
Spatio-Temporal Proximity as a Basis for
Collaborative Filtering in Mobile Environments

Alexandre de Spindler, Moira C. Norrie, Michael Grossniklaus and Beat Signer

Institute for Information Systems, ETH Zurich
8092 Zurich, Switzerland

{despindler,norrie,grossniklaus,signer}@inf.ethz.ch

Abstract. We propose a new approach to collaborative filtering in mo-
bile tourist information systems based on spatio-temporal proximity in
social contexts. Users store ratings and reviews of locations and events
locally within their personal information system and then exchange these
with other users present in the same social contexts using ad-hoc net-
working and opportunistic information sharing. We describe some pre-
liminary investigations on the use of these methods in a mobile informa-
tion system for visitors to a festival.

1 Introduction

Collaborative filtering (CF) techniques have become well-known through their
use in on-line stores such as Amazon to recommend items to users based on
buying patterns. The underlying assumption is that users who bought the same
items in the past are likely to do so in the future. CF systems can either be user-
based or item-based. In user-based CF, the system attempts to match users based
on system-maintained profiles that may be a combination of explicitly supplied
preferences and patterns derived from their actions. In contrast, item-based CF
performs the filtering by matching items based on either similarity of features
or simple association. For example, Amazon maintains a correlation matrix for
items that indicates which items are related by the fact that a user purchased
both of them [1].

Although there are many CF variants, what is common to current techniques
is that they base their filtering on some form of stored profiles of users and/or
items. These profiles may be based on information provided explicitly by the
users or the producers of the items, but, since this is typically a tedious task, it
is generally preferable to find some means of automatically generating profiles
based on user actions. The profiles will typically be stored on a server and, on
receipt of a request, a CF algorithm will be applied to perform the filtering and
return the items most likely to be of interest to the user.

We were interested in providing CF in a mobile tourist information system
designed to support visitors to an arts festival [2]. Our goal was that tourists
should be able to carry their own personal copy of the festival information sys-
tem with them on a portable computer, but somehow be recommended events,

912 Ubiquitous Mobile Information and Collaboration Systems

venues, bars and restaurants based on ratings and reviews from other tourists.
The system differs from traditional systems with CF in two ways. First, the
system is designed so that it can deliver context-aware information to tourists
without the need to have a network connection and therefore we did not want
to have to introduce a server into the architecture. Second, unlike on-line stores,
user and item profiles cannot evolve gradually over time. Visitors to the festival
will want a filtering of relevant information and recommendations as soon as
they arrive at the festival for what might be a visit of only one or two days.

We therefore decided to introduce a new variant of user-based CF that
matches users based on social contexts rather than user interactions with the
system. The idea is that users who go to the same place at the same time tend
to have similar tastes. So if one festival visitor likes a particular style of trendy
bar, then they may share other interests with the people who also like that bar
such as theatrical events or contemporary restaurants. We therefore filter ratings
and reviews based on spatio-temporal proximity of users as a basis for the forma-
tion of social networks. This works by users carrying their ratings and reviews
with them and they are shared with other users in an opportunistic way based
on ad-hoc network connections.

In Sect. 2, we start by motivating our approach using a scenario to explain
the general operation of the system and the requirements that these place on
both the system architecture and the form of CF techniques used. We then
go on to discuss the CF methods we propose in detail in Sect. 3. Architecture
and implementation issues are presented in Sect. 4. Concluding remarks and an
outline of future work are given in Sect. 5.

2 Motivation

As tourists, we are continually faced with the problems of deciding where to
go and what to see. Usually there is no shortage of information in the form of
guidebooks, web sites and brochures. The problem rather is one of finding things
that will suit our personal interests and tastes which is why we often turn to our
friends or favourite series of guidebooks for advice. For visitors to large festivals
such as the Edinburgh Fringe Festival with around 1800 events, the problems
are even greater as, not only is the choice so large, but it is mostly unknown
territory. While part of the fun is to take a chance choosing an event, many
visitors will spend a lot of time reading the reviews in newspapers, pasted on
the billboards and published on the Web. But with so many events, it takes time
for critics to get round the events and it tends to be a relatively small set of
visitors who enter their ratings and reviews on the Web.

Collaborative filtering systems have been developed to help users make a
choice among unknown alternatives by trying to find other users with similar
interests and tastes. The incorporation of other people’s opinions in a decision
process requires some form of social network where opinions can be selectively
retrieved and combined. In the scope of this work, we simplify the main task of
CF to inferring an opinion for a requesting user about a target item unknown

UMICS'06 913

to them. We define an opinion as a rating value which is low to express a bad
opinion and high otherwise. In order to generate recommendations and thus fulfil
the claim of CF, we can think of ranking all items according to their ratings
and selecting the highly ranked ones. In current research, CF approaches are
frequently classified as being either user-based or item-based.

