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Abstract. We propose a model which extends variational autoencoders
by exploiting the rich information present in the past preference history.
We introduce a recurrent version of the VAE, where instead of passing
a subset of the whole history regardless of temporal dependencies, we
rather pass the consumption sequence subset through a recurrent neural
network. At each time-step of the RNN, the sequence is fed through a
series of fully-connected layers, the output of which models the proba-
bility distribution of the most likely future preferences. We show that
handling temporal information is crucial for improving the accuracy of
recommendation.

1 Introduction

Learning of accurate models able to suggest interesting items to the user is an
important problem for many scientific and industrial applications. To address
this problem,

collaborative filtering approaches to recommendation were extensively inves-
tigated by the current literature. Among these, latent variable models [5, 14, 17,
6] gained substantial attention, due to their capabilities in modeling the hid-
den causal relationships that influence user preferences. Recently, however, new
approaches based on neural architectures were proposed, achieving competitive
performance with respect to the current state of the art. Also, new paradigms
based on the combination of deep learning and latent variable modeling [7, 12]
were proven quite successful in domains such as computer vision and speech pro-
cessing. However, their adoption for modeling user preferences is still unexplored,
although recently it is starting to gain attention [9, 8].

The aforementioned approaches rely on the “bag-of-word” assumption: when
considering a user and her preferences, the order of such preferences can be ne-
glected and all preferences are exchangeable. This assumption works with general
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user trends which reflect a long-term behavior. However, it fails to capture the
short-term preferences that are specific of several application scenarios, espe-
cially in the context of the Web. Sequential data can express causalities and
dependencies that require ad-hoc modeling and algorithms. And in fact, efforts
to capture this notion of causality have been made, both in the context of latent
variable modeling [11, 1, 3] and deep learning [4, 2, 18, 15].

In this paper, we consider the task of sequence recommendation from the
perspective of combining deep learning and latent variable modeling. Inspired by
the approach in [9], we assume that at a given timestamp the choice of a given
item is influenced by a latent factor that models user trends and preferences.
However, the latent factor itself can be influenced by user history and modeled
to capture both long-term preferences and short-term behavior.

Our contribution can be summarized as follows: (i) we extend the frame-
work to the case of sequential recommendation, where user’s preferences exhibit
temporal dependencies; (ii) we evaluate the proposed framework on standard
benchmark datasets, by showing that (a) approaches not considering tempo-
ral dynamics are not totally adequate to model user preferences, and (b) the
combination of latent variable and temporal dependency modeling produces a
substantial gain, even with regard to other approaches that only focus on tem-
poral dependencies through recurrent relationships.

The paper is organized as follows. Sections 2 proposes the modeling of user
preferences in a variational setting, by describing how the framework can be
adapted to the case of temporally ordered dependencies. The effectiveness of the
proposed modeling is illustrated in section 3, and pointers to future developments
are discussed in section 4.

2 Variational Autoencoders for User Preferences

The reader is referred to [13] for more details of the approach illustrated here. We
shall use the following shared notation: u ∈ U = {1, . . . ,M} indexes a user and
i ∈ I = {1, . . . , N} indexes an item for which the user can express a preference.
We model implicit feedback, thus assuming a preference matrix X ∈ {0, 1}N×M ,
so that xu represents the (binary) row with all the item preferences for user u.
Given xu, we define Iu = {i ∈ I|xu,i = 1} (with Nu = |Iu|). Analogously,
Ui = |{u ∈ U |xu,i = 1}| and Mi = |Ui|.

We also consider a precedence and temporal relationships within X . First of
all, the preference matrix induces a natural ordering relationship between items:
i ≺u j has the meaning that xu,i > xu,j in the rating matrix. Also, we assume the

existence of timing information T ∈ IRM×N
+ ∪{∅}, where the term tu,i represents

the time when i was chosen by u (with tu,i = ∅ if xu,i = 0). Then, i <u j denotes
that tu,i < tu,j , With an abuse of notation, we also introduce a temporal mark
in the elements of xu: the term xu(t) (with 1 ≤ t ≤ Nu) represents the t-th
item in Iu in the sorting induced by <u, whereas xu(1:t) represents the sequence
xu(1), . . . ,xu(t).



