
Data as a Language: A Novel Approach to Data Integration

Christos Koutras
supervised by Asterios Katsifodimos, Christoph Lofi and Geert-Jan Houben

Delft University of Technology

c.koutras@tudelft.nl

ABSTRACT
In modern enterprises, both operational and organizational
data is typically spread across multiple heterogeneous sys-
tems, databases and file systems. Recognizing the value of
their data assets, companies and institutions construct data
lakes, storing disparate datasets from di↵erent departments
and systems. However, for those datasets to become useful,
they need to be cleaned and integrated. Data can be well
documented, structured and encoded in di↵erent schemata,
but also unstructured with implicit, human-understandable
semantics. Due to the sheer scale of the data itself but also
the multitude of representations and schemata, data inte-
gration techniques need to scale without relying heavily on
human labor. Existing integration approaches fail to ad-
dress hidden semantics without human input or some form
of ontology, making large scale integration a daunting task.

The goal of my doctoral work is to devise scalable data
integration methods, employing modern machine learning
to exploit semantics and facilitate discovery of novel rela-
tionship types. In order to capture semantics with mini-
mal human intervention, we propose a new approach which
we call Data as a Language (DaaL). By leveraging embed-

dings from the Natural Language Processing (NLP) litera-
ture, DaaL aims at extracting semantics from structured and
semi-structured data, allowing the exploration of relevance
and similarity among di↵erent data sources. This paper dis-
cusses existing data integration mechanisms and elaborates
on how NLP techniques can be used in data integration,
alongside challenges and research directions.

1. INTRODUCTION
Enterprises encounter data-related problems, such as the

integration of multiple databases, spreadsheet files, logs as
well as semi-structured and unstructured documents; data
is stored across multiple storage systems, generally dirty
and modelled abstractly with respect to the corresponding

Proceedings of the VLDB 2019 PhD Workshop, August 26th, 2019. Los
Angeles, California. Copyright (C) 2019 for this paper by its authors.
Copying permitted for private and academic purposes.

source. For the most part, data integration has been a man-
ual process. Traditionally, database administrators would
create one federated schema integrating various databases,
allowing data analysts to query all of them at the same time.
To automate this process, administrators relied on Schema

Matching, i.e. the process of capturing potential relation-
ships between di↵erent data sources and models.

Nowadays such a task is nearly impossible to rely on hu-
mans, since the number of data sources has increased dra-
matically. Knowledge about relationships among data assets
is an essential building block for integrating data to be used
in larger scale applications. However, most of the existing
integration methods [3, 6, 15] rely on syntax, i.e. the sym-
bolic representation of data as found in a database without
considering what they semantically represent (their under-
lying meaning), which constraints the quality and amount
of matches. Furthermore, recent work that incorporates se-
mantics [7], does not consider data instances and focuses
only on the schema elements.

Departing from existing schema matching methods, we
envision a novel approach, which we term Data as a Lan-

guage (DaaL). Essentially, DaaL designates a method for
transforming elements of structured (e.g. rows of relational
tables) and semi-structured data (e.g. log entries) into a
non-directed graph, whose traversal outputs a number of
documents. These become the input to Natural Language
Processing (NLP) techniques, which leverage recent advance-
ments in Deep Neural Networks (DNNs). Research on NLP
methods has proven that they are suitable for capturing se-
mantics, when the training sample consists of large quanti-

ties of text corpora which provides also some context infor-

mation. In a typical data lake, the abundance of (semi)struc-
tured data satisfies the requirement of quantity, but proper
context is di�cult to guarantee since non-textual data does
not provide a standard sequence; in contrast, textual data
adheres to a specific syntax. DaaL aims at filling this gap,
by providing a way to strengthen context when dealing with
raw data values, in order to enable leveraging of NLP ap-
proaches that capture semantics. DaaL will facilitate re-
lationship discovery between di↵erent data schemata and
instances, which, in turn, can improve the accuracy of de-
manding data discovery and integration tasks.

2. DATA-AS-A-LANGUAGE
In this section we describe the Data as a Language (DaaL)

approach for capturing relationships among elements of struc-
tured and semi-structured data of various schemata, from
di↵erent data sources.

ceur-ws.org/Vol-2399/paper12.pdf

A1 A2 A3 A4

B1 B2 B3

e1: {
f1:v1
…

}
// Comment
e2: {

f2:v2
…

}

e3: {
f3:v3
…

}
e4: {

f4:v4
…

}
//Comment

A1 A2 A3 A4

B1 B2 B3

e1: {
f1:v1
…

}
// Comment
e2: {

f2:v2
…

}

e3: {
f3:v3
…

}
e4: {

f4:v4
…

}
//Comment

Transform RelateEmbed

Snatch

snatch00

Godfather

user1

user2

G. Ritchie

2000

B. Pitt

$7.000.000

R. De Niro

123ab

J. Brown

35bca

F. F.
Coppola

1.2.3.4

u1@mail.com

1.2.3.5

Create

[Snatch, G. Ritchie, B. Pitt]

[B. Pitt, Snatch, 2000]

[snatch00, Snatch,
$7.000.000]

[R. De Niro, F. F. Coppola,
Godfather]

[user1, 1.2.3.4, 123ab]

[123ab, user1, J. Brown]

[1.2.3.5, 35bca, user2]

Figure 1: The DaaL pipeline. Data is transformed into a graph, from which documents are constructed to
train vector representations. Data instance embeddings can then be used to discover relationships between
disparate data elements.

