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Abstract. Entity resolution (ER) seeks to identify which records in
a data set refer to the same real-world entity. Given the diversity of
ways in which entities can be represented, ER is known to be a chal-
lenging task for automated strategies, but relatively easier for expert
humans. Nonetheless, also humans can make mistakes. Our contribution
is an error correction toolkit that can be leveraged by a variety of hy-
brid human-machine ER algorithms, based on a formal way for selecting
“control queries” for the human experts. We demonstrate empirically
that less recent ER algorithms equipped with our tool can perform even
better than most recent ER methods with built-in error correction.

1 Introduction

Entity resolution (ER) is the problem of identifying which records in a data set
refer to the same underlying real-world entity [5, 10]. Examples include resolving
profiles of people and businesses, or specifications of products and services, from
websites and social media. ER can be very intricate, as entities are typically rep-
resented in a wide variety of ways that humans can match and distinguish based
on domain knowledge, but would be challenging for automated strategies. For
these reasons, many frameworks have been developed to leverage humans for per-
forming entity resolution tasks [21,12], by using, for instance, a crowd-sourcing
platform such as Amazon Mechanical Turk. In these frameworks, humans are
typically asked questions of the kind “do the record u represent the same en-
tity than the record v?” However, certain record pairs can be challenging to
resolve correctly even for humans: take for instance two used iPhones in a retail
website, and try to verify whether they are the same model or they have some
small differences, for instance in the hardware equipment. Cross-checking human
answers can require significant effort, resulting in more money invested in the
crowd-sourcing platform or low precision and recall in the computed result.

To this end, we design an error correction toolkit that operates outside the
platform, and only requires a small amount of extra questions. Compared to
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Fig. 1: (a) Example pictures from real web pages. Edges represent matching prob-
abilities (above 0.5 in green). Picture 4 has no face detected. (b-¢) Comparison
of tree-based (b) with expander-based clusters (c). Positive (negative) answers
are represented with solid (dashed) edges, and wrong answers in blue.

other error correction methods, our methodology can be applied to any ER
algorithm, boosting its precision and recall and providing formal performance
guarantees. In addition, it can be tuned (or even seamlessly turned off) trading
off budget for accuracy and adapts to different ER applications.

Main intuition. In literature, there are two main ways to solve ER errors.

— Replicating the same question (i.e. about the same pair) and submitting the
replicas to multiple humans, until enough evidence is collected for labeling
the pair as matching or non-matching (e.g., with voting strategies).

— Using robust clustering techniques for partitioning records into entities, min-
imizing disagreements between answers (e.g., with correlation clustering).

While recent error-correction works such as [14,18,19] provide specific ER al-
gorithms that incorporate both approaches at the same time, we decouple the
pair-wise error correction layer from the robust clustering, and focus on which
extra-answers would solve disagreements in a principled way, transparently to the
underlying ER logic. At the pair level, we can leverage general purpose answer-
quality mechanisms already described in the crowd-sourcing literature [2,23]
(that can take advantage of workers meta-data and incentives, to name a few,
other than just replicating queries) or use simple majority voting, depending on
the application domain. At the cluster level, we proceed as follows.

Expanders. ER strategies based on human experts (e.g., [21, 22, 20, 8]) typically
build a spanning forest of positive answers for inferring entities via connectivity,
based on the assumption that all answers are correct. However, the minimal con-
nectivity of trees yields bad results even in presence of few errors. In a nutshell,
we search for queries that can make the connectivity stronger by transforming
each tree into an expander graph. Graphs with good expansion properties have
indeed provably high connectivity and are cheap to build. Intuitively, every edge
cut of a graph expander is 8 times larger than the smallest side of the cut, while
every edge of a tree is a cut-edge. This difference is illustrated in Figure 1.



Contributions and outline. We show that the most recent error-correction
algorithms can be outperformed by simpler strategies equipped with our ex-
pander layer. Section 2 contains an informal overview of our approach. Detailed
description of our algorithms and their theoretical basis can be found in [9, 7).
Main experimental results of [9] are reported in Section 3. Finally, Sections 4
and 5 contain related work and our concluding remarks.

