which are necessary for determining the non-functional

characteristics. Since for determining the sufficiency, it is only necessary to know

whether there is the attribute in the requirements or it is missing in the requirements, so

the rules for parsing the SRS, on the basis of which the developed agent works, are so

simple (if <attribute> is found in the SRS, then <attribute> is the element of the set of

available attributes, else <attribute> is the element of the set of missing attributes). The

simplicity of these rules provides a high speed and low cost of parsing the natural lan-

guage requirements.

4 The Results of Functioning the AOIT for Assessing the

Sufficiency of Information at the Initial Stages of the

Software Life Cycle

AOIT for assessing the sufficiency of information at the initial stages of the software

life cycle is implemented in the PHP language in the form of free software and is

available by the link – https://olp-project.herokuapp.com.

Before uploading the SRS for its processing, the user of AOIT can acquaint with

the template of the SRS, which demonstrates all the necessary attributes for

determining the non-functional characteristics, and their location in the specification.

This template of SRS is presented in the form of ontology. The SRS can have any

structure, any form, but for further evaluating the non-functional characteristics it

should have the values of the attributes from ISO 25023:2016. Exactly these attributes

are in the visual ontology-template as the hints to the user. The fragment of such

ontology-template for SRS is represented on Fig. 3.

For analysis, the user of developed AOIT must upload the SRS in pdf-format. After

this, the AOIT parses the uploaded specification and on the basis of it generates the

ontology for real software in owl-format, which the user can download for further work.

Fig. 3. Fragment of ontology-template for SRS of AOIT for assessing the sufficiency of infor-

mation at the initial stages of the software life cycle.

After comparing the ontology for real software with base ontology for non-functional

characteristics, the developed AOIT gives the conclusion on the sufficiency of

requirements information, which consists of: the number and percentage of missing

attributes (during this counting, AOIT gives two these numbers – without and with

taking into account how many times the missing attribute is used when the

determination of subcharacteristics of non-functional characteristics (without and with

repetitions)); quantitative assessments of the sufficiency of requirements information for

https://olp-project.herokuapp.com/

determining each non-functional characteristic and all non-functional characteristics

together. In addition, the developed AOIT proposes the list of missing attributes in the

form of a list, which is divided by subcharacteristics of non-functional characteristics,

which provides visualization of missing attributes for determining one or another

subcharacteristics of non-functional characteristic.

For the experiment, three requirements specifications to software for accounting

for the provision of Internet access services, which are developed for ITT Ltd

(Khmelnitsky, Ukraine) by various software companies of Khmelnitsky. These SRS

have approximately the same cost and duration, so the choice of the SRS according to

these criteria is difficult.

As a result of the analysis of SRS No. 1, the developed AOIT has provided the

following conclusions – Fig. 4, Fig. 5. As a result of the analysis of SRS No. 2, the

developed AOIT has provided the conclusions, which are presented in Fig. 6. After

analysis of the SRS No. 3, the developed AOIT has provided the following

conclusions – Fig. 7.

The analysis of the results of the developed AOIT confirmed the regularity, which

is identified in [21], that more important and priority are attributes, which impact on

more than one subcharacteristic of non-functional characteristics. So, in SRS No. 1

there are no 21 attributes without considering the number of uses of each attribute

when determining the subcharacteristics of non-functional characteristics (but there

are no 78 attributes, considering the number of uses of each attribute). In SRS No. 2

there are no 37 attributes without considering the number of uses of each attribute

(but there are no 39 attributes, considering the number of uses of each attribute). In

SRS No. 3, there are no 37 attributes without considering the number of uses of each

attribute (but there are no 74 attributes, considering the number of uses of each

attribute). At the same time, the level of sufficiency of requirements information of

SRS No. 1 for determining all non-functional characteristics is 58,23%, the level of

sufficiency of requirements information of SRS No. 2 – 81,26%, the level of

sufficiency of requirements information of SRS No. 3 – 60,85%.

