
Modeling AGI Safety Frameworks with Causal Influence Diagrams

Tom Everitt†∗ , Ramana Kumar† , Victoria Krakovna† , Shane Legg
DeepMind

Abstract
Proposals for safe AGI systems are typically made
at the level of frameworks, specifying how the
components of the proposed system should be
trained and interact with each other. In this pa-
per, we model and compare the most promising
AGI safety frameworks using causal influence dia-
grams. The diagrams show the optimization objec-
tive and causal assumptions of the framework. The
unified representation permits easy comparison of
frameworks and their assumptions. We hope that
the diagrams will serve as an accessible and visual
introduction to the main AGI safety frameworks.

1 Introduction
One of the primary goals of AI research is the development
of artificial agents that can exceed human performance on a
wide range of cognitive tasks, in other words, artificial gen-
eral intelligence (AGI). Although the development of AGI has
many potential benefits, there are also many safety concerns
that have been raised in the literature [Bostrom, 2014; Everitt
et al., 2018; Amodei et al., 2016]. Various approaches for ad-
dressing AGI safety have been proposed [Leike et al., 2018;
Christiano et al., 2018; Irving et al., 2018; Hadfield-Menell et
al., 2016; Everitt, 2018], often presented as a modification of
the reinforcement learning (RL) framework, or a new frame-
work altogether.

Understanding and comparing different frameworks for
AGI safety can be difficult because they build on differing
concepts and assumptions. For example, both reward model-
ing [Leike et al., 2018] and cooperative inverse RL [Hadfield-
Menell et al., 2016] are frameworks for making an agent learn
the preferences of a human user, but what are the key differ-
ences between them? In this paper, we show that causal influ-
ence diagrams (CIDs) [Koller and Milch, 2003; Howard and
Matheson, 1984] offer a unified way of clearly representing
the most prominent frameworks discussed in the AGI safety
literature. In addition to surfacing many background assump-
tions, the unified representation enables easy comparison of
different frameworks.
∗Contact author, tomeveritt@google.com
†equal contribution

What makes this unified representation possible is the high
information density of CIDs. A CID describes safety frame-
works with random variables that together specify what is un-
der an agent’s control, what the agent is trying to achieve by
selecting outcomes under its control, and what information
the agent has available when making these decisions. Multi-
agent CIDs can model the interaction of multiple agents.
CIDs also encode the causal structure of the environment,
specifying which variables causally influence which others.
This causal information reveals much about agents’ abilities
and incentives to influence their environment [Everitt et al.,
2019].

In our terminology, a framework is a way of building or
training an AI system, or a way of situating the system in an
environment so that it learns or achieves some goal. We take
a high-level view on what counts as a framework, so we can
talk about different approaches to building safe AGI. Frame-
works determine what agents know and want, insofar as we
can take the intentional stance towards them. We focus on
frameworks rather than on implementations of specific algo-
rithms in order to generalize across different safety problems
and draw broad lessons. A safety framework is a framework
designed to highlight or address some problem in AGI safety.

The actual behaviour of artificial agents will be contingent
on implementation details such as the training algorithms
used or the task specification. But these details can obscure
general patterns of behaviour shown by intelligent systems
within a particular framework. By focusing on frameworks,
such as reinforcement learning (RL) or RL with reward mod-
eling, we can characterize the behaviour to be expected from
increasingly intelligent agents (and highlight any safety con-
cerns). Modeling frameworks with CIDs enables analysis of
high-level concerns such as agent incentives before getting
into the details of training within a framework.

We describe the framework models in Sections 2 and 3.
The descriptions of the frameworks are necessarily brief; we
refer the reader to the original papers for more detailed de-
scriptions. In Section 4 we discuss modeling choices and in-
terpretations.

2 MDP-Based Frameworks
In this section, we look at frameworks based on Markov De-
cision Processes (MDPs), which covers several of the safety
frameworks in the literature. Afterwards (Section 3), we look



at frameworks based on question-answering systems, cover-
ing most of the other frameworks so far proposed.