2 Overview

We model the pair-wise error correction layer as a black box — that is, a noisy
oracle — returning already processed pair-wise answers and their corresponding
confidence score, possibly labeling some queried pairs incorrectly. We formalize
a robust version of the entity resolution problem based on such an oracle and
consider progressive F-measure [8] as the metric to be maximized in this setting.
If one plots a curve of F-measure as a function of the number of oracle queries,
progressive F-measure is quantified as the area under this curve.

Problem 1 (Noisy Oracle Strategy) Given a set of records V, a noisy ora-
cle access to C, and a matching probability function p,, (possibly defined on a
subset of V. x V'), find the strategy that maximizes progressive F-measure.

Random expansion. Our toolkit guarantees that every cluster — more precisely,
the corresponding subgraph induced by positive answers — has good expansion
properties. Specifically, every time an ER strategy such as [21, 22,20, 8] asks a
query involving two nodes — say (x,y) — we ask other queries incident to the
corresponding clusters ¢, and ¢, such as (z1,y1) and (22, y2), with z1,z2 € ¢,
and y1,y2 € ¢,. Note that extra queries are not replicas of (z,y), and they are
all distinct. If the answers are positive then the degree of nodes within c; U ¢,
increases, and if the degree gets high enough then we merge ¢, and c, together.
We know that random regular graphs have good expansion properties [1] in
practice, and hence choosing the queries randomly from c, X ¢, helps us to
maintain the required expansion. We refer to our approach as random expansion.
Technically, we consider weighted expanders, where the weight of and edge (z,y)
is set to the probability p.(x,y) that the oracle answer to x,y is erroneous.

Example 1 In Figure 1 we show the possible result of having an expander
(B = 1) for data in Figure 1a, compared with spanning trees. Both connected com-
ponents of the left figure (i.e., trees in the spanning forest) and expander graphs of
right figure yield the same, correct, clustering {1,2,3,4,5},{6,7,8},{9}. While
connected components only work in absence of errors, expander produces the cor-
rect clustering also in presence of plausible human errors such as (1,9), (8,3)
(false positives) and (3,5) (false negative). Even though expansion requires more
queries than building a spanning forest, it is far from being exhaustive: in the
larger cluster out of (g) = 10 possible queries, only 5 are asked.



Algorithm 1 High-level description on adaptive() pipeline.

1: run node ordering equipped with query_edges(8, -, ) upon disagreement
2: boost_fscore()
3: run edge ordering equipped with query_edges(8, -, ) upon disagreement
4: boost_fscore(S)

Expander Toolkit. Our toolkit consists of two methods: query_edges() and
boost_fscore(), as described next. The input includes the parameter 3, the
matching probability function p,,, and the error probabilities pe.

— Given a query (u,v) selected by an ER strategy, query_edges(f3, u,v) pro-
vides an intermediate layer between the ER logic and the noisy oracle: in-
stead of asking the selected query (u,v) as the considered strategy would do,
query_edges(f, u,v) selects a bunch of random queries between the cluster
of w and the cluster of v, and returns a YES answer only if the joint error
probability of the cut is small.

— The boost_fscore(S) method instead provides functionalities for maintain-
ing the expansion properties of subgraphs that were not considered during
the execution of the ER process, by either adding new edges to weak cuts
or splitting the clusters in expander subgraphs. Running boost_fscore(f)
at a later phase of the ER process can fix premature decisions.

The parameter /3 trades off the number of queries for precision: smaller values of 3
correspond to sparser clusters, and therefore to less queries. 8 = 0 is equivalent
to using the oracle strategy alone. Greater values of 8 correspond to denser
clusters and to higher precision: we prove that its expected value is 1 —O(1/n?).