Fig. 4. Quantitative assessments of the sufficiency of requirements information (SRS No. 1) for

determining the non-functional characteristics (which are provided by the developed AOIT).

Fig. 5. Visualization of missing attributes (in SRS No. 1) for determining the three

subcharacteristics of the non-functional characteristic "Reliability" (which is provided by the

developed AOIT).

Fig. 6. Quantitative assessments of the sufficiency of requirements information (SRS No. 2) for

determining the non-functional characteristics (which are provided by the developed AOIT).

Fig. 7. Quantitative assessments of the sufficiency of requirements information (SRS No. 3) for

determining the non-functional characteristics (which are provided by the developed AOIT).

Thus, with less number of missing attributes (without considering the number of

uses of each attribute), SRS No. 1 has a lower level of information sufficiency than

SRS No. 2, in which more attributes are absent (without considering the number of

uses of each attribute). This situation is explained by the fact that in SRS No. 1 there

is no greater number of attributes (in comparison with the SRS No. 2), which impact

on more than one subcharacteristic of non-functional characteristics. This fact is

proved by the number of missing attributes, which are provided by the AOIT

(considering the number of uses of each attribute).

In the result of the analysis of the conclusions of the developed AOIT, the

customer of the software for accounting for the provision of Internet access services

(ITT Ltd) decided that the level of sufficiency of the requirements information in all

three SRS isn't acceptable for the transition to further work on the software project.

Therefore, all three SRS were sent back to developers for revision (in part of

supplementing the attributes for determining the non-functional characteristics). The

revised SRS were also analyzed by the developed AOIT. The conclusions of the

AOIT after the analysis of the revised SRS are presented in Fig. 8-10.

In the SRS No. 1, 5 attributes were added without considering the number of uses

of each attribute in determining the subcharacteristics of non-functional

characteristics (47 attributes, considering the number of uses of each attribute). In

SRS No. 2, 10 attributes were added without considering the number of uses of each

attribute (and 10 attributes, considering the number of uses of each attribute). In SRS

No. 3, 10 attributes were also added without considering the number of uses of each

attribute (25 attributes, considering the number of uses of each attribute). At the same

time, the level of sufficiency of requirements information of the SRS No. 1 for

determining all non-functional characteristics is already 86,02%, the level of

sufficiency of requirements information of the SRS No. 2 – 85,97%, the level of

sufficiency of requirements information of the SRS No. 3 – 73,7%. Consequently, the

conclusions of the developed AOIT for assessing the sufficiency of information at the

initial stages of the software life cycle provide increasing the level of sufficiency of

requirements information for determining the non-functional characteristics,

respectively, by 27,79%, 4,71% and 12,85% for SRS No. 1-3.

Fig. 8. Quantitative assessments of the sufficiency of requirements information (SRS No. 1,

after revision), which are provided by the developed AOIT.

Fig. 9. Quantitative assessments of the sufficiency of requirements information (SRS No. 2,

after revision), which are provided by the developed AOIT.

Fig. 10. Quantitative assessments of the sufficiency of requirements information (SRS No. 3,

after revision), which are provided by the developed AOIT.

We (the developers of AOIT) recommend the level of sufficiency equal 85% is ac-

ceptable, but the final decision regarding the required level of sufficiency is taken by

the customer of the software. The customer can set a lower threshold of this level, for

example, 90%, 95% or 100% (even for non-critical software). So, in the result of the

analysis of the conclusions of the developed AOIT, ITT Ltd decided that the level of

sufficiency of the requirements information of SRS No.1 and SRS No. 2 is already

accepted for the further work on the software project. ITT Ltd selected SRS No. 1 for

further work. So, the customer was able to make a choice the SRS from the view of its

information’s sufficiency, but not only from the view of its cost and duration.

5 Conclusions

At present, the task of automated assessment of the level of elaboration of the initial

stages of the software life cycle based on the analysis of specifications is actual (in

particular, the automated assessment of the sufficiency of requirements information).

