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ABSTRACT

Data series are widely used in numerous domains. Analyzing
this data is important for a variety of real-world applications
and has been extensively studied over the past 25 years. At
the core of the analysis task lies a classic algorithm called
similarity search. A number of approaches have been pro-
posed to support similarity search over massive data series
collections. The results of two comprehensive data series
experimental evaluations form the foundations of our fu-
ture work, which will lead to the development of a novel
index that can e�ciently support both exact and approx-
imate data series similarity search, as well as progressive
query answering with bound guarantees. Based on the in-
sights gained from the exhaustive study of the related work,
the new index will surpass the state-the-art approximate and
exact techniques both in performance and accuracy.

1. INTRODUCTION

A data series is a sequence of ordered real values1. Data
series are omnipresent in various domains from science and
engineering to business and medicine [35]. The prolifera-
tion of IoT technologies is also heavily contributing to the
explosive growth of data series collections to the order of
terabytes [38]. A common subroutine to data series ana-
lytical tasks is a classic algorithm called similarity search.
Therefore the research community has extensively studied
the development of e�cient similarity search algorithms for
data series. The similarity search algorithm for data series
returns the set of candidate data series in a collection that
is similar to a given query series. This algorithm is often
reduced to the nearest neighbor problem where data series
are represented as data points in multidimensional space and
their (dis)similarity is evaluated using a distance function.

1The order attribute can be angle, mass, frequency, position,
or time [39]. When the order is based on time, the sequence
is called a time series. The terms data series, time series
and sequence are used interchangeably.
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Although a data series can be represented as a vector
in high dimensional space, conventional vector-based ap-
proaches are not adapted for two reasons: (a) they cannot
scale to thousands of dimensions; and (b) they do not exploit
the correlation among dimensions typical for data series.

Similarity search methods can either return exact or ap-
proximate answers. Exact methods are costly while approx-
imate methods o↵er better e�ciency at the expense of losing
some accuracy. We call approximate the methods that do
not provide any guarantees on the results ng-approximate,
and those that provide guarantees on the approximation er-
ror, �-✏-approximate methods, where ✏ is the approximation
error and �, the probability that ✏ will not be exceeded.

A plethora of similarity search methods have been pub-
lished by the community including techniques designed for
generic vectors [24, 23, 7, 14, 46, 20, 25, 44, 5, 36] and those
specific to data series [3, 41, 27, 42, 47, 34, 33, 40, 15, 9, 43,
45, 10, 49, 30].

This work aims to propose a novel index that will support
progressive query answering with probabilistic guarantees.
We describe the related work, succinctly report the results of
our extensive experimental evaluation of exact methods [17],
and give a glimpse of some very interesting results from an
ongoing experimental study focused on approximate meth-
ods [18]. Finally, we present our future work directions.

In our work, we focus on the problem of whole matching
similarity search in collections with a very large number of
data series, i.e., similarity search that produces approximate
or exact results, by calculating distances on the whole (not
a sub-) sequence. This is a very popular problem that lies
at the core of several other algorithms, and is important for
many applications in various domains in the real world [17].

2. RELATED WORK

Similarity search involves finding a set of data series in
a collection that are similar to a query according to some
definition of sameness. A common abstraction is to consider
the query and candidate data series as points in a metric
space and evaluating the sameness (or di↵erence) using the
euclidean distance.

To develop e�cient similarity search algorithms on mas-
sive datasets, two major costs need to be optimized: the cost
of accessing data on disk (I/O) and the cost of comparing
the query to candidates (CPU cost). Typically, the first cost
is reduced by using summarization techniques that map the
high-dimensional data to a lower-dimensional space, while
the second cost is optimized with sophisticated data struc-
tures and search algorithms. Several similarity search meth-
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ods have been proposed in the literature supporting either
exact search [23, 7, 46, 20, 27, 42], approximate search [24,
25, 44, 5, 36], or both [14, 43, 45, 10, 49, 47, 30, 34].

