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Abstract. Automatic research paper summarization is a fairly interest-
ing topic that has garnered significant interest in the research community
in recent years. In this paper, we introduce team Helium’s system de-
scription for the CL-SciSumm shared task colocated with SIGIR 2019.
We specifically attempt the first task, targeting in building an improved
recall system of reference text spans from a given citing research paper
(Task 1A) and constructing better models for comprehension of scientific
facets (Task 1B). Our architecture incorporates transfer learning by util-
ising a combination of pretrained embeddings which are subsequently
used for building models for the given tasks. In particular - for task
1A, we locate the related text spans referred to by the citation text by
creating paired text representations and employ pre-trained embedding
mechanisms in conjunction with XGBoost, a gradient boosted decision
tree algorithm to identify textual entailment. For task 1B, we make use
of the same pretrained embeddings and use the RAKEL algorithm for
multi-label classification. Our goal is to enable better scientific research
comprehension and we believe that a new approach involving transfer
learning will certainly add value to the research community working on
these tasks.

1 Introduction

Traditionally, summarization has been a key requirement for facilitating eas-
ier comprehension of documents. Automatic summarization is the process of
shortening a text document with software, in order to create a summary with
the major points of the original document. The CL-SciSumm 2019 Shared Task
[6] helps in facilitating advances in scientific communication summarization. It
encourages the comprehension of information in automatic scientific paper sum-
marization in the form of facet identification, , and the use of new resources, such
as the mini-summaries written in other papers by other scholars, and concept
taxonomies developed for computational linguistics.

As the number of scientific publications increases, researchers have to spend
more time reading them. Reading complete scientific publications to understand
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and fully comprehend the content is time-consuming for researchers and enthu-
siasts alike. In many cases, it even drives away the newcomers from a particular
field of study just because there are not enough background articles to aid the
process of easier comprehension of highly technical research papers. While ab-
stracts present in the paper help the researchers get a big picture of the paper,
they may not cover all the important aspects of the paper. Moreover, the ab-
stracts may be biased, overstated or understated, or the abstracts may not be
considered as good summaries by the research community. Automatic summa-
rization of the paper can help capture the details and contributions of a paper
more accurately in an unbiased manner as compared to the abstract of the pa-
per. Generating automatic summaries of scientific papers is hence, an important
and challenging task.

A citation is a reference to a published or unpublished source in the body
of the document. Many digital documents cite other relevant document(s) in
their body. News documents, legal documents, wikipedia articles and scientific
papers have citations to each other. Citations allow the reader to determine
independently whether the referenced material supports the author’s argument
in the claimed way, and to help the reader gauge the strength and validity of the
material the author has used. Citations of a scientific paper help understand the
relevant ideas and their evolution. The sentences of the citing articles containing
the citation to the publication, also known as the citances are useful in analysing
the reference publications and thereby contribute to better summarization of
scientific publications.

The rest of the paper is organized as follows. We briefly describe related
work in Section 2. We describe and formulate the problem of the shared task
in Section 3. Next, our focus shifts to the methodology and the experiments in
Section 4. We conclude the paper with mentioning the inferred conclusions and
possible directions for future work in section 5.

2 Related Work

The CL-SciSumm series of shared tasks [11, 17, 18] has garnered much attention
and attracted many contributions from the research community.

A large number of related works exist as this shared task has been running
since 2016. For the subtask 1A, which comprises of identification of text spans
according to citations, the solution techniques can be categorized broadly into
two types - solutions based on retrieval task and solutions based on classification
task. The former methods formulate the problem as an information retrieval
problem - learning to rank and selecting the top item from the ranked list.

For subtask 1A, Felber et al. [10] created an index of the reference papers
and treating each citance as a query and the results were ranked by VSM and
BM25 model. Prasad et al. [24] used tf-idf and LCS for the syntactic score and
pairwise neural network ranking model to calculate semantic relatedness score.
Cao et al. [4] simplify the problem as a ranking problem and select the first item
from the ranked list retrieved.
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The classification methods include works from Ma et al. [16], Cao et al. [4],
Zhang et al. [29], Li et al. [14]. Ma et al. [16] used four classifiers with different
features and a majority voting mechanism to vote for the final result. Cao et
al. [4] use SVM with features like tf-idf, named entity features and position
information of the reference sentence. Zhang et al. [29] computed features based
on sentence-level and character-level tf-idf scores and word2vec similarity and
then used a logistic regression classifier to classify sentences which will be selected
or not. Li et al. [14] aggregated the results from several basic methods and used
majority voting for the final result. Wang et al. [28] use Information Retrieval
Model by incorporating word embeddings and domain ontology. L. Moraes et al.
[9] use a sentence similarity method using Siamese Deep Learning Networks [21]
and a Positional Language Model approach [15]