Deployment of the toolkit. Consider a perfect oracle strategy such as those
in [21,22,20, 8], assuming all the answers correct and thus asking a spanning
forest. As mentioned, query_edges() can be used as a substitute of plain con-
nectivity for deciding if two clusters refer to the same entity or not. For instance,
in case of node ordering based strategies, such as [20], a singleton node is added
to a cluster by querying a single edge with it. We can replace that querying step
with query_edges() which will try to check if the singleton cluster containing
the node refers to the same entity as the one it was supposed to be queried with.
The edge ordering based strategies, such as [22], query the edges in decreasing
order of probabilities to decide if the two endpoint clusters ought to be merged
or not. Similarly, we can make the same decision by replacing this querying step
with query_edges() of the two endpoint clusters. We note that the strategy in [8]
combines node and edge ordering, and can be modified to apply random expan-
sion similarly. Along with the incorporation of query_edges(), any strategy can
call boost_fscore() towards the end for correcting the errors made in earlier
stages. This shows that our toolkit is independent and easy to use.

Adaptive strategy. In the previous paragraph, we have described a simple
way to merge the expansion toolkit with a perfect oracle strategies to mini-
mize the effect of error in the noisy setting. One of the main advantages of the
above described methods is that they maintain high precision throughout the



dataset | n | k ||C1]|ref.|description

cora 1.9K|191|236 |[16]| Title, author, venue, and date of scientific papers.
captcha®| 244 | 69 | 8 [[18]|CAPTCHA images showing four-digit numbers.
gym* 94 | 12| 15 |[18]|Images of gymnastics athletes in different positions.
Table 1: Datasets used in our experiments. We report the number of records
n, number of clusters k (i.e., entities), size of the largest cluster |C4], and the
paper where they appeared first. Datasets with the symbol x come with a cache
of answers from the AMT crowd. cora has synthetic noisy oracle answers.

resolution phase. This high precision is achieved at the cost of lower progres-
sive F-score. A close look at the expansion toolkit shows that we can possibly
improve this shortcoming as well. To this end, we also provide the adaptive()
pipeline in Algorithm 1, building on the ideas of the hybrid() method in [8].
Let query_single_edge(u,v) refer to a pair-wise oracle query of the kind “do
the record u represent the same entity than the record v?”. The intuition of
adaptive() is to switch between query_single_edge() and query_edges() de-
pending on the current answer. Specifically, we call query_edges() only if the
confidence score returned by the noisy oracle in “disagreement” with the match-
ing probabilities (e.g., a positive answer in case of low matching probability).
We make use of boost_fscore() between the node and edge ordering phases,
for correcting early errors due to the adaptive nature of the strategy. Specifially,
adaptive() allows temporary non-expander clusters, thus allowing spurious vi-
olations of our invariant. However, we observe in practice that such behaviour
can provide high gains in progressive F-score without losing on precision.

3 Experiments

We compare our algorithms with the most recent approaches for crowdsourced
ER [14,18,19]. As a frame of reference, we use the ideal curve with that achieves
maximum progressive F-score by progressively growing the true clusters as in
[8]. We ran experiments on a machine with two CPU Intel Xeon E5520 units
with 16 cores each, running at 2.67GHz, with 32GB RAM. We consider both
real and synthetic datasets, as summarized in Table 1. We show performances
not only of adaptive(), but also of other variants considered in [9], and refer
the reader to [9] for a more extensive experimental comparison.

In Figures 2a and 2b, we compare the progressive F-score of our and pre-
vious strategies. We set the x axis to the number of distinct queries in all the
datasets. The plots show that our adaptive() pipeline achieves more than 90%
F-score with less than 400 queries in case of gym. Similarly for captchas, the
F-score achieved is more than 90% even with the simplest pipeline lazy(), which
correspond to the ER strategy in [8] equipped with our boost_fscore() method
at the end. This is due to the zero false positives in the oracle answers for
captchas. In such scenario, lazy() has 100% precision. Benefits of using our
expander pipelines become evident with more challenging dataset, such as gym.
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Fig.2: Comparison of the strategies condidered in [9] over datasets of Table 1.