2.1 RL in an MDP
Our basic example of a framework is standard reinforcement
learning (RL) in a Markov Decision Process (MDP) [Sutton
and Barto, 2018]. This framework is not intended to address
any particular safety concerns. It is, however, the founda-
tion for most present-day development of artificial agents,
and will serve as a familiar skeleton on which many of our
models of other frameworks will be based.

R1

S1

A1 R2

S2

A2 R3

S3

Figure 1: RL in an MDP

Figure 1 models an MDP with a CID. A CID is a causal
graph or Bayesian network [Pearl, 2009] with special deci-
sion and utility nodes. Decision nodes are drawn as squares,
and utility nodes as diamonds. Edges represent causal influ-
ence, except for those going into decision nodes. The latter
are called information links, and drawn with dotted lines. The
agent’s decision for a particular decision node A can only be
based on the parents of the decision nodes, i.e., on the nodes
that have information links to A. For example, in Figure 1,
the choice of an action can only depend on the current state.

For this foundational example, we explain the random vari-
ables in detail. The MDP modelled in Figure 1 has transition
function T (s, a) giving a distribution over next states after
taking action a in state s, and reward function R(s) giving
the reward obtained for entering state s. The random vari-
ables in the model are:

• Si: the environment state at timestep i. S1 is drawn from
the initial state distribution, and Si+1 is drawn according
to T (Si, Ai).

• Ai: the agent action at timestep i.

• Ri: the reward for timestep i, drawn from R(Si).

The CID has a repeating pattern in the relationships be-
tween the variables, if we abstract over the timestep index i.
We show 3 timesteps to make the pattern obvious, but this is
an arbitrary choice: we intend to represent trajectories over
any number of timesteps. Formally, this can be done by ex-
tending the diagram with more variables in the obvious way.

Figure 1 represents a known MDP, where the transition
and reward probability functions (T and R) are known to the
agent. In this case, an optimal policy only needs access to the
current state, as the Markov property of the MDP makes the
past irrelevant. For this reason, we have chosen not to include
information links from past states and rewards, though adding
them would also constitute a fair representation of an MDP.

To model an unknown MDP, we add additional parameters
ΘT and ΘR to the transition and reward functions, which hold

R1

S1

A1 R2

S2

A2 R3

S3

ΘT

ΘR

Figure 2: RL in an Unknown MDP

S1

R1 O1 A1

S2

R2 O2 A2

S3

R3

Figure 3: RL in a POMDP

what is unknown about these functions. Thus, for example,
Ri is now drawn from R(Si ; ΘR). We extend the CID with
additional variables for these unknown parameters, as shown
in Figure 2. Now information links from previous rewards
and actions are essential, as past states and rewards provide
valuable information about the transition and reward function
parameters.

To model a partially observed MDP, we add new variables
Oi representing the agent’s observations and remove the in-
formation links from the states, as shown in Figure 3. Infor-
mation links from past rewards and observations are included
because they provide information about the unobserved states
even when the transition and reward functions are known. A
POMDP with unknown parameters can be modeled explicitly
with a similar transformation as from Figure 1 to Figure 2, but
it is simpler to use the same diagram as Figure 3 and let the
unobserved state variables Si hold the unobserved parameters
ΘT and ΘR.

2.2 Current-RF Optimization
In the basic MDP from Figure 1, the reward parameter ΘR

is assumed to be unchanging. In reality, this assumption may
fail because the reward function is computed by some physi-
cal system that is a modifiable part of the state of the world.
Figure 4 shows how we can modify the CID to remove the as-
sumption that the reward function is unchanging, by adding
random variables ΘR

i representing the reward parameter at
each time step.