For subtask 1B, which comprises of identification of the facet, almost all
the teams have formulated this as a text classification problem Classification
methods for subtask 1B can be divided into rule based methods and supervised
learning methods using a gamut of features ranging from TF-IDF together with
a variety of supervised machine learning algorithms. Moraes et al. [9] use SVMs,
Random Forests, Decision Trees and Multi layer Perceptron and an ensemble
method AdaBoost using TF-IDF features. Some teams like Lauscher et al. [13].
have used deep learning text classification techniques like Convolutional Neural
Networks (CNNs).

It can be observed that most of the researchers have formulated subtask 1A
as a retrieval task than a classification task.

3 Problem Definition and Formulation

In this section, we define the problem formally. Our team, Helium participated
in Task 1 - comprising of subtasks 1-A and 1-B specifically. We will introduce the
problem definition and then proceed to describe our formulation of the problem.

3.1 Task Description

Given: A topic consisting of a Reference Paper (RP) and Citing Papers (CPs)
that all contain citations to the RP. In each CP, the text spans (i.e., citances)
have been identified that pertain to a particular citation to the RP.

Task 1-A: For each citance, identify the spans of text (cited text spans) in
the RP that most accurately reflect the citance. These are of the granularity of
a sentence fragment, a full sentence, or several consecutive sentences (no more
than 5).

Task 1B: For each cited text span, identify what facet of the paper it belongs
to, from a predefined set of facets. These pre-defined list of facets as defined by
the organizers are Method, Aim, Hypothesis, Implication, Results.

We pose the problem of finding reference text spans from the citing sentences
(Task 1A) as a sentence-pair classification problem. The closest problem in lit-
erature is the Paraphrase Detection problem [26] and the Entailment detection
problem [8].
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For Task 1B, since there are multiple instances in the dataset of two or more
labels for each citance text within the CP, we formulate the problem as one
belonging to the multilabel category of problems.

3.2 Dataset Creation

The task organizers provided us with 1018 Reference Papers(RPs) and their
corresponding Citing Papers(CPs) along with their citations to the particular
RP. Each citation consists of a Reference Offset. There may be one or more
Reference Offsets for a particular citation. These offsets point to the sentence
IDs in the RP wherein the citation is being referred to.

For our task, we simplify the dataset to create pairs for each citance text in
the CP. Each citance text in the CP is paired with the reference text (correspond-
ing to the reference offset). Each pair was labeled with a 1/0 binary variable to
show if there is a possibility of entailment of the reference text with respect to
the citance text. From the training set of 2018, we collect 180,685 such pairs.
Similarly, we were able to collect 3,398,218 such pairs from the newly released
2019 dataset. As we pose task 1B of scientific facet comprehension as a multil-
abel classification task, we build the dataset from the existing labels available to
us. Since the existing labels are only available for the 2018 dataset, we restrict
ourselves to the 752 cleaned citance texts from the CPs for our prediction task.

4 Methodology and Experiments

In this section, we go over the critical aspects of our team’s submitted system to
the shared task. We first provide an overview of pre-trained text representations
along with how we set the stage for the transfer learning process. Next, we look
at each of the sub-tasks in detail and the algorithms used for final predictions
for the dataset given.

4.1 Pre-trained text representations and Transfer Learning

Pre-trained text representations have been used fairly well for a number of nat-
ural language processing (NLP) tasks [19]. Unsurprisingly, performance of var-
ious NLP tasks have improved as a result of using pre-trained representations,
most often as the embedding layer as the first step of a deep neural network
architecture [27] . Word embeddings have been widely used in modern NLP ap-
plications as they provide a ready-to-use simple vector representation of words.
They capture the semantic properties of words and the linguistic relationship
between them. These word embeddings have improved the performance of many
downstream tasks across many domains like text classification, machine com-
prehension etc. [3]. Multiple ways of generating word embeddings exist, such as
Neural Probabilistic Language Model [2], Word2Vec [20], GloVe [22], and more
recently ELMo [23]. These word embeddings rely on the distributional linguistic
hypothesis. They differ in the way they capture the meaning of the words or the
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way they are trained. Each word embedding captures a different set of semantic
attributes which may or may not be captured by other word embeddings. In gen-
eral, it is difficult to predict the relative performance of these word embeddings
on downstream tasks. The choice of which word embeddings should be used for
a given downstream task depends on experimentation and evaluation.