In the following section, we provide a succinct descrip-
tion of the state-of-the-art similarity search methods and
the summarizations techniques on which they are based.
1. Summarization Techniques. The Discrete Fourier
Transform (DFT) [19] decomposes a data series into fre-
quency coe�cients, a subset of which represents a summa-
rization of the data series.

The Discrete Haar Wavelet Transform (DHWT) [12]
transforms a data series using Haar wavelets into a hier-
archical representation.

Random projections map the raw high dimensional data
into a lower dimensional space using a random matrix while
preserving pairwise distances within a distortion thresh-
old [26].

The Piecewise Aggregate Approximation (PAA) [28] and
Adaptive Piecewise Constant Approximation (APCA) [11]
techniques divide a data series into segments (of equal and
arbitrary length, respectively) and approximate each seg-
ment with the mean of the points that belong to it. The
Extended Adaptive Piecewise Approximation (EAPCA) [45]
method enhance APCA by approximating each segment
with the standard deviation in addition to the mean.

Symbolic Aggregate Approximation (SAX) [32] first ap-
proximates data series using PAA, then discretizes the PAA
values into a compact binary representation.

Symbolic Fourier Approximation (SFA) [43] first trans-
forms a data series into DFT coe�cients, which are then
approximated using a succinct symbolic approximation.

Optimized Product Quantization (OPQ) [21] applies a lin-
ear transformation on the data series to decorrelate it, then
applies on it a product quantizer [25].
2. Exact Similarity Search Methods. Below, we briefly
describe algorithms that produce exact results.

The R*-tree [7] is a height-balanced spatial index that
organizes data into a hierarchy of nested overlapping rect-
angles. Search returns all entries in leaves whose rectangle
contains the query.

The M-tree [14] is a multidimensional index for metric
space which partitions the data using hyper-spheres based
on their relative distances. The search algorithm uses the
triangular inequality to prune data.

The VA+file [20] is an improvement of the VA-file [46].
It creates a filter file containing summarizations of the raw
data. Search uses the filter file to prune candidates based
on a lower bounding distance. For e�ciency reasons, we
modified the VA+file to use the DFT transform instead of
the Karhunen–Loève transform (KLT).

Stepwise [27] represents the data space in a multi-level
hierarchical representation using DHWT summarizations.
Search transforms a query into DHWT and filters out can-
didate based on upper and lower bounding distances.

The SFA method [43] builds a trie with SFA summariza-
tions of the data. During query answering, a lower bounding
distance is used to prune out candidates.

The UCR Suite [42] is an optimized sequential scan algo-
rithm for exact matching that we consider as a baseline for
performance comparisons.

The DSTree [45] index dynamically segments data using
EAPCA. During search, it uses a lower bounding distance
to prune the search space.

iSAX2+ [10] is a bulk-loading index based on SAX. Dur-
ing search, a query is represented with SAX symbols and
the candidates contained in non-pruned leaves are further
refined using the euclidean distance. Pruning uses a lower
bounding distance.
ADS+ [49] is the first adaptive data series index based on

SAX. It starts with a minimal tree structure containing only
summarizations, and then adds in the raw data to leaves
during query answering. It supports a number of search
options, in particular SIMS, a skip-sequential algorithm.
In addition to exact search, the MTree, SFA trie, DSTree,

iSAX2+ and ADS+ also support ng-approximate search.
3. Approximate Similarity Search Methods. We now
present the three most popular approximate methods.
SRS [44] belongs to the family of LSH methods, inspired

by the randomized algorithm in [24]. It uses random pro-
jections to build a scalable index and supports approximate
search with theoretical guarantees.
IMI [21, 5] is an inverted index based on OPQ. A query is

answered by returning all points corresponding to the cor-
responding entries in the inverted index. Returned results
are ng-approximate.
HNSW [36] is an in-memory neighborhood graph exploit-

ing the Voronoi Diagram and the Delaunay Triangulation.
A greedy search returns the best candidates with high em-
pirical accuracy but no formal theoretical guarantees.