Now at each time step i, the agent receives reward Ri =
R(Si ; ΘR

i ). This gives an incentive for the agent to obtain
more reward by influencing the reward function rather than



R1

S1

A1

ΘR
1

R2

S2

A2

ΘR
2

R3

S3

ΘR
3

Figure 4: RL in an MDP with a Modifiable Reward Function

R1

S1

A1

ΘR
1

R2

S2

A2

ΘR
2

R3

S3

ΘR
3

Figure 5: Current-RF Optimization

optimizing the state, sometimes called wireheading. An el-
egant solution to this problem is to use model-based agents
that simulate the state sequence likely to result from differ-
ent policies, and evaluate those state sequences according to
the current or initial reward function [Everitt, 2018; Orseau
and Ring, 2011; Hibbard, 2012; Schmidhuber, 2007; Everitt
et al., 2016]. In contrast to RL in an unknown MDP, this is
most easily implemented when the agent knows the reward
function parameter. The resulting CID is shown in Figure 5.

2.3 Reward Modeling
A key challenge when scaling RL to environments beyond
board games or computer games is that it is hard to define
good reward functions. Reward Modeling [Leike et al., 2018]
is a safety framework in which the agent learns a reward
model from human feedback while interacting with the en-
vironment. The feedback could be in the form of preferences,
demonstrations, real-valued rewards, or reward sketches.

We represent the feedback data using new variables Di

which are used to train a reward model M . Thus, the re-
ward at timestep i is given by Ri = M(Si | D1, . . . , Di−1).
The feedback is produced based on past trajectories and unob-
served human preferences ΘH by some data-generation pro-
cess G. Thus, the feedback data at timestep i is given by
Di = G(S1, A1, . . . , Si, Ai ; ΘH).

The CID in Figure 6 is a variation of the basic MDP dia-
gram of Figure 1, where variables Di and ΘH are added for
the training of the reward model. A parameter ΘT can be

R1

S1

A1 R2

S2

A2 R3

S3

D1 D2

ΘH

Figure 6: Reward Modeling

R1

S1

A1 R2

S2

A2 R3

S3

AH
1 AH

2

ΘH

Figure 7: CIRL. The human’s actions are in green and the
agent’s in blue; both try to optimize the yellow rewards.

added to model an unknown transition function as in Figure 2.
Reward modeling can also be done recursively, using pre-

viously trained agents to help with the training of more pow-
erful agents [Leike et al., 2018]. In this case, the previously
trained agents can be considered to be part of the data gener-
ation process G, so are captured by the Di variables.

2.4 CIRL
Another way for agents to learn the reward function while
interacting with the environment is Cooperative Inverse Re-
inforcement Learning (CIRL) [Hadfield-Menell et al., 2016].
Here the agent and the human inhabit a joint environment.
The human and the agent jointly optimize the sum of rewards,
but only the human knows what the rewards are. The agent
has to infer the rewards by looking at the human’s actions.
We represent this by adding two kinds of variable to the ba-
sic MDP diagram from Figure 1: the human’s action AH

i at
timestep i, and a parameter ΘH controlling the reward func-
tion (known to the human but unknown to the agent). The
resulting CID is shown in Figure 7.

CIRL is closely related to reward modeling (Figure 6), if
we read the human actions AH

i as the human data Di. How-
ever, the edges are not the same: in CIRL the human’s actions



are observed by the agent and affect the next state, whereas in
reward modeling the feedback data affects the rewards. Like-
wise, the CIRL diagram has edges directly from ΘH to Ri,
since the rewards are produced by the true reward function
rather than a reward model. In reward modeling, the path
from from ΘH to Ri is mediated by Di. Another difference
is that in CIRL, the rewards are never shown to the agent,
which may remain uncertain about how much reward it gen-
erated even at the very end of the episode.

In principle, information links from past rewards to the hu-
man’s action nodes AH

i could be added to Figure 7, but they
are unnecessary since the human knows the reward parameter
ΘH. Unlike the current-RF optimization setup (Figure 5), the
reward parameter is not observed by the agent.

3 Question-Answering Systems
Outside of the MDP-based frameworks, a common way to
use machine learning systems is to train them to answer ques-
tions. Supervised learning fits in this question-answering
framework. For example, in image recognition, the ques-
tion is an image, and the answer is a label for the image
such as a description of the main object depicted. Other ap-
plications that fit this paradigm include machine translation,
speech synthesis, and calculation of mortgage default proba-
bilities. In this section we consider safety frameworks that fit
in the question-answering (QA system) paradigm.