The reference model is the Multinomial variational autoencoder (MVAE)
proposed in [9]. Within this framework, for a given user u it is possible to devise
xu according to the generative setting:

zu ∼ N (0 , IK) , π(zu) ∼ exp {fφ(zu)} ,
xu ∼ Multi (Nu, π(zu)) .

(2.1)

The underlying “decoder” is modeled by logPφ(xu|zu) =
∑
i xu,i log πi(zu) ,

thus enabling a complete specification of the overall variational framework. Pre-
diction for new items is accomplished by resorting to the learned functions fφ
and Qλ: given a user history x , we compute z = µλ(x ) and then devise the
probabilities for the whole item set through π(z ). Unseen items can then be
ranked according to their associated probabilities.

Ideally, latent variable modeling should be able to express temporal dynamics
and hence causalities and dependencies among preferences in a user’s history. In
the following we elaborate on this intuition. Within a probabilistic framework,
we can model temporal dependencies by conditioning each event to the previous
events: given a sequence x (1:T ), we have

P
(
x (1:T )

)
=

T−1∏
t=0

P
(
x (t+1)|x (1:t)

)
.

This specification suggests two key aspects:

– There is a recurrent relationship between x (t+1) and x (1:t) devised by P
(
x (t+1)|x (1:t)

)
,

upon which the modeling can take advantage, and
– each time-step can be handled separately, and in particular it can be modeled

through a conditional VAE.

Let us consider the following (simple) generative model

zu(t) ∼ N (0 , IK) , π
(
zu(t)

)
∼ exp

{
fφ
(
zu(t)

)}
,

xu(t) ∼ Multi
(
1, π

(
zu(t)

))
,

(2.2)

which results in the joint likelihood

P (xu(1:T ), zu(1:T )) =
∏
t

P (xu(t)|zu(t))P (zu(t)) .

Here, we can approximate the posterior P (zu(1:T )|xu(1:T )) with the factorized
proposal distribution

Qλ(zu(1:T )|x (1:T )) =
∏
t

qλ(zu(t)|x (1:t−1)) ,

where qλ(zu(t)|x (1:t−1)) is a gaussian distribution whose parameters µλ(t) and
σλ(t) depend upon the current history xu(1:t−1), by means of a recurrent layer
h t:

µλ(t),σλ(t) = ϕλ(h t)

h t = RNN λ

(
h t−1,xu(t−1)

)
.

(2.3)



The resulting loss function can be formalized as follow:

L(φ, λ,X ) =
∑
u

Nu∑
t=1

{
1

2

∑
k

(
σλ,k(t)− 1− log σλ,k(t) + µλ,k(t)2

)
− Eε∼N (0 ,I )

[
logPφ

(
xu(t)|zλ(ε, t)

)]}
.

The proposal distribution introduces a dependency of the latent variable from
a recurrent layer, which allows to recover the information from the previous
history. We call this model SVAE.

Notably, the prediction step can be easily accomplished in a similar way as for
MVAE: given a user history xu(1:t−1), we can resort to eq. 2.3 and set z = µλ(t),
upon which we can devise the probability for the xu(t) by means of π(z ).

The generative model of eq. 2.2 only focuses on the next item in the sequence.
The base model however is flexible enough to extend its focus on the next k items,
regardless of the time: xu(t:t+k−1) ∼ Multi

(
k, π

(
zu(t)

))
. Again, the resulting

joint likelihood can be modeled in different ways. The simplest way consists in
considering x as a time-ordered multi-set,

P (xu(1:T ), zu(1:T )) =
∏
t

P (xu(t:t+k−1)|zu(t))P (zu(t)) . (2.4)

Alternatively, we can consider the probability of an item as a mixture relative
to all the time-steps where it is considered:

P (xu(1:T ), zu(1:T )) =
∏
t

P (zu(t))
∑

t−k+1≤j≤t

P (xu(t)|zu(j)), (2.5)

where P (xu(t)|zu(j)) is the probability of observing xu(t) according to π(zu(j)).
In both cases, the variational approximation is modeled exactly as shown above,
and the only difference lies in the second component of the loss function, which
has to be adapted according to the above equations.

There is an interesting analogy between eq. 2.5 and the attention mech-
anism [16]. In fact, it can be noticed in the equation that the prediction of
xu(t) depends on the latent status of the k previous steps in the sequence. In
practice, this enables to capture short-term dependencies and to encapsulate
them in the same probabilistic framework by weighting the likelihood based on
zu(t−k+1), . . . , zu(t).