3. PROPOSED WORK

We propose a novel data series index that can answer
progressive similarity search queries with strong probability
guarantees. In addition to this unique functionality, it also
leverages the strengths and addresses the weaknesses of the
state-of-the-art approximate and exact techniques.
Completed Work. We outline the main contributions
in [17]: (i) we provide a formal problem definition for
data series similarity search, unifying conflicting terminol-
ogy from di↵erent research communities; (ii) we present a
survey of the state-of-the-art data series similarity search
techniques (Table 1 summarizes each technique according
to our definitions); and (iii) we conduct an extensive ex-
perimental evaluation for the e�ciency of data series exact
similarity search.
The study assessed ten state-of-the-art methods under the

same experimental framework. To guard against implemen-
tation bias, we used a large number of comparison criteria
including implementation-independent ones, and we reim-
plemented from scratch four methods that were not avail-
able in C/C++. Our implementations largely outperform
the original ones both in time and space, thus enriching the
landscape of data series similarity search methods.
In an e↵ort to make our results reproducible and support

future research in the area, we share with the community a
public archive containing all source codes, datasets, queries,
results, and plots [1].
Based on the results of our study, we draw up recom-

mendations to help users decide the best approach for their
problem. Figure 1 shows a decision matrix given a typical
hardware and query workload. The VA+file is particularly
well-suited for long series in-memory while for shorter series,
the DSTree is the best contender on disk, and iSAX2+ is the
winner in-memory.



Table 1: Similarity search methods [17]

Matching Accuracy Matching Type Representation Implementation
exact ng-appr. ✏-appr. �-✏-appr. Whole Subseq. Raw Reduced Original New

In
d
ex

es
ADS+ [49] [49] X iSAX C
DSTree [45] [45] X EAPCA Java C
iSAX2+ [10] [10] X iSAX C# C
M-tree [14] [13] [13] X X C++
R*-tree [7] X PAA C++
SFA trie [43] [43] X X SFA Java C
VA+file [20] X DFT MATLAB C

O
th

er UCR Suite [42] X X C
MASS [48] X DFT C

Stepwise [27] X DHWT C

We present an elaborate discussion based on the deep in-
sights gained about the data series similarity search prob-
lem. The main points are the following:

1. Unexpected results confirmed the importance of careful
parameter tuning, hardware setup, implementation frame-
work, and workload selection. In particular, Stepwise and
ADS+ performed below our expectations while our op-
timized implementations of the DSTree and the VA+file
helped bring them back to the spotlight. Moreover, our
carefully crafted experiments identified optimal parameters
that were di↵erent than the ones published in the original
papers. Another important finding was that, unlike what
was originally believed [29], the tightness of the lower bound
of a given method does not alone predict its performance.
In fact, it is of paramount importance to consider other fac-
tors such as the hardware platform and the the clustering
quality of a an index.

2. A better understanding of current approaches helped
pinpoint interesting avenues for improvement, in particular
identifying the methods that would most benefit from mod-
ern hardware. For instance: (i) the DSTree is a very good
candidate for parallelization as its index building is over 85%
CPU cost; (ii) the performance of Stepwise can be signifi-
cantly improved with a redesign of the physical storage and
the use of modern hardware as the total cost of query an-
swering is 50%-98% CPU; (iii) ADS+ can be enhanced with
the use of asynchronous I/O to overcome the expensive ran-
dom I/O incurred with each skip.

3. Although index building with iSAX-based indexes is
much faster than with the DSTree, the latter achieves a
better clustering as it adapts to the data distribution.

4. Choosing between an index scan and a serial scan is
not a trivial decision. In fact, access path selection is an
optimization problem that depends on a variety of factors
including hardware, query pruning ratio, data characteris-
tics, the accuracy of a summarization and the e�cacy of the
clustering provided by an index.
Work In Progress. Our current work involves an exper-
imental study that evaluates data series approximate sim-
ilarity search, both in-memory and on-disk [18]. It di↵ers
from other experimental studies which focused on the e�-
ciency of exact search [17], the accuracy of dimensionality
reduction techniques and similarity measures for classifica-
tion tasks [29, 16, 6], or in-memory data [31, 4].