A literal interpretation of a QA-system is a system to which
the user submits a query about the future and receives an an-
swer in plain text. Such a system can help a trader predict
stock prices, help a doctor make a diagnosis, or help a politi-
cian choose the right policy against climate change. QA-
systems have some safety advantages over the MDP-based
systems described in Section 2, as they do not directly affect
the world and do not engage in long-term planning.

3.1 Supervised Learning
In supervised learning, the question corresponds to the input
and the state corresponds to the output label. Since the train-
ing labels are generated independently, they are not affected
by the agent’s actions. Once the system is deployed, it keeps
acting as if its answer does not affect the label at deploy-
ment, whether or not it does. Theorem proving is another
application where this structure holds: a proposed proof for
a theorem can be automatically checked. The setup is shown
Figure 8. It is sometimes called Tool AI [Bostrom, 2014;
Branwen, 2016]. So called Act-based agents share the same
causal structure [Christiano, 2015].

3.2 Self-Fulfilling Prophecies
The assumption that the labels are generated independently
of the agent’s answer sometimes fails to hold. For example,
the label for an online stock price prediction system could
be produced after trades have been made based on its predic-
tion. In this case, the QA-system has an incentive to make
self-fulfilling prophecies. For example, it may predict that the
stock will have zero value in a week. If sufficiently trusted,
this prediction may lead the company behind the stock to
quickly go bankrupt. Since the answer turned out to be accu-
rate, the QA-system would get full reward. This problematic

Question

Answer State

Reward

Figure 8: Supervised Learning

incentive is represented in the diagram in Figure 9, where we
can see that the QA-system has both incentive and ability to
affect the world state with its answer [Everitt et al., 2019].

Question

Answer State

Reward

Figure 9: Supervised Learning with Self-Fulfilling Prophe-
cies

Question

Answer State

Reward

Answer
hidden

Counter-
factual
state

Figure 10: Counterfactual Oracle. Dashed nodes represent
counterfactual variables.

3.3 Counterfactual Oracles
It is possible to fix the incentive for making self-fulfilling
prophecies while retaining the possibility to ask questions
where the correctness of the answer depends on the resulting
state. Counterfactual oracles optimize reward in the coun-
terfactual world where no one reads the answer [Armstrong,
2017]. This solution can be represented with a twin network
[Balke and Pearl, 1994] influence diagram, as shown in Fig-
ure 10. Here, we can see that the QA-system’s incentive to
influence the (actual) world state has vanished, since the ac-
tual world state does not influence the QA-system’s reward;
thereby the incentive to make self-fulfilling prophecies also
vanishes. We expect this type of solution to be applicable to
incentive problems in many other contexts as well. A con-
crete training procedure for counterfactual oracles can also



be represented with influence diagrams [Everitt et al., 2019,
Section 4.4].

3.4 Debate
The QA-systems discussed so far all require that it is possible
to check whether the agent’s answer was correct or not. How-
ever, this can be difficult in some important applications. For
example, we may wish to ask the system about the best way
to solve climate change if we want a healthy climate on earth
100 years from now. In principle we could follow the sys-
tem’s suggestion for 100 years, and see whether the answer
was right. However, in practice waiting 100 years before re-
warding the system or not is slow (too slow for training the
system, perhaps), and the cost of following bad advice would
be substantial.

To fix this, Irving et al. [2018] suggest pitting two QA-
systems against each other in a debate about the best course of
action. The systems both make their own proposals, and can
subsequently make arguments about why their own sugges-
tion is better than their opponent’s. The system who manages
to convince the user gets rewarded; the other system does not.
While there is no guarantee that the winning answer is cor-
rect, the setup provides the user with a powerful way to poke
holes in any suggested answer, and reward can be dispensed
without waiting to see the actual result.

The debate setup is shown in Figure 11, where Q repre-
sents the user’s question, Ak

i the ith statement by system
k ∈ {1, 2}. Reward Rk is given to system k depending on
the user’s judgment J .