While word embeddings can produce representations for words which can
capture the linguistic properties and the semantics of the words, the idea of rep-
resenting sentences as vectors is an important and open research problem [7].
Finding a universal representation of a sentence which works with a variety of
downstream tasks is the major goal of many sentence embedding techniques.
A common approach of obtaining a sentence representation using word embed-
dings is by the simple and näıve way of using the simple arithmetic mean of all
the embeddings of the words present in the sentence. Smooth inverse frequency,
which uses weighted averages and modifies it using Singular Value Decomposi-
tion (SVD), has been a strong contender as a baseline over traditional averaging
technique [1]. Other sentence embedding techniques include p-means [25], In-
ferSent [7], SkipThought [12], Universal Encoder [5].

In particular, for our task, we use these pretrained sentence encoders to get
a dense vector representations for each of the citance/reference texts and we
then use these embeddings as features for building models for the downstream
classification tasks. Our team’s system focuses primarily on the use of Universal
Sentence Encoder [5] to get the text representations which are then used in the
transfer learning mechanism to other machine learning algorithms as we show
below.

4.2 Finding Reference Text Correspondence (Task 1A)

As reported in section 3, we treat task 1A as a sentence-pair classification algo-
rithm problem where a (reference text - citance text) pair will be classified as a
positive class only if the reference text of the RP accurately reflects the citance
text of the CP, negative class otherwise. We were able to construct 180,685 such
pairs from the 2018 version of the dataset. Similarly, we were able to construct
3,398,218 pairs of citance-reference text from the 2019 dataset. As our pipeline
suggests, we go through the following steps:

1. Obtain pre-trained dense sentence representations for the citance text and
reference text separately for each pair using the Universal Sentence Encoder.

2. Once the pre-trained representations are available, construct the features for
the transfer learning phase in the pipeline. These features are constructed
by element-wise subtraction of the 512-dimensional dense vector representa-
tions. We hypothesise that this step enables carrying forward better features
for the next step in the pipeline.

3. Post obtaining the 512-dimensional output from the above step, we use a
variant of gradient boosted decision tree algorithm for the binary classifica-
tion task. Specifically, we employ eXtreme Gradient Boosting (XGBoost).
Gradient Boosting utilises the principles of Gradient Descent and Boosting
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to form the core of its algorithmic prowess. Boosting, essentially is an ensem-
ble of weak learners where the misclassified records are given greater weight
(boosted) to correctly predict them in later models. These weak learners
are later combined through a linear combination to produce a single strong
learner. With eXtreme Gradient Boosting (XGBoost), we take advantage of
the following features3 of the tree-based boosting algorithm XGBoost:
– Approximation for split-finding.
– Column block for parallel learning.
– Sparsity-awareness.
– Cache-aware access.
– Out-of-core computation.
– Regularized Learning Objective.
– Fast!
Since XGBoost is also used in a lot of machine learning contests which are
held competitively4, we specifically chose this as a successor to the pre-
trained representation in the transfer learning pipeline.

4. During the prediction phase: For each of the CPs - for each citance text,
we then select the corresponding RP’s reference texts and rank the top 5
candidates based on the probabilities of being an entailment. These prob-
abilities are readily available when XGBoost is being used to classify the
instances. We finally select the top 5 ranked reference texts from the RP for
the corresponding citance text and reflect it in our system’s submission.

Due to limitations on the compute memory requirements, we do not run cross-
validation over the entire dataset, rather we select a random subset of 500 labels
from the entailment category exhibiting the label 1 and similarly a random subset
of 500 for the label 0. Our results for subtask 1A are detailed in Table 1.

