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Abstract 

One essential aspect of urban resilience is the ability of the transportation networks to maintain 

mobility and accessibility during the immediate aftermath, as well as in the long-term recovery, 

of an extreme event. Despite the critical nature of transportation services, the infrastructure 

inventory in many developed countries are in poor condition. For example, transportation 

infrastructure in the United States has repeatedly been graded poorly by American Society of 

Civil Engineers as it is aged and in need of a major retrofit or replacement effort. It is well 

established that topology-based approaches in transportation resilience abstract out network 

supply and travel demand relationships as well as fundamental traffic assignment concepts such 

as flow under capacity constraints. On the other hand, system-based approaches that are more 

promising in generating actionable policy insights lack the granularity enabled now by the recent 

advances in data and modeling, omit the scale of analysis required in metropolitan areas, and 

ignore formal considerations of the hazard itself which makes studies prone to simplistic what-if 

assumptions. To address such shortcomings, a preliminary framework intended to couple seismic 

hazard analysis with transportation network analysis is designed and deployed in a Greater Los 

Angeles Area case study where the impacts of a 7.3M scenario earthquake are investigated. 
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Introduction 

Transportation networks are critical to the mobility of people and goods and are the backbone of 

the layered and interdependent network of civil infrastructures that facilitate everyday life. Due 

to their nature, they are exposed to a number of stressors including numerous natural and man-

made hazards. In the case of natural hazards (e.g., earthquakes, hurricanes, etc.), the post-disaster 

functionality of transportation systems determine how rapidly the disaster-stricken area can 

recover (Chang, 2003). In the seismic regions of the US, transportation networks are especially 

vulnerable because of the current poor conditions of a significant portion of their bridges 

(ARTBA, 2018). As a result, resilience assessments of transportation systems have been a major 

research focus. 

Research in this area is broadly categorized into two main categories of approaches: 

topology-based and system-based. Topology-based approaches are based on the graph-theoretic 

(nodes and edges) representation of transportation systems and quantify resilience in terms of 

network centrality based metrics such as betweenness centrality. Despite being practical in terms 

of data and modeling requirements, topology-based approaches often abstract out essential 

supply and demand relationships in the network (e.g., fundamental capacity-flow relationship). 

This makes them unable to generate actionable policy insights. For example, similar values of 

betweenness centrality in the abstract network may represent very different consequences in 

terms of how many travelers are affected and how large the total increase in travel time will be, 

depending on the demand and the availability and travel times of alternative routes in the real 

network (Mattsson and Jenelius, 2015). System-based methods founded on network supply and 

demand relationships are more promising in capturing the adverse impacts of hazard-induced 

disturbances on the transportation networks and their users. However, most system-based 

investigations of transportation resilience lack the granularity enabled now by the recent 

advances in data and modelling (road network and mobility data, software to simulate large scale 

models, etc.). There is also a tendency to test and validate approaches in small-scale networks 

omitting the scale of insights required by policymakers in metropolitan areas. Moreover, many 

studies analyze resilience via simple assumptions regarding the hazard without incorporating an 

understanding of the cause of failures (Khademi et al., 2015). The data and modelling needs in 

this area of research are discussed in detail in recent papers published by the authors (Koc et al., 

2019; Cetiner et al., 2019) calling for holistic and coupled assessments of seismic hazards and 

the transportation disruptions caused by them. In this study, deploying a framework to address 

identified gaps, the authors investigate the transportation disruption resulting from a 7.3M 

earthquake affecting the Greater Los Angeles metropolitan area. 

Background 

By 2050, approximately 70% of human population will be living in cities (United Nations, 

2018). Despite the well-known economic benefits of urban settlements, cities are known to be 

vulnerable to natural and man-made hazards due to their high concentration of people, capital 

and infrastructure. Many cities will face increasingly complex resilience challenges due to, for 
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example, expected increases in the frequency and severity of extreme weather events, threats of 

terrorism, and risks due to active seismic faults near urban areas. The root of its definition 

originating from ecological resilience, urban resilience refers to “the ability of an urban system -

and all its constituent socio-ecological and socio-technical networks across temporal and spatial 

scales- to maintain or rapidly return to desired functions after a disturbance, to adapt to change, 

and to quickly transform systems that limit current or future adaptive capacity” (Meerow et al., 

2016). In this definition, an urban system is characterized by its governance networks, networked 

material and energy flows, urban infrastructure and form, and socio-economic dynamics 

(Dicken, 2007). Among these constituents, civil infrastructure systems are the lifelines that 

supports the lives, interactions, and dynamics of urban dwellers; one of the defining attributes of 

urban dwellers is mobility. It is argued that transportation is the most significant lifeline, because 

disturbance to transportation imposes extra burden on the other lifelines (Hopkins et al., 1991). 