Q

A1
1

A2
1

A1
2

A2
2

J

R1

R2

Figure 11: Debate. Red decision and utility nodes belong to
QA system 1, and green ones belong to QA system 2.

3.5 Supervised IDA
Iterated distillation and amplification (IDA) [Christiano et al.,
2018] is another suggestion that can be used for training QA-
systems to correctly answer questions where it is hard for an
unaided user to directly determine their correctness. Given
an original question Q that is hard to answer correctly, less

Q

Q1 A1

Q2 A2

Â

A R

Figure 12: IDA

Input A1

R1

R2

A2

R3

A3

R4

A4

Output

Figure 13: Comprehensive AI Services. The decision and
utility nodes of each service is shown with a different colour
and variable superscript.

powerful systems Xk are asked to answer a set of simpler
questions Qi. By combining the answers Ai to the simpler
questions Qi, the user can guess the answer Â to Q. A more
powerful system Xk+1 is trained to answer Q, with Â used
as an approximation of the correct answer to Q.

Once the more powerful system Xk+1 has been trained,
the process can be repeated. Now an even more powerful
QA-system Xk+2 can be trained, by using Xk+1 to answer
simpler questions to provide approximate answers for train-
ing Xk+2. Systems may also be trained to find good sub-
questions, and for aggregating answers to subquestions into
answer approximations. In addition to supervised learning,
IDA can also be applied to reinforcement learning.

3.6 Comprehensive AI Services
Drexler [2019] argues that the main safety concern from ar-
tificial intelligence does not come from a single agent, but
rather from big collections of AI services. For example, one
service may provide a world model, another provide planning



ability, a third decision making, and so on. As an aggregate,
these services can be very competent, even though each ser-
vice only has access to a limited amount of resources and only
optimizes a short-term goal.

A simple model of Drexler’s comprehensive AI services
(CAIS) is shown in Figure 13, where the output of one service
can be used as input to another. The general CAIS framework
also allows services that develop and train other services.

4 Discussion
Causal influence diagrams of frameworks provide a useful
perspective for understanding AGI safety problems and solu-
tions, but there are some subtleties to be explored in their use
and interpretation. In this section we discuss some of these
issues. First, we look at CIDs’ focus on agents and potential
problems with this view. Then we discuss the use and inter-
pretation of CIDs, and the flexibility and design choices one
has when modeling frameworks.

4.1 Intentional Stance
Causal influence diagram representations are inherently
agent-centric. Their key assumption is that one or more in-
telligent systems are making decisions in a causal environ-
ment in order to maximize the sum of some real-valued vari-
ables. This is an important perspective for AGI safety, as
increasingly powerful optimization processes are a core com-
ponent of most AI and machine learning methods, and many
AGI safety problems are consequences of such optimization
processes becoming too powerful in some sense. The agent
perspective is especially relevant for RL, perhaps the most
promising method for constructing AGI.

A CID models an agent that “knows” the framework it
is facing. Either it has been designed for that framework
(Q-learning has been designed to interact with an MDP),
or it has been pre-trained for the framework (e.g. by meta-
learning [Wang et al., 2017]). The agent’s utility is a kind
of fiction, as is easy to see when all learning is offline: at
deployment, the policy parameters are frozen and the agent
executes a fixed pre-trained policy without receiving reward
signals. However, the agent still acts as if it optimizes the
reward function it had during training, which means that the
incentives arising from this fictional reward can still be used
to predict actual agent behaviour.

We adopt the intentional stance [Dennett, 1987; Orseau et
al., 2018] towards the agent, which means that it is not impor-
tant whether the agent’s utility has an obvious physical cor-
relate (e.g., the value of some machine register, which may
apply to an RL agent learning an MDP online). What counts
is that treating the system as an agent optimizing the reward
is a good model for predicting its behaviour. We take this
stance because present-day systems already admit it, and be-
cause we think it will be increasingly admissible for more
advanced artificial agents.

Of course, the intentional stance is not always the most
useful perspective for AGI safety questions. For example,
concerns about bounded rationality or adversarial inputs to
an imperfect system do not show up prominently when we
analyze the incentives of a rational agent in some framework.