3 Evaluation

We evaluate SVAE on some benchmark datasets, by comparing with various
baselines and the current state-of-the-art competitors, in order to assess its ca-
pabilities in modeling preference data. Additionally, we provide a sensitivity
analysis relative to the configurations/contour conditions upon which SVAE is
better suited.



We evaluate our model along with the competitors on two popular publicly
available datasets, namely Movielens-1M and Netflix. Movielens-1M is a time
series dataset containing user-item ratings pairs along with the corresponding
timestamp. Since we work on implicit feedback, we binarize the data, by consid-
ering only the user-item pairs where the rating provided by the user was strictly
greater than 3 on a range 1:5. Netflix has the same data format as Movielens-1M
and the same technique is used to binarize the ratings. We use a subset of the
full dataset that matches the user-distribution with the full dataset. The subset
is built by stratifying users according to their history length, and then sampling
a subset of size inversely proportional to the size of the strata.

Since we are considering implicit preferences, the evaluation is done on top-n
recommendation, and it relies on the following metrics.
Normalized Discounted Cumulative Gain. Also abbreviated as NDCG@n, the
metric gives more weight to the relevance of items on top of the recommender
list and is defined as

NDCG@n =
DCG@n

IDCG@n

where DCG@n =
∑n
i=1

ri
log2(i+1) and IDCG@n =

∑|R|
i=1

1
log2(i+1) . Here, ri is

the relevance (either 1 or 0 within the feedback scenario) of the i-th recommended
items in the recommendation list, and R is the set of relevant items.

Precision. By defining Hits =
∑
i ri as the number of items occurring in the

recommendation list that were actually preferred by the user, we have

Precision@n =
Hits@n

n
Recall. defined as the percentage of items actually preferred by the user that
were present in the recommendation list:

Recall@n =
Hits@n

|R|
In our experiments, we use the above metrics with two values of n, respectively
10 and 100. The evaluation protocol works as follows. We partition users into
training, validation and test set. The model is trained using the full histories
of the users in the training set. During evaluation, for each user in the valida-
tion/test set we split the time-sorted user history into two parts, fold-in and
fold-out splits. The fold-in split is used as a basis to learn the necessary repre-
sentations and provide a recommendation list which is then evaluated with the
fold-out split of the user history using the metrics defined above. We believe that
this strategy is more robust when compared to other methodologies wherein the
same user can be in both the training as well as testing sets.

It is worth noticing that Liang et. al [9] follow a similar strategy but
they do not consider any sorting for user histories. That is, for the valida-

tion/test users, the fold-in set doesn’t precede the fold-out with respect to time.
We compare our model with current state-of-the-art models including re-

cently published neural architectures and we now present a brief summary about
our competitors to provide a better understanding of these models.



– POP is a simple baseline where the most popular items are recommended.

– BPR is a state of the art model based on Matrix Factorization, which ranks
items differently for each user [10]. There is a subtle issue concerning BPR:
by separating users on training/validation/test as discussed above, the latent
representation of users in the validation/test is not meaningful. Then, BPR is
only capable of providing meaningful predictions for users that were already
exploited in the training phase. To solve this, we extended the training set
to include the partial history in fold-in for each user in the validation/test.
The evaluation takes place on their corresponding fold-out sets.

– FPMC [11] is a model which clubs both Matrix Factorization and Markov
Chains together using personalized transition graphs over underlying Markov
chains.

– CASER [15] is a convolutional model that uses vertical and horizontal con-
volutional layers to embed a sequence of recent items thereby learning se-
quential patterns for next-item recommendation. The authors have shown
that this model outperforms other approaches based on recurrent neural net-
work modeling, such as GRU4Rec. We use the implementation provided by
the authors and tune the network by keeping the number of horizontal filters
to be 16, and vertical filters to be 4.

– MVAE from which the SVAE model draws heavily. We use the implemen-
tation provided by the authors, with the default hyperparameter settings.