2.1 DaaL in a Nutshell
The DaaL approach consists of the three stages, as de-

picted in Figure 1:

• Transforming Data to a Graph. Data from var-
ious sources, with complete or partial structure, go
through the transformation stage. In that stage, DaaL
processes data elements, such as tuples of relational
tables, and outputs a non-directed graph connecting
data elements with edges.

• Creating Documents from the Graph. Next, we
create documents consisting of data element tokens by
traversing the graph.

• Producing Embeddings from Documents. Con-
sequently, the documents serve as input for training
vector representations, commonly termed as embed-

dings, of data elements (e.g. entire relational tuples or
individual attribute values, entries in semi-structured
files) using existing learning and graph-based NLP tech-
niques. These embeddings are constructed in such a
way that elements which share the same context have
similar vector representations.

• Finding Semantic Relationships. In the final stage,
we use the embeddings in order to calculate similarity
between di↵erent data assets. Since embeddings of
semantically related data elements are close to each
other, these similarities help us capture and material-
ize relationships among them.

The output of the DaaL pipeline will consist of our initial
datasets enhanced with knowledge about semantically re-
lated content among data items (e.g. a relationship between
two columns of di↵erent schemata). We can then leverage
this knowledge to perform data discovery and integration
tasks. In what follows, we delve into details about each of
the above stages, discussing existing work and challenges.

2.2 Transforming Data to a Graph
As a first step, we need to devise a method for transform-

ing (semi)structured data into a non-directed graph. We
do so in order to create some reasonable relevance between
schema information and data values sharing some context,
which will later be of high importance for producing accu-
rate vector representations. In this section, we focus on how

to produce such a graph from either i) relational data, or ii)
semi-structured files.

Transforming Relational Data. Consider a relation R,
and its set of m attributes {A1, . . . , Am}. For each tuple t
contained in the instance of R we want to create a connected
component of the graph. One alternative would be, for each
tuple, to create nodes representing each data value and edges
between adjacent ones. However, we would relate only data
elements that are adjacent, whereas we would like to relate
them on a row basis.
Therefore, another approach would be to create a clique

for each relational tuple in the input. More specifically, for
each individual attribute value we create a node and connect
it through an edge with all other values in the same row.
This way, we manage to provide full context for relational
data elements, since we incorporate row information.

Example 1. Consider the following tuple from a “Movies”

relation with the attribute set {ID, Title, Director, Produc-

tion Year, Budget} and the clique created out of it:

(1, Snatch, Guy Ritchie, 2000, $7.000.000)

1 Snatch Guy Ritchie 2000 $7.000.000

Transforming Data from Semi-Structured Files. Con-
sider a semi-structured file F which contains a variety of
entries e referring to various entities. Each of these entries
contains a number of fields f , each accompanied by its value.
Transforming each such entry e to a connected component
of the graph is similar to the approach used for relational
data; in this case, we treat field values as attribute values.

Challenges. Transforming data into a graph is far from
straightforward. Below we highlight three research chal-
lenges:

• Graph Construction. Creating a clique for each
row or entry will be prohibitively costly with respect

to storage, when having a massive amount of data as
input. Therefore, in the case of relational data, if we
know the primary key of a relation, we can create only
an edge between the value of the primary key and each
attribute in the row. For semi-structured data, we
could identify fields that represent keys (e.g. if the field
name is ID), and proceed in the same way. Hence, pri-
mary key values will act like hubs for relating attribute
values of a single row.

• Incorporating Schema Information. We could
also incorporate schema information into the graph,
such as relation (entry) and attribute (field) names and
their relationships with the corresponding attribute
(field) values. In particular, we could create nodes for
these entities too and connect them with an edge to the
corresponding values and other schema-level elements
they are found together with (e.g. an edge between
attribute names of the same relation). An alternative
approach would be to incorporate schema information
inside the corresponding data values; this would also
help distinguish same data values with di↵erent con-
textual meaning.

• Capturing Entries. Semi-structured datasets may
also contain comments and system-generated messages,
which we might not want to take into consideration
when transforming to text. In order to extract e.g.,
log entries from the files, we could leverage approaches
such as Datamaran [8], given some essential assump-
tions on the format of a file.