Mobility is an immediate functional need in the aftermath of and during the recovery 

from disasters. Therefore, one essential aspect of urban resilience is the ability of the urban 

transportation networks to maintain mobility and accessibility during the immediate aftermath, as 

well as in the long-term recovery, of an extreme event. Despite the critical nature of 

transportation services, the infrastructure inventory in many developed countries is in poor 

condition. For example, transportation infrastructure in the United States has repeatedly been 

graded poorly by American Society of Civil Engineers as it is aged and in need of a major 

retrofit or replacement effort (ASCE, 2017). The presently poor condition of the transportation 

infrastructure is exacerbating the risk together with the backdrop of impending natural hazards. 

Large metropolitan areas that are already vulnerable to natural hazards (e.g., earthquake risk in 

the Greater Los Angeles Area, storm surge risk in Southeast US, etc.) are especially challenged 

due to the increasing exposure triggered by mentioned factors. These developments necessitate a 

quantified assessment of transportation resilience in metropolitan areas. This information is 

crucial for urban policy-making towards enhanced resilience in the long-run (Noulas et al., 2012, 

Brockmann et al., 2006), and for emergency response planning for a potential extreme event 

(Schneider et al., 2013, Aschenbruck et al., 2004, Song et al., 2014, Uddin et al., 2009, Lu et al., 

2012).  

Meanwhile, scalable urban mobility data and large scale travel models are increasingly 

available from both conventional and novel sources (Census Transportation Planning Products 

(CTPP), and mobility data from social media and smartphones, etc. (Jurdak et al., 2015, Song et 

al., 2010, Gonzalez et al., 2008)). Particularly, government initiatives for the development of 

large scale travel demand models by metropolitan planning organizations (MPOs), State 

Departments of Transportation, etc. create a unique opportunity for resilience research. Despite 

the availability of data and models, comprehensive investigations of resilience in the nexus of 

mobility are scarce.  

Previous efforts have particularly fallen short in two major dimensions. First, there is a 

lack of utilization of explicit and holistic road network models of large metropolitan areas. This 
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shortcoming results in an over-simplified physical abstraction of the transportation networks 

when they could explicitly be modeled (e.g., modeling freeways or major arterials only and 

neglecting surface streets), and does not allow realistic hazard simulations to be incorporated into 

the analyses. Second, the potential costs of mobility perturbation to communities have not been 

studied from a user-centric resilience perspective. In other words, mobility perturbations and 

impacts on travelers are not known at a high geographical resolution. These capability gaps 

impede the assessment of the burden urban dwellers have to bear as they recover from a 

disruption and prevents economic impact analyses and policy-making to focus on particularly 

vulnerable communities/segments within the larger urban ecosystem.  

As such, there is a need for improved methodologies. To address the shortcomings of the 

literature in the area, these new methodologies need to be scalable in order to go beyond 

assessing the engineered resilience of an infrastructure component to assessing the resilience of 

transportation in metropolitan areas to enable actionable insights. New methodologies also need 

to incorporate formal considerations of the disruptive event (e.g., earthquake, flash flood, etc.) 

and identify direct damages based on infrastructure inventory data as well as state-of-the-art 

hazard analysis procedures. Moreover, they should incorporate the human stakeholders of the 

urban environment in order to quantify the mobility disturbance from a user-centric standpoint.  

Methodology 

The authors designed the preliminary framework on Figure 1 that couples seismic hazard 

analysis with transportation network analysis to achieve a high granularity, comprehensive 

resilience assessment while addressing the shortcomings discussed in the previous section.  