In order to investigate further the effect of oracle answers on gym, we set input
probability 1 of a pair (u,v) if and only if (u,v) is matching, and 0 otherwise,
and generate synthetic erroneous answers as the error rate for both false posi-
tives and negatives varies in the range [0,0.3]. In this setting, we observed that
performance of adaptive() is almost ideal up to answer error rate 0.2, which is
higher than the error typically observed in real crowd sourcing platforms such
as Amazon Mechanical Turk [2]. Figure 2¢ demonstrates the effect of changing
the tuning parameter § on the performance of adaptive() (multiple queries are
counted separately). It is evident that the progressive F-score improves as the
value is reduced. The downside of this is that it tries to grow a sparser graph,
which has lower precision and the algorithm plateau’s out at lower final F-score.
On the other hand, higher values of S make the approach conservative to ask
more queries and reduces the progressive F-score. The above described behavior
is consistent with our theoretical bounds proven in [9].

Alternative forms of expansion. Although random expansion is analytically
proven to require less gueries than deterministic expansion [1], empirically one
can make use of alternative forms of expansions for selecting “control queries”.
The table below compares the number of queries asked by adaptive() on cora
with different expansion strategies, dubbed high, low, and uncertain, selecting
queries with the closest matching probability to 1, 0, and 0.5 respectively.

F-score]| pt,p~ random high p,, low pm, uncertain p,y,
0.9 0.1 2420 2481 2355 2417
0.85 0.2 3041 4683 4028 3744

Random expansion gets to the same F-score of deterministic alternatives with
less or comparable number of queries. We observed similar results for all the
considered datasets. Even though cora seems to select uncertain as the best
deterministic alternative, a deeper look at the experimental data reveals that
the 0.5 matching probability bucket is the one containing most edges in cora,
and drawing edges from this bucket closely resembles random selection.



4 Related Works

ER has a long history, from the seminal paper by Fellegi and Sunter in 1969 [6],
which proposed the use of a learning-based approach, to the recently proposed
hybrid human-machine approaches. We focus on the latter line of work, which
we refer to crowdsourced ER, where we can ask questions to humans about two
records representing the same real-world entity.

Perfect oracle strategies. The strategies described in [20, 22, 8] abstract the
crowd as a whole by an oracle, which can provide a correct YES/NO answer
for a given pair of items. This allows for leveraging transitivity: when we know
that v matches with v and v matches with w, the matching of v and w is
inferred automatically. The strategies focus on different ER logics, which can be
formally compared in terms of the number of questions asked for 100% recall [8,
15]. Unfortunately, the strategies do not apply to low quality of answers.

Error-correction methods. In order to deal with erroneous answers by hu-
mans, recent approaches typically ask the same query to individual crowd work-
ers, rather than making use of control queries to a crowd abstraction such as the
noisy oracle. The strategies in [14] submits the same query to multiple crowd
workers, and every answer represents a vote. The goal is to achieve a clear ma-
jority of YES or NO answers for some pairs (u, v), and use those high confidence
pairs for building clusters. The strategies described in [18] assume that every
crowd worker has a known error rate p”. In this setting, each YES/NO answer
for a given pair of items can be interpreted as a matching probability. Such
strategies start from an initial clustering and then refines the solution by asking
to the crowd. Finally, the work in [19] uses a combination of k-node queries (for
instance, with k = 3, “are u, v and z the same entity?”) and pair-wise queries.

Other Related Works. Wang et al. [21] describe a hybrid human-machine
framework CrowdER, that automatically detects pairs that have a high likeli-
hood of matching, which are then verified by humans. Gokhale et al. [12] propose
a hybrid approach for the end-to-end workflow, making effective use of active
learning via human labeling. In [3] the authors devise a partial ordering based
technique to resolve entities, which applies for records of text attributes. Progres-
sive F-score has been discussed in [24,17,13]. Finally, estimating or improving
crowd accuracy in general, as in [4,11, 2], is outside the scope of this paper.

5 Conclusions

We address the problem of maximizing progressive F-measure for the crowd-
sourced ER task. We propose an efficient and cost-effective layer which can
be applied on typical ER strategies to make them robust to crowd errors, and
present different pipelines that use the expansion toolkit to provide high progres-
sive F-score with provable guarantees. Our experiments over real and synthetic
datasets confirm our theory and show the superiority of our pipelines over the
techniques proposed in the literature. In our future work, we plan to apply our



results to temporal record linkage, where error probability is higher as two records
are farther in time and very small for nearby records of the same entity.
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