In this paper, the agent-oriented information technology for assessing the sufficiency

of information at the initial stages of the software life cycle was developed. This AOIT

assesses and provides the increase (for example, from 58,23% till 86,02% for SRS No. 1,

from 81,26% till 85,97% for SRS No. 1, from 60,85% till 73,7% for SRS No. 3) of the

level of sufficiency of requirements information for determining software non-functional

characteristics – the gain of the level of suffiiciency is from 4,71% to 27,79%.

In addition to the above, the advantages of the developed AOIT also are:

1) automation of the time-consuming, routine and error-prone task of parsing the SRS, and

almost instantly accomplishment of it; 2) indication where re-work on SRS is needed (the

user can browse missing attributes and see SRS areas which the extra attention is needed,

and which requirements need re-work); 3) provision of training for new SRS developers,

systems engineers and project managers (using this AOIT helps them see mistakes they

might be making, and helps them recognize those mistakes in others’ work); 4) help of

developing the high-quality requirements; 5) help of correct and eliminate of requirements

errors where they originate – during the early stages of the software project life cycle –

before they become more expensive to correct; 6) provision of the tool for choosing the

more qualitative software requirements specification; 7) free online access, at any time,

without any registration.

The economic effect of the use of the developed AOIT is the ability to save software

projects' budget for processing and correcting (during the life cycle) defects and bugs,

which are made at the early stages of the life cycle - due to the demonstration of weak-

nesses in the SRS, that need to be finalized or re-worked, at a time when they arise.

The limitations of the developed AOIT are: 1) the assessment of the only sufficiency of

requirements information for determining the non-functional characteristics as the

sufficiency of the attributes in the SRS; 2) consideration of only non-functional characteris-

tics, which are regimented by ISO 25010 standard as the software quality characteritics;

3) non-consideration the other SQUARE standards of 25000-series (ISO 25011, ISO

25012); 4) during parsing the SRS the search of only attributes, which are defined by ISO

25023as necessary for the non-functional characteristics-components of software quality. For

elimination of these limitations, further efforts of the authors will be directed.

References

1. Hastie, S., Wojewoda, S.: Standish Group 2015 Chaos Report – Q&A with Jennifer Lynch,

http://www.infoq.com/articles/standish-chaos-2015, last accessed 2019/02/12.

2. The Standish Group Report CHAOS, https://www.pro jectsmart.co.uk/white-papers/chaos-

report.pdf, last accessed 2019/02/12.

3. A Look at 25 Years of Software Projects. What Can We Learn?,

https://speedandfunction.com/look-25-years-software-projects-can-learn/, last accessed

2019/02/12.

4. McConnell, S.: Code complete. Microsoft Press, Redmond (2013).

5. Levenson, N. G.: Engineering a safer world: systems thinking applied to safety. MIT

Press, Massachusetts (2012).

6. Leveraging Natural Language Processing in Requirements Analysis: How to eliminate over half of

all design errors before they occur, http://qracorp.com/wp-content/uploads/2017/03/Leveraging-

NLP-in-Requirements-Analysis.pdf, last accessed 2019/02/12.

7. Cruickshank, K. J.: A validation metrics framework for safety-critical software-intensive

systems. Naval Postraduate School, Monterey (2009).

8. Michael, J. B., Shing, M. T., Cruickshank, K. J., Redmond, P. J.: Hazard analysis and vali-

dation metrics framework for system of systems software safety. IEEE Systems Journal. 4

(2), 186-197 (2010).

9. Baker, R., Habli, I.: An empirical evaluation of mutation testing for improving the test quality of

safety-critical software. IEEE Transactions on Software Engineering. 39 (6), 787-805 (2013).

10. Hovorushchenko, T., Pomorova, O.: Information technology of evaluating the sufficiency

of information on quality in the software requirements specifications. CEUR-WS. 2104,

555-570 (2018).

http://www.infoq.com/articles/standish-chaos-2015
https://speedandfunction.com/look-25-years-software-projects-can-learn/
http://qracorp.com/wp-content/uploads/2017/03/Leveraging-NLP-in-Requirements-Analysis.pdf
http://qracorp.com/wp-content/uploads/2017/03/Leveraging-NLP-in-Requirements-Analysis.pdf

11. Software Requirements Engineering Tools, http://ecomputernotes.com/software-

engineering/softwarerequirementsengineeringtools, last accessed 2019/02/12.