Our results show that some strikingly simple modifica-
tions to existing exact methods enable them to answer �-
✏-approximate queries and have excellent empirical perfor-
mance. In fact, extensive experiments on large synthetic and
real datasets, including the two largest real datasets publicly
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Figure 1: Recommendations [17]
(Indexing and answering 10K exact synthetic

queries on a hard-drive machine)
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Figure 2: E�ciency vs. accuracy of approximate
search [18]

(Dataset = Sift25GB, Data series length = 128)

available, demonstrate that the extended techniques com-
pete in memory and outperform on disk the state-of-the-art
approximate techniques from the vector indexing commu-
nity both in accuracy and e�ciency. Figure 2 summarizes
results for 100-NN queries on an in-memory 25GB data col-
lection extracted from the Sift dataset [2]. We observe that
our modifications to iSAX2+ enable it to outperform the
popular ng-approximate search approaches HNSW and IMI
(Faiss implementation) and the state-of-the-art LSH method
SRS, in terms of combined indexing and query answering
costs. We measure accuracy using MAP, a popular metric
in the information retrieval literature [37, 8].
Future Work. Inspired by the insights gained from our
two experimental studies on the the inner workings of the
di↵erent indexing approaches and the e↵ectiveness of their
design choices, the key future direction for our work is the
design and development of a novel data series index that
will outperform the state-of-the-art approximate and exact



techniques. The new index will also support progressive
query answering [22] with probability guarantees, so as to
further enable interactive exploration tasks on very large
data series collections.

4. CONCLUSIONS

The goal of this thesis is to develop a new index that
will support approximate and exact search, and progressive
query answering with probability guarantees. The first step
in this direction was to thoroughly assess the state-of-the-
art [17, 18]. We describe the lessons learned from two exten-
sive experimental evaluations and outline our future work.

References

[1] Lernaean Hydra Archive. http://www.mi.parisdescartes.fr/

~themisp/dsseval/, 2018.
[2] TEXMEX Datasets for Approximate Nearest Neighbor Search.

http://corpus-texmex.irisa.fr/, 2018.
[3] R. Agrawal, C. Faloutsos, and A. Swami. E�cient similarity

search in sequence databases. pages 69–84, 1993.
[4] M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-

benchmarks: A benchmarking tool for approximate nearest
neighbor algorithms. In SISAP, pages 34–49, 2017.

[5] A. Babenko and V. Lempitsky. The inverted multi-index. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
37(6):1247–1260, June 2015.

[6] A. J. Bagnall, J. Lines, A. Bostrom, J. Large, and E. J. Keogh.
The great time series classification bake o↵: a review and exper-
imental evaluation of recent algorithmic advances. Data Min.

Knowl. Discov., 31(3):606–660, 2017.
[7] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The

R*-tree: an e�cient and robust access method for points and
rectangles. In ICMD, pages 322–331. ACM, 1990.

[8] C. Buckley and E. M. Voorhees. Evaluating evaluation measure
stability. In SIGIR, pages 33–40. ACM, 2000.

[9] A. Camerra, T. Palpanas, J. Shieh, and E. J. Keogh. iSAX 2.0:
Indexing and Mining One Billion Time Series. In ICDM, pages
58–67. IEEE Computer Society, 2010.

[10] A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. J.
Keogh. Beyond one billion time series: indexing and mining very
large time series collections with iSAX2+. Knowl. Inf. Syst.,
39(1):123–151, 2014.

[11] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally
adaptive dimensionality reduction for indexing large time series
databases. ACM TODS, 27(2):188–228, June 2002.

[12] K.-P. Chan and A. W.-C. Fu. E�cient time series matching by
wavelets. In ICDE, pages 126–133, 1999.

[13] P. Ciaccia and M. Patella. PAC Nearest Neighbor Queries: Ap-
proximate and Controlled Search in High-Dimensional and Met-
ric Spaces. In ICDE, pages 244–255, 2000.

[14] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An E�cient Ac-
cess Method for Similarity Search in Metric Spaces. In VLDB,
pages 426–435, 1997.