2.3 Creating Documents from the Graph
In order to train neural networks to produce vector rep-

resentations for the data elements in the input, we need to
create documents that provide some context. Towards this
direction, we are going to use the graph of the previous step
and construct documents through its traversal.

Based on [9], we propose for each node in the graph to per-
form a specified number of random walks of a given length,
to explore diverse neighborhoods. In this fashion, each such
random walk will represent a sequence of data values and
will provide a di↵erent context for each of them. This way,
we are able to provide a lot of useful context for each data
element in the input, and bypass the shortcomings of syntax
absence in non-textual data. The output of this stage con-
sists of a number of such documents containing tokenized
data values with respect to the random walk sequences.

2.4 Producing Embeddings from Documents
The idea of creating similar representations for words that

appear in the same context has its roots in the distribu-
tional hypothesis [11], which states that such words tend to
have a similar meaning. The recent progress made in neu-
ral networks facilitated the introduction of distributed rep-
resentations called embeddings, which relate words to vec-
tors of a given dimensionality. Towards this direction, nu-
merous word embedding methods have been proposed in
the literature, with the most popular ones being Word2Vec
[13], GloVe [14], and fastText [2] which even produces char-
acter embeddings, making it possible to deal with out-of-
vocabulary words. Apart from single word embeddings,
there exist methods that try to produce vector represen-
tations for sentences or even paragraphs [12]. The authors

in [7] propose the idea of coherent groups for incorporating
single word embeddings into a similarity measure between
two groups of words.
In [5], the authors introduce two approaches for compos-

ing distributed representations of relational tuples. The sim-
plest one suggests that a tuple embedding is a concatenation
of the embeddings of its attribute instances. They then pro-
pose using Recurrent Neural Networks (RNNs) with Long
Short Term Memory (LSTM) in order to produce tuple em-
beddings out of single word ones, by taking into considera-
tion the relationship and order between di↵erent attribute
values inside a tuple. The authors also propose a method
for handling unknown words, called vocabulary retrofitting,
and two alternatives for learning embeddings when the data
domain is too technical: i) assuming tuples are documents,
and ii) training on a corpus of text with related semantics.
We avoid these issues by presenting a general framework for
producing word embeddings, by transforming data into a
collection of documents comprising of related data values,
which could serve as training input.

Training DaaL Embeddings. After transforming data
into documents using the methods described previously, we
make use of this newly crafted knowledge by training neu-
ral networks to produce vector representations that capture
context and semantics. Towards this direction, we feed the
tokenized documents in Word2Vec [13] or fastText [2] to
receive individual word embeddings. When tuning the pa-
rameters of these methods, we need to pay attention to the
window size around each word, which determines in what
extent we take into consideration the surroundings to out-
put the word embedding. In our case, we won’t need a large
window size, since we create a lot of di↵erent contexts for in-
dividual data elements, using the random walks for creating
the documents; thus, a smaller window size will guarantee
accurate and more distinct vector representations.

2.5 Finding Semantic Relationships
There has been a lot of prior work on capturing relation-

ships between di↵erent datasets, or as previously defined,
Schema Matching [15]. Data Tamer [16] has a Schema In-

tegration module which allows each ingested attribute to be
matched against a collection of existing ones, by making use
of a variety of algorithms called experts. In [6] the authors fo-
cus on building Knowledge Graphs, where di↵erent datasets
are correlated with respect to their content or schemata. [3]
uses a Linkage Graph in order to support data discovery.
All of these methods, rely only on syntax, based on simi-
larity computation (e.g. Jaccard Similarity) between pairs
of column signatures [1] . Moreover, provenance of datasets
that are used within Google is explored in [10] by looking
into production logs.
In an attempt to avoid considering only syntax, the au-

thors in [17] propose an alternative algorithm for matching
attributes of several relations, by clustering them based on
the distribution of their values, whereas in [4] matching is
performed with respect to a corpus of existing schema map-
pings, which serve as training samples for di↵erent training
modules called base learners. [7] tries to build relationships
between relations and columns of di↵erent databases with
respect to a given ontology, by making use of both seman-
tics and syntax; yet they avoid data instances. Therefore,
DaaL is the first method to incorporate schema information

and data instances to capture relationships between data el-
ements with respect to the underlying meaning they share.

Our Approach. The trained embeddings could facilitate
discovery of novel relationship types, other than just finding
attributes that relate to the same entity. This is due to the
fact that vector representations of attribute (field) values are
a↵ected by their context inside their relation (entry), which
leads to capturing relationships with attributes (fields) of
other relations (entries) that share the same context.