The experiments consider the basic SVAE model and the extensions to the
next-k prediction, as discussed in the previous section. The model is trained
end-to-end on the full histories of the training users. Model hyperparameters
are set using the evaluation metrics obtained on validation users. The SVAE
architecture includes an embedding layer of size 256, a recurrent layer realized
as a GRU with 200 cells, and two encoding layers (of size 150 and 64) and finally
two decoding layers (again, of size 64 and 150). We set the number K of latent
factors for the variational autoencoder to be 64. Adam was used to optimize the
loss function coupled with a weight decay of 0.01. As for RVAE, the architecture
includes user/item embedding layers (of size 128), two encoding layers (size 100
and 64), and a final layer that produces the score fφ(zu,i). Both SVAE and
RVAE were implemented in PyTorch and trained on a single GTX 1080Ti GPU.
The source code is available on GitHub.

In a first set of experiments, we compare SVAE with all competitors de-
scribed above. Table 1 shows the results of the comparison. SVAE outperforms
the competitors on both datasets with a significant gain on all the metrics. It
is important here to highlight how the temporal fold-in/fold-out split is crucial
for a fair evaluation of the predictive capabilities: MVAE was evaluated both
on temporal and random split, exhibiting totally different performances. Our
interpretation is that, with random splits, the prediction for an item is easier
if the encoding phase is aware of forthcoming items in the same user history.
This severely affects the performance and overrates the predictive capabilities

https://github.com/noveens/svae_cf.



of a model: the accuracy of MVAE drops substantially when a temporal split is
considered.

By contrast, SVAE is trained to capture the actual temporal dependencies
and ultimately results in better predictive accuracy. This is also shown in fig. 1,
where we show that SVAE outperforms the competitors irrespective of the size
of fold-in. The only exception is with very short sequences (less than 10 items),
where MVAE gets better results with respect to the sequential models. It is also
worth noticing how the performance of both sequential models tend to degrade
with increasing sequences, but SVAE maintains its advantage over CASER.

We discussed in the previous section how the basic SVAE framework can be
extended to focus on predicting the next k items, rather then just the next item.
We analyse this capability in fig. 2, where the accuracy for different values of k
is considered according to the modeling in 2.4. On Movielens, the best value is
achieved for k = 4, and acceptable values range within the interval 1− 10.

Model

Movielens Netflix

NDCG Recall Precision NDCG Recall Precision

@10 @100 @10 @100 @10 @100 @10 @100 @10 @100 @10 @100

POP 4.24 11.30 3.41 22.15 3.98 3.14 3.95 7.61 1.29 12.02 4.26 3.95

BPR∗ 8.51 16.66 5.20 29.38 7.27 4.51 8.94 12.68 2.63 19.45 8.45 5.89

FPMC 5.65 12.06 3.46 23.10 4.77 3.46 11.01 13.55 3.49 20.82 10.12 6.04

CASER 16.32 27.55 11.35 46.01 13.15 6.45 16.46 19.79 6.33 28.33 14.38 7.54

MVAE 11.69 23.01 9.12 41.43 9.02 5.39 16.15 22.19 7.47 32.72 13.94 8.31

SVAE 17.81 29.93 12.48 49.09 14.40 6.93 24.64 26.77 8.93 35.58 21.93 10.55

MVAE∗ 27.82 39.79 17.46 59.70 23.01 9.59 35.41 37.70 13.50 47.22 31.39 15.20

Table 1. Results of the evaluation (in percentage). MVAE∗ considers random splits
that disregards the temporal order of user history. BPR∗ relies on including the fold-in
subsequences in the training phase.
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Fig. 2. NDCG@100 values for SVAE
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predict on.

4 Conclusions and future work

Combining the representation power of latent spaces, provided by variational
autoencoders, with the sequence modeling capabilities of recurrent neural net-
works is an effective strategy to sequence recommendation. To prove this, we



devised SVAE, a simple yet robust mathematical framework capable of model-
ing temporal dynamics upon different perspectives, within the fundamentals of
variational autoencoders. The experimental evaluation highlights the capability
of SVAE to consistently outperform state-of-the-art models.

The framework proposed here is worth further extensions that we plan to
accomplish in a future work. In particular, from an architectural point of view,
the attention mechanism, outlined in section 2.5, requires a better understand-
ing and a more detailed analysis of its possible impact in view of the recent
developments in the literature.

However, different architectures (e.g. based on convolution or translation
invariance are worth being investigated within a probabilistic variational setting.
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