[15] R. Cole, D. E. Shasha, and X. Zhao. Fast window correlations
over uncooperative time series. In SIGKDD, pages 743–749,
2005.

[16] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and
E. Keogh. Querying and mining of time series data: experimental
comparison of representations and distance measures. PVLDB,
1(2):1542–1552, 2008.

[17] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim.
The Lernaean Hydra of Data Series Similarity Search: An Exper-
imental Evaluation of the State of the Art. PVLDB, 12(2):112–
127, 2018.

[18] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim.
The Return of the Lernaean Hydra: An Experimental Evaluation
of Data Series Approximate Similarity Search. Under Submis-

sion, 2019.
[19] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast sub-

sequence matching in time-series databases. In SIGMOD, pages
419–429, New York, NY, USA, 1994. ACM.

[20] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi.
Vector Approximation Based Indexing for Non-uniform High Di-
mensional Data Sets. In CIKM, pages 202–209, 2000.

[21] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantiza-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 36(4):744–755,
Apr. 2014.

[22] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos. Pro-
gressive similarity search on time series data. In BigVis, in

conjunction with EDBT/ICDT, 2019.
[23] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial

Searching. In SIGMOD, pages 47–57, 1984.
[24] P. Indyk and R. Motwani. Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In STOC, pages
604–613, 1998.

[25] H. Jegou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 33(1):117–128, Jan 2011.
[26] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz map-

pings into a Hilbert space. In CONM, volume 26 of Contempo-

rary Mathematics, pages 189–206. 1984.
[27] S. Kashyap and P. Karras. Scalable knn search on vertically

stored time series. In C. Apt, J. Ghosh, and P. Smyth, editors,
KDD, pages 1334–1342. ACM, 2011.

[28] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimen-
sionality reduction for fast similarity search in large time series
databases. KAIS, 3(3):263–286, 2001.

[29] E. Keogh and S. Kasetty. On the need for time series data mining
benchmarks: A survey and empirical demonstration. Data Min.

Knowl. Discov., 7(4):349–371, Oct. 2003.
[30] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas.

Coconut: A scalable bottom-up approach for building data series
indexes. PVLDB (11)6, pages 677–690, 2018.

[31] W. Li, Y. Zhang, Y. Sun, W. Wang, W. Zhang, and X. Lin.
Approximate Nearest Neighbor Search on High Dimensional
Data - Experiments, Analyses, and Improvement (v1.0). CoRR,
abs/1610.02455, 2016.

[32] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. Chiu. A symbolic
representation of time series, with implications for streaming al-
gorithms. In SIGMOD, pages 2–11, 2003.

[33] M. Linardi and T. Palpanas. Scalable, variable-length similarity
search in data series: The ulisse approach. PVLDB, 11(13):2236–
2248, 2018.

[34] M. Linardi and T. Palpanas. ULISSE: ULtra compact Index
for Variable-Length Similarity SEarch in Data Series. In ICDE,
pages 1356–1359, 2018.

[35] M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh. Matrix profile
x: Valmod - scalable discovery of variable-length motifs in data
series. In SIGMOD, pages 1053–1066, 2018.

[36] Y. A. Malkov and D. A. Yashunin. E�cient and robust approx-
imate nearest neighbor search using hierarchical navigable small
world graphs. CoRR, abs/1603.09320, 2016.

[37] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, New York,
NY, USA, 2008.

[38] T. Palpanas. Data series management: The road to big sequence
analytics. SIGMOD Record, 44(2):47–52, 2015.

[39] T. Palpanas. Big sequence management: A glimpse of the past,
the present, and the future. In SOFSEM, volume 9587 of LNCS,
pages 63–80, 2016.

[40] B. Peng, T. Palpanas, and P. Fatourou. ParIS: The Next Des-
tination for Fast Data Series Indexing and Query Answering.
IEEE BigData, pages 791–800, 2018.

[41] D. Rafiei. On similarity-based queries for time series data. In
ICDE, pages 410–417, 1999.

[42] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A.
Batista, M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh.
Searching and mining trillions of time series subsequences under
dynamic time warping. In KDD, pages 262–270, 2012.
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