However, in order to materialize a relationship between
two data elements (e.g. relational tuples, columns of rela-
tions) we need to devise a method that discovers it. One al-
ternative could be calculating similarities between the vector
representations of data, and if they are above a given thresh-
old, signal a potential relationship between them. In addi-
tion, clustering similar embeddings could facilitate finding
groups of semantically related data elements. Nonetheless,
the challenge of proposing methods that take advantage of
embeddings for accurately capturing semantic relevance is
very demanding and open, since we want embeddings to be
applicable to any given scenario.

3. APPLICATIONS
The output of the DaaL pipeline comprises the initial

datasets together with numerous relationships among them.
Thus, a Data Integration task could use this valuable infor-
mation to explore any meaningful data correlation stemming
from the various data sources. In addition, our proposed
approach is the first to deal with finding correspondences
among semi-structured files, without having to transform
them into some structured format, which is something that
the authors in [8] deal with.

Interestingly enough, DaaL gives also the opportunity to
augment information available in a specific schema. For
instance, we can enhance a relational table with extra at-
tributes, found in other schemata, containing data values
which have similar representations with the respective ones
of the table. Most importantly, this could be done before
getting the results of the time costly matching module, since
we immediately can take advantage of the information we
get from the embeddings (e.g., the most similar data ele-
ments to a given one in vector space).

4. RESEARCH PLAN
Experimental Evaluation Framework. We are currently
creating a unified evaluation framework for comparing the
schema matching methods proposed in the literature through-
out the years. We aim at developing an open source frame-
work for experimenting on Schema Matching and comparing
the DaaL approach with previous ones based on a standard-
ized set of evaluation techniques.

Implementing DaaL. The DaaL pipeline comprises four
stages, namely i) transformation of data into a graph, ii)
creation of documents that serve as input to the DNNs, iii)
training DNNs and creating embeddings and subsequently
iv) using those embeddings. Each of those stages poses its
own challenges. We aim at building a streamlined system
to enable plugging-in and experimenting with di↵erent tech-
niques to generate text from data, to train vector represen-
tations and to create embeddings which we can leverage in
di↵erent ways for data integration and discovery.

Humans in the Loop. Considering that data integration
cannot be fully automated, we aim at developing a system
which can assist and collaborate with human experts to per-
form large-scale data integration and discovery with mini-
mal human intervention. In particular, users will naturally
interact with the system and suggest suitable refinements
to resolve uncertainties. For instance, humans can provide
existing known relationships, or evaluate the quality of rec-
ommended matches detected by the system.

5. REFERENCES
[1] Z. Abedjan, L. Golab, and F. Naumann. Profiling

relational data: a survey. VLDBJ, 24(4):557–581,
2015.

[2] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
Enriching word vectors with subword information.
TACL, 5:135–146, 2017.

[3] D. Deng, R. C. Fernandez, Z. Abedjan, et al. The
data civilizer system. In CIDR, 2017.

[4] A. Doan, P. Domingos, and A. Halevy. Learning to
match the schemas of data sources: A multistrategy
approach. Machine Learning, 50(3):279–301, 2003.

[5] M. Ebraheem, S. Thirumuruganathan, S. Joty, et al.
Distributed representations of tuples for entity
resolution. PVLDB, 11(11):1454–1467, 2018.

[6] R. C. Fernandez, Z. Abedjan, et al. Aurum: A data
discovery system. In ICDE, pages 1001–1012. IEEE,
2018.

[7] R. C. Fernandez, E. Mansour, A. A. Qahtan, et al.
Seeping semantics: Linking datasets using word
embeddings for data discovery. In ICDE, pages
989–1000. IEEE, 2018.

[8] Y. Gao, S. Huang, and A. Parameswaran. Navigating
the data lake with datamaran: Automatically
extracting structure from log datasets. In SIGMOD,
pages 943–958. ACM, 2018.

[9] A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In SIGKDD, pages 855–864.
ACM, 2016.

[10] A. Halevy, F. Korn, N. F. Noy, et al. Goods:
Organizing google’s datasets. In SIGMOD, pages
795–806. ACM, 2016.

[11] Z. S. Harris. Distributional structure. Word,
10(2-3):146–162, 1954.

[12] Q. Le and T. Mikolov. Distributed representations of
sentences and documents. In ICML, pages 1188–1196,
2014.

[13] T. Mikolov, I. Sutskever, K. Chen, et al. Distributed
representations of words and phrases and their
compositionality. In NIPS, pages 3111–3119, 2013.

[14] J. Pennington, R. Socher, and C. Manning. Glove:
Global vectors for word representation. In EMNLP,
pages 1532–1543, 2014.

[15] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDBJ,
10(4):334–350, 2001.

[16] M. Stonebraker, D. Bruckner, I. F. Ilyas, et al. Data
curation at scale: The data tamer system. In CIDR,
2013.

[17] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, et al.
Automatic discovery of attributes in relational
databases. In SIGMOD, pages 109–120. ACM, 2011.