12. 30 Best Requirements Management Tools in 2019, https://www.guru99.com/requirement-

management-tools.html, last accessed 2019/02/12.

13. Top 20+ Best Requirements Management Tools (The Complete List),

https://www.softwaretestinghelp.com/requirements-management-tools/, last accessed 2019/02/12.

14. Verma, K., Kass, A.: Requirements Analysis Tool: A Tool for Automatically Analyzing Soft-

ware Requirements Documents. Lecture Notes in Computer Science. 5318, 751-763 (2008).

15. Mahmood, H., Rehman, M. S.: Tools for software engineers. International Journal of Re-

search in Engineering & Technology. 3 (10), 75-86 (2015).

16. Jones., V., Murray, J.: Evaluation of current requirements analysis tools capabilities for

IV&V in the requirements analysis phase, https://www.slideserve.com/shlomo/evaluation-

of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-

phase, last accessed 2019/02/12.

17. Raffo, D. M., Ferguson, R.: Evaluating the Impact of The QuARS Requirements Analysis

Tool Using Simulation,

https://pdfs.semanticscholar.org/7e7d/4e6f5ab13d00ca57c87711e30cd080730f34.pdf, last

accessed 2019/02/12.

18. Konig, F., Ballejos, L., Ale, M.: A semi-automatic verification tool for software require-

ments specification documents. In: Simposio Argentino de Ingeniería de Software Pro-

ceedings. Sociedad Argentina de Informática e Investigación Operativa (2017).

19. Ossowska, K., Szewc, L., Weichbroth, P., Garnik, I., Sikorski, M.: Exploring an ontologi-

cal approach for user requirements elicitation in the design of online virtual agents. Infor-

mation Systems: Development, Research, Applications, Education. 264, 40-55 (2017).

20. Freitas, A., Bordini, R. H., Vieira, R.: Model-driven engineering of multi-agent systems

based on ontologies. Applied Ontology. 12 (2), 157-188 (2017).

21. Hovorushchenko, T.: Information Technology for Assurance of Veracity of Quality Infor-

mation in the Software Requirements Specification. Advances in Intelligent Systems and

Computing. 689, 166–185 (2018).

22. ISO/IEC/IEEE 29148:2011. Systems and software engineering. Life cycle processes. Re-

quirements engineering (2011).

23. ISO/IEC 25010:2011. Systems and software engineering. Systems and software Quality

Requirements and Evaluation (SQuaRE). System and software quality models (2011).

24. ISO 25023:2016. Systems and software engineering. Systems and software Quality Require-

ments and Evaluation (SQuaRE). Measurement of system and software product quality (2016).

25. Hovorushchenko, T., Pavlova, O., Bodnar, M.: Modern Problems of Semantic Analysis of

Software Requirements Specifications. Scientific notes of Taurida National University af-

ter named V. I. Vernadsky: series "Technical Sciences". 30 (269) (2019). [in Ukrainian]

26. Hovorushchenko, T., Pavlova, O.: Method of Activity of Ontology-Based Intelligent

Agent for Evaluating the Initial Stages of the Software Lifecycle. Advances in Intelligent

Systems and Computing. 836, 169-178 (2019).

http://ecomputernotes.com/software-engineering/softwarerequirementsengineeringtools
http://ecomputernotes.com/software-engineering/softwarerequirementsengineeringtools
https://www.guru99.com/requirement-management-tools.html
https://www.guru99.com/requirement-management-tools.html
https://www.softwaretestinghelp.com/requirements-management-tools/
https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
https://pdfs.semanticscholar.org/7e7d/4e6f5ab13d00ca57c87711e30cd080730f34.pdf