It can also be tricky to model the evolution of a system that
is initially agent-like, but through self-modifications or acci-
dental breakage turns into something less goal-directed. Fi-
nally, some safety frameworks include insights that are not
fully captured by the agent-centric view: the CAIS frame-
work can be seen as a collection of agents, but the overall
system does not naturally fit into this view.

4.2 Modeling Choices
Just like a causal graph [Pearl, 2009], a CID implies many
causal relationships and conditional independencies between
nodes. A model is only accurate if it gets those relationships
right. Generally, there should be a directed path between a
node X and a node Y if and only if an exogenous intervention
changing the outcome of X could affect the outcome of Y .
Similarly, if two nodes X and Y are conditionally dependent
when conditioning on a third set Z of nodes, then X and Y
should not be d-separated in the graph when conditioning on
Z [Pearl, 2009].

These requirements already put heavy constraints on what
can be seen as an accurate CID of a given framework. How-
ever, some choices are usually still left to the modeler. Most
notably, freedom remains in whether to aggregate or split ran-
dom variables. For example, in the MDP in Figure 1, a single
node represents the state, while the MDP with a modifiable
reward function in Figure 4 can be seen as an MDP where
state is represented by two nodes Si and ΘR

i . The MDP dia-
gram is more coarse-grained and the MDP with a modifiable
reward function is more fine-grained. In general, there is a
trade-off between representing many details and highlighting
the big picture [Hoel et al., 2013].

Another choice is which random variables should be repre-
sented at all. For example, in reward modeling in Figure 6, an
extra node could have been added for the reward model itself.
However, we left this out to keep the diagram simple. From
a probability theory perspective, we can think of the variable
representing the reward model having been marginalized out.
It is not always possible to marginalize out nodes. For exam-
ple, it is not possible to marginalize out ΘH in reward mod-
eling (Figure 6), because ΘH is necessary for there to be a
non-causal correlation between the feedback data nodes.

Two safety frameworks, reward modeling and IDA, in-
clude a recursive aspect that is intended to help them scale
to settings where feedback data is not easily produced by un-
aided humans. When modeling these frameworks, we could
take the intentional stance towards previous iterations of the
recursive setup, resulting in a multi-agent CID. We found
that this seemed to make the diagram complicated with-
out adding much insight, since the execution of recursively
trained agents can be considered an implementation detail.
Still, this shows that there can be choice about which aspects
of a framework to model using the intentional stance.

5 Conclusion
In this paper, we have modeled many of the most prominent
AGI safety frameworks with causal influence diagrams. The
unified representation allows us to pinpoint key similarities
and differences. For example, a key difference between CIRL



and reward modeling is the causal relationship between the
agent’s reward and the user’s preferences. In CIRL, the re-
ward follows directly from the user’s preferences, whereas in
reward modeling the path from user preferences to rewards is
mediated by the feedback data.

Many of the important aspects for AGI safety are about
causal relationships, and agents’ decisions to influence their
environment according to the objectives they are given. This
is exactly what causal influence diagrams describe, and what
makes causal influence diagrams well suited to representing
and comparing different safety frameworks. For example, a
well-known problem with prediction systems is that they in-
centivize self-fulfilling prophecies. This is neatly represented
with a causal path from the system’s answer to the world state
to the system’s reward. We could also see how various vari-
ants avoided the problem of self-fulfilling prophecies. Both
Tool AI and Counterfactual Oracles break the problematic
causal path. We expect future studies of AGI safety frame-
works with causal influence diagrams to reveal further prob-
lems and suggest possible solutions.

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano,

John Schulman, and Dan Mané. Concrete problems in AI
safety. CoRR, abs/1606.06565, 2016.

Stuart Armstrong. Good and safe uses of AI oracles. CoRR,
abs/1711.05541, 2017.

Alexander Balke and Judea Pearl. Probabilistic evaluation of
counterfactual queries. In Association for the Advancement
of Artificial Intelligence (AAAI), pages 230–237, 1994.

Nick Bostrom. Superintelligence: Paths, Dangers, Strategies.
Oxford University Press, 2014.