Figure 1: Preliminary framework for vulnerability and resilience assessments in metropolitan 

networks. 
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Seismic hazard analysis procedure of the framework begins with a scope definition (study 

region, analysis period) and a collection of datasets that provide infrastructure inventory data, 

fault and fold information, site classification, liquefaction susceptibility and topographic slope 

fields. Taking these datasets as inputs, seismic hazard analysis consists of three principal 

components: (i) quantifying deterministic seismic hazard governing an urban transportation 

network, (ii) coupling the intensity measures (IMs) resulting from the seismic hazard with 

component fragility functions to estimate the damage state probabilities, and (iii) combining the 

damage state probabilities with restoration functions to calculate the downtime of network 

components. 

In simplest terms, deterministic scenario event for a region is identified as the event with 

the highest contribution to the IMs resulting from probabilistic seismic hazard (Cornell, 1968). 

For ground shaking due to earthquakes, this is typically performed by identifying the mode of the 

deaggregation plot for PSH (Bazzurro and Cornell, 1999) for 1-second spectral acceleration (Sa1) 

(Shafieezadeh et al., 2012). Once, the governing event is identified, then using the source 

information for the event and the site characteristics for all locations within the study region, Sa1 

at each site is computed using a ground motion prediction equation (Boore et al., 2014). These 

IM values are then coupled with fragility functions for the system components within the 

affected areas. For a set of IMs, the probability of a network component being in a damage state 

(𝑃𝑗
𝑘) is calculated as 

 

 
(1) 

For a set of IMs, expected downtime (E[𝐷𝑘]) is defined with respect to 𝑃𝑗
𝑘 using the recovery 

function for each damage state (𝑅𝐶𝑗) as in  

 

 
(2) 

where 𝑘 is the index for IMs, 𝑗is the index for damage states, 𝐷𝑘 is the damage state of network 

component due to IMk, 𝑑𝑠1: no damage, 𝑑𝑠2: slight damage, 𝑑𝑠3: moderate damage, 𝑑𝑠4: 

extensive damage, and 𝑑𝑠5: complete damage states (Kiremidjian et al. 2006). 

Physical damage and downtime findings are conveyed to transportation analysis and used 

to construct multiple network versions (pre-disaster baseline, post-disaster degraded versions).  

Given these network topologies (network supply), analysis includes (1) running a travel demand 

model iteratively; (2) quantifying network functionality indicators such as travel times, distances 

etc. at desired spatial resolutions and throughout the disaster timeline including response and 

recovery; (3) carrying out resilience assessment given functionality indicators.  

Resilience of a system is analytically defined as 
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where t is the instant in which the disruption occurs and h is the investigated time horizon and 

Q(t) is an indicator of functionality. In other words, resilience is quantified as the area under the 

functionality curve with respect to 100% functionality throughout the investigated time horizon 

(See Figure 2). For transportation networks, several functionality indicators are proposed in the 

literature with system total travel time (Vehicle Hours Traveled: VHT) and total travel distance 

(Vehicle Miles Traveled: VMT) being common to most system-level indicators (Frangopol and 

Bocchini, 2011). Delay, as quantified by a volume-delay function (e.g., Bureau of Public Roads 

function), or average speed can also be used as network functionality indicators. The framework 

assesses resilience based on this definition of resilience for transportation systems.  

 

Figure 2. Network resilience curve adopted from Frangopol and Bocchini (2011). 

Implementation of the transportation network analysis facet of the framework is based on 

a trip-based regional travel model developed by Southern California Association of Governments 

(SCAG). The trip-based model is developed periodically by SCAG--the metropolitan planning 

organization formed by the voluntary association of six Southern California counties including 

Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial and it provides a 

common foundation for transportation planning and decision making by SCAG as well as other 

participating organizations (SCAG, 2016). The most recent version of the model is used by the 

authors with socioeconomic data from 2016. The model is highly granular and accommodates a 

holistic transportation network enabling a wide range of analyses including investigations of 

expansion projects, highway pricing strategies, introduction of new types of transportation 

services, etc. In accordance with the framework demonstrated above, the authors leveraged the 

model to determine the pre-disaster condition of the regional transportation network (baseline) as 

well as its condition in a post-disaster setting (day 30 after the earthquake).  
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Figure 3. The level-of-detail of the underlying network model in SCAG RTDM. Red lines 

indicate network links.  