Class Precision Recall F-1

Reference text accurately reflects citance? (Label 1) 80.75 64.60 71.78

Reference text accurately reflects citance? (Label 0) 70.50 84.60 76.91

Table 1. Precision, Recall and F1 scores (in percentage) for Sub-Task A

4.3 Scientific Facet Comprehension (Task 1B)

We have 752 instances of citance text - many of them for which for which more
than one labels are given - corresponding to the 2018 dataset. There are 5 possible
scientific facets as annotated - Method, Aim, Hypothesis, Implication, Results.
We seek to build a system which can detect one or more than one labels for the
given citance text at hand. Formally, multi-label classification is the problem of

3 https://www.kdnuggets.com/2017/10/xgboost-concise-technical-overview.html
4 www.kaggle.com
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finding a model that maps inputs x to binary vectors y (assigning a value of 0
or 1 for each element (label) in y). In our case - y - is a 5-vector array for each
of the given scientific facets.

Since the number of samples in the dataset is small, deep learning techniques
do not perform well. We aim to thus use advantage of ensemble-based methods
for the multi-label classification problem. Traditionally, multi-label classification
problems have been tackled by problem transformation, i.e., either treating them
as a binary classification problem - by building a separate classifier for each label,
or as multi-class classification problem - by creating one binary classifier for every
label combination present in the training set(also known as the label powerset
transformation). Instead, we use an ensemble of classifiers which help us in the
task. Specifically, we use the RAKEL algorithm - which employs random k-
label subsets approach wherein there is extensive use of multiple label-powerset
classifiers, each classifier trained on a random subset of the original labels for the
instances (in our case, 5). Finally, a voting mechanism is employed to find the
correct labels. The RAndom k-labELsets (RAKEL) algorithm constructs each
member of the ensemble by considering a small random subset of labels and
learning a single-label classifier for the prediction of each element in the powerset
of this subset. In this way, the proposed algorithm aims to take into account
label correlations using single-label classifiers that are applied on subtasks with
manageable number of labels and adequate number of examples per label. The
authors of the RAKEL algorithm show in their paper that t their experimental
results on common multilabel domains involving protein, document and scene
classification show that better performance can be achieved compared to popular
multilabel classification approaches using the random k-labelsets approach.

For scientific facet comprehension, we first construct dense vector represen-
tations from the pre-trained Universal Sentence Encoder for the given citance
texts from the citance papers (CPs) and do a 5-fold cross validation on the 752
instances in the dataset. We report precision, recall, F-1, accuracy scores for
the same. To combat the harsh metrics (since we are dealing with a multi-label
problem and accuracies can be unsurprisingly low), we also report the Hamming
loss for the same.

The average Hamming loss is 0.222, whereas the average accuracy is 43.29%.
The statistics for precision, recall and F-1 for each of the scientific facets are
reported in Table 2.

Scientific Facet Precision Recall F-1

Method 82.38 61.68 70.45

Aim 14.64 38.02 20.79

Results 28.19 42.89 33.94

Hypothesis 11.65 41.33 17.33

Implication 15.46 17.37 15.26

Table 2. Averaged Precision, Recall and F-1 scores (in percentage) over 5-fold cross-
validation for each of the scientific facets in Sub-Task B
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5 Conclusions and Future Work

The results of our experiments lead us to believe that transfer learning can pave
way for better scientific comprehension and indeed bettering the cause as the
first step towards building automated scientific research summarization systems.
At the same time, techniques like utilizing pretrained word and sentence embed-
dings can help build systems for better understanding of different scientific facets
and can aid in effective segmentation of research papers for further processing.
Indeed, some of the shortcomings are that the precision and recall scores for a
lot of the scientific facets other than the Method facet are low. This is because
of a high imbalance in the data with the majority class being that of the Method
facet, and cross-validation effectively tends to delete some of the labels for which
we have low data, and tends to give lower performance metrics across some of the
other classes. This is also a possible exploration for some of the future directions
which can be improved upon. We did indeed notice even lower performances for
some of the facets with a few of the other learning algorithms, which we omit in
the interest of space.

A few of the future directions can be led by the possibilities of exploring
training sentence embedding mechanisms from scratch – on all scientific research
papers data for particular domains and see if it helps in increased performance
across scientific comprehension tasks. A strong emphasis can also be laid on
learning domain-specific features for the cause. This is a promising area and we
believe such explorations will indeed benefit the cause of the scientific community
in aiding automated scientific summarization.
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