Gwern Branwen. Why tool AIs want to be agent AIs, 2016.
https://www.gwern.net/Tool-AI.

Paul Christiano, Buck Shlegeris, and Dario Amodei. Super-
vising strong learners by amplifying weak experts. CoRR,
abs/1810.08575, 2018.

Paul Christiano. Act-based agents, 2015. https://
ai-alignment.com/act-based-agents-8ec926c79e9c.

Daniel Dennett. The Intentional Stance. MIT Press, 1987.

K Eric Drexler. Reframing superintelligence: Comprehen-
sive AI services as general intelligence. Technical report,
Future of Humanity Institute, University of Oxford, 2019.

Tom Everitt, Daniel Filan, Mayank Daswani, and Marcus
Hutter. Self-modification of policy and utility function in
rational agents. In Artificial General Intelligence, volume
LNAI 9782, pages 1–11, 2016.

Tom Everitt, Gary Lea, and Marcus Hutter. AGI safety lit-
erature review. In International Joint Conference on AI
(IJCAI), 2018.

Tom Everitt, Pedro Ortega, Elizabeth Barnes, and Shane
Legg. Understanding agent incentives using causal in-
fluence diagrams. Part I: Single action settings. CoRR,
abs/1902.09980, 2019.

Tom Everitt. Towards Safe Artificial General Intelligence.
PhD thesis, Australian National University, May 2018.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and
Stuart Russell. Cooperative inverse reinforcement learning.
In Neural Information Processing Systems (NIPS), 2016.

Bill Hibbard. Model-based utility functions. Journal of Arti-
ficial General Intelligence, 3(1):1–24, 2012.

Erik Hoel, Larissa Albantakis, and Giulio Tononi. Quantify-
ing causal emergence shows that macro can beat micro. In
Proceedings of the National Academy of Sciences, volume
110, pages 19790–19795. National Academy of Sciences,
2013.

Ronald A Howard and James E Matheson. Influence dia-
grams. Readings on the Principles and Applications of
Decision Analysis, pages 721–762, 1984.

Geoffrey Irving, Paul Christiano, and Dario Amodei. AI
safety via debate. CoRR, abs/1805.00899, 2018.

Daphne Koller and Brian Milch. Multi-agent influence di-
agrams for representing and solving games. Games and
Economic Behavior, 45(1):181–221, 2003.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. Scalable agent align-
ment via reward modeling: a research direction. CoRR,
abs/1811.07871, 2018.

Laurent Orseau and Mark Ring. Self-modification and mor-
tality in artificial agents. In Artificial General Intelligence,
volume 6830 LNAI, pages 1–10, 2011.

Laurent Orseau, Simon McGregor McGill, and Shane Legg.
Agents and devices: A relative definition of agency. CoRR,
abs/1805.12387, 2018.

Judea Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2nd edition, 2009.

Jürgen Schmidhuber. Godel machines: Self-referential uni-
versal problem solvers making provably optimal self-
improvements. In Artificial General Intelligence. Springer,
2007.

Richard S Sutton and Andrew G Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 2nd edition, 2018.

Jane Wang, Zeb Kurth-Nelson, Hubert Soyer, Joel Leibo,
Dhruva Tirumala, Rémi Munos, Charles Blundell, Dhar-
shan Kumaran, and Matt Botvinick. Learning to reinforce-
ment learn. In Proceedings of the 39th Annual Meeting of
the Cognitive Science Society (CogSci), 2017.

https://www.gwern.net/Tool-AI
https://ai-alignment.com/act-based-agents-8ec926c79e9c
https://ai-alignment.com/act-based-agents-8ec926c79e9c

	Introduction
	MDP-Based Frameworks
	RL in an MDP
	Current-RF Optimization
	Reward Modeling
	CIRL

	Question-Answering Systems
	Supervised Learning
	Self-Fulfilling Prophecies
	Counterfactual Oracles
	Debate
	Supervised IDA
	Comprehensive AI Services

	Discussion
	Intentional Stance
	Modeling Choices

	Conclusion