 

Case Study  

The authors deploy the framework mentioned above in a Greater Los Angeles Area case 

study. For this study, by disaggregating the PSH results for a return period of 975 years, the 

seismic event that has the greatest contribution to PSH results was identified as the Mw 7.3 

earthquake caused by a rupture of the Palos Verdes Connected fault system at an epicentral 

distance 1.4 km off the Ports of Los Angeles and Long Beach. Using this event as the scenario 

earthquake, the ground shaking associated with the earthquake rupture was quantified by taking 

into consideration the relevant source, path (Boore et al., 2014) and site effects (Wald and Allen 

2007). The damage to bridges in the study area was computed using the fragility functions 

developed for HAZUS (FEMA 2003). For computing the bridge functionalities 30 days after the 

scenario earthquake, recovery functions in HAZUS were used. A total of 55 bridges were 

determined to have a functionality level below 75% and deemed insufficient for operation.   

The damage assessment results, i.e. closure of 55 bridges in study region on day 30 after 

the earthquake, are modeled in the SCAG RTDM (Regional Travel Demand Model) network by 

editing the network topology on TransCAD. The links that correspond to these bridges are 

deleted while ensuring connectivity of the remaining links around them. With the revised 

network, the trip-based model is run again to quantify the resulting mobility disturbance under 

fixed demand conditions. The comparison of baseline and post-disaster results reveals worsening 

network functionality indicators (delays, total distance/time traveled, etc.) due to the 

functionality loss induced by direct damages and paves the way for quantifying resilience. Table 

1 presents the system-level travel time and distance functionality indicators (VMT and VHT) for 

baseline and day 30 model runs presented together with absolute differences and percent 
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changes. It also presents disaggregated results for every county. Expectedly, VMT and VHT 

surge due to earthquake damage and Los Angeles County suffers the highest functionality loss. 

A striking result is that system TTT (total travel time) quantified as VHT increases by more than 

20% throughout the SCAG region despite the relatively localized impact of the scenario 

earthquake with bridge closures mostly concentrated along three freeway routes (110, 710 and 

405).   

Utilizing the granular results generated by the SCAG RTDM, the authors also publish 

results online at the Tier 1 TAZ (Traffic Analysis Zone) level which is a zoning breakdown that 

divides the study region into more than 4,000 zones (https://arcg.is/1908zK). High granularity 

results and visualizations shared online enable local insights such as the identification of 

neighborhoods that experience more surface street traffic due to nearby highway link closures. 

Analytics in this context could go a step further to investigate emissions related externalities 

induced on neighborhoods, and open doors to environmental justice and transportation equity 

discussions. These research directions will be considered in authors’ future work.  

 

Figure 4. Bridges deemed closed on day 30 (red circles) after the scenario earthquake (epicenter 

marked with red/yellow star) according to the damage assessment. 

Delays as quantified by the conventional BPR function are also quantified. Delay for the 

L&MDV class increase by as much as 71% where Los Angeles County experiences an 87.1% 

increase in delays.  

 

https://arcg.is/1908zK
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Table 1: System-level functionality indicators (VMT and VHT) for the pre-disaster baseline 

network and the degraded day 30 network. Results presented together with absolute differences 

and percent changes. L&MDV stand for light and medium weight vehicles (<8500 pounds in 

gross weight) and HDT stands for heavy-duty trucks.  

 

Table 2: Delays quantified per the conventional BPR function, presented for the study region as 

well as disaggregated to the county level.  

 

 

Vehicle Miles Traveled (VMT) (miles) Baseline Day 30 Difference % Change

VMT L&MDV 441,337,712   464,257,322   22,919,610  5.19%

VMT HDT 33,252,067     33,877,722     625,655       1.88%

VMT TOTAL (L&MDV+HDT) 474,589,779   498,135,044   23,545,265  4.96%

VMT by County (L&MDV+HDT) (miles)

VMT Imperial 6,022,112       5,950,718       (71,394)        -1.19%

VMT Los Angeles 235,509,163   255,404,060   19,894,897  8.45%

VMT Orange 81,289,401     84,044,612     2,755,210    3.39%

VMT Riverside 64,087,908     64,101,547     13,639         0.02%

VMT San Bernardino 66,827,791     67,452,134     624,343       0.93%

VMT Ventura 20,853,404     21,181,974     328,570       1.58%

Vehicle Hours Traveled (VHT 1,000 hours) Baseline Day 30 Difference % Change

VHT L&MDV 12,555            15,288            2,733           21.77%

VHT HDT 715                 811                 96                13.37%

VHT TOTAL (L&MDV+HDT) 13,270            16,098            2,829           21.32%

VHT by County (L&MDV+HDT) (1,000 hours)

VHT Imperial 113,199          112,009          (1,189)          -1.05%

VHT Los Angeles 7,259,160       9,511,524       2,252,363    31.03%

VHT Orange 2,318,305       2,688,612       370,307       15.97%

VHT Riverside 1,465,415       1,533,608       68,193         4.65%

VHT San Bernardino 1,537,662       1,648,862       111,199       7.23%

VHT Ventura 538,659          566,336          27,677         5.14%

Vehicle Hours Delayed (1,000 hours) Baseline Day 30 Difference % Change

Delay L&MDV 2,651              4,551              1,900           71.66%

Delay HDT 144                 215                 72                50.05%

Delay TOTAL (L&MDV+HDT) 2,795              4,766              1,972           70.55%

Delay by County (L&MDV+HDT) Baseline Day 30 Difference % Change

Delay Imperial 3                     2                     (0)                 -2.17%

Delay Los Angeles 1,768              3,313              1,544           87.31%

Delay Orange 519                 787                 267              51.46%

Delay Riverside 188                 247                 59                31.30%

Delay San Bernardino 225                 305                 81                35.88%

Delay Ventura 92                   112                 21                22.60%
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Discussion and Conclusions 

The framework designed by the authors to investigate transportation system resilience 

incorporates formal seismic hazard analysis procedures enriched by inventory data as well as a 

large-scale travel demand model. This coupled approach shows promise in addressing many 

shortcomings in the area mentioned in the earlier sections. The granularity of the analyses allows 

highly detailed visualizations related to the changing mobility pattern of the region.  

One limitation of the case study is the conventional fixed demand assumption that 

ignores the potential travel behavior impacts of worsening network functionality. Travelers may 

chose to stay home, shift their demand to less congested times in the day, etc. Authors’ 

investigation of resilience in metropolitan transportation systems has not focused on the post 

disaster travel behavior. However, SCAG’s RTDM utilized in this study has sophisticated trip 

generation and trip distribution components that pave the way to study travel behavior. 

Moreover, this paper only presents network analysis results for two network versions, baseline 

and day 30 after scenario earthquake. The authors will publish results relating to the entire 

disaster timeline until full recovery in their future work. This way, a more comprehensive set of 

results demonstrating the pace of recovery will be obtained.  

 

Figure 5. Network resilience curve adapted from Frangopol and Bocchini (2011) and revised. Dashed red line 

indicates faster recovery path achieved through implementation of resilience tactics.  

 

Based on the resilience definition of Frangopol and Bocchini (2011), resilience is 

quantified—with respect to the continuous black line showing Q(t) on Figure 5—as the 

remaining functionality in the network following the disturbance stemming from direct physical 

damages to the infrastructure (e.g., bridge closures due to structural damages). This 

conceptualization of resilience is similar to the static resilience definition by Rose and Dormady 

(2018) which refers to using remaining resources efficiently to maintain function. In other words, 

static resilience in this context refers to the system-level indicators quantified by the user-

equilibrium traffic assignment results under the new network supply conditions in the degraded 
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network. Authors also intend to investigate dynamic resilience defined by Rose and Dormady 

which is characterized as investing efficiently in repair and reconstruction in order to reestablish 

capacity as quickly as possible to regain function. We indicate the improved recovery curve that 

may be achieved through dynamic resilience as Q’(t) on Figure 5. Some of the resilience tactics 

to achieve the faster recovery curve could be allocating resources to rapidly open critical 

corridors (e.g., I 405) to service or shifting heavy duty truck traffic to less congested time periods 

in the day to compensate for less desirable congestion levels due to the hazard.  

The framework is currently being developed further to incorporate other hazards such as 

tsunamis and hurricanes. Moreover, the authors are focusing on advancements to the HAZUS 

inventories that have well-known limitations such as the use of archetype structures and a 

general lack of site-specific and structure-specific details. For this purpose, an image-based 

modeling approach is currently being integrated into the overarching framework to carry out 

more informed fragility analysis.  
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