In user-based CF [3,4,5], the ratings from users similar to the requesting
user are aggregated for the target item. The assumption is that similar users
share similar opinions. User similarity is based on the comparison of user profiles
representing a user in terms of features relevant in the scope of the application
domain. In contrast, an item-based approach [6,7] first retrieves items similar to
the one to be rated and then aggregates the ratings from all users about these
items. In this case, the assumption is that similar items tend to be rated similarly.
Another criteria makes a distinction between systems deriving the rating from
analysing user behaviour [1] and others where users enter explicit ratings [8].

Sarwar et al. [6] and Aggarwal et al. [9] identify two main challenges that
must be met by a CF system. On the one hand, the inferred rating must be
accurate in the sense that it must be close to the rating made by the user if the
target item were known to them. On the other hand, the inference process must
be scalable. Neither the number of rating users nor the number of rated items
must significantly slow down the process. Sarwar et al. also state that these two
challenges are in conflict.

In both of the approaches mentioned above, one critical factor is how sim-
ilarity between users and/or items is measured. The more similar the selected
users or items are to the requesting user or target item, the more accurate the
inferred rating will be. Improved similarity measures can be achieved with the
incorporation of more features or by using more complex algorithms. In both
cases, computation is slowed down. Consequently, simplifying the identification
and selection of similar users or items can effectively speed up the inference
process.

A related issue that arises in mobile information systems is the requirement
for network connectivity. If all the information about users and items is to be
stored on a server where the CF is performed, then this requires that each infor-
mation request has to be processed by the server, requiring a network connec-
tion. This may increase costs to the users, while reducing both performance and
availability of access. Further, in our example of a festival guide, many standard
techniques for CF, which rely on constructing user profiles over long periods
of system usage, may not be appropriate. A new visitor to the festival wants
immediate recommendations about events and places. The question therefore is
whether it is possible to find alternative means of inferring similarity between
users that is both simple and immediate without requiring the user to explicitly
construct a profile of themselves.

We propose a user-based CF technique which addresses the conflict between
accuracy and scalability in mobile information systems. Users enter explicit rat-
ings and exchange these. By using the spatio-temporal proximity of users in social
contexts to determine user similarity, we are able to render the computation of

914 Ubiquitous Mobile Information and Collaboration Systems

similarity of users unnecessary, while still generating accurate ratings. To illus-
trate the approach, we first present a simple scenario.

Mary is taking a break from attending events at the Edinburgh festival and is
enjoying a late lunch in the restaurant of a film theatre. She enjoys the lively
atmosphere with people coming in and out as festival films start and finish. She
considers what event to attend next and consults her interactive festival guide.
She decides on a play at a nearby theatre. As she is about to leave, she notices
a man sitting in the corner studying the festival brochure who looks like her
professor. After the play, she decides to go for a drink. There are a number
of pubs in the same street, but her guide indicates a low rating, so she decides
instead to go to one nearer her hotel which has a high rating. When she enters
this pub, she immediately feels comfortable since it would seem that she is not
the only solo festival visitor there. She sits at a table and enters her review of
the play in her festival guide. Later on, she is surprised to discover the man
who resembles her professor standing at the bar.

Restaurants, bars and events define social contexts. What we do socially is
based on our interests and tastes and therefore it is not surprising that we often
see the same people in different places that we go to. Being in the same place
at the same time, is an indication of social proximity. Mary has an interactive
festival guide with a city map and information about events, restaurants and
bars. While she is eating her lunch, her guide exchanges ratings with other
guides in the same restaurant. When she consults her guide to see what events
are on in the afternoon, the play she chooses is one with high ratings, many of
which came from people present in the film theatre. At the same time, her guide
also received a high rating of the pub near her hotel from the man who looks
like her professor. It is not so surprising after all that she happened to see him
there later.

Ratings and reviews are exchanged between users in an opportunistic manner
that effectively performs a filtering based on social contexts. Users simply enter
ratings and reviews into their guides, and the exchange of information is all
performed transparently through ad-hoc peer-to-peer networking. Users are not
aware of the exchanges taking place, nor do they know from whom they received
the ratings. Two users will exchange ratings if they reside in the same place
for longer than just a transient encounter. As detailed in the next section, this
automatic exchange of ratings based on spatio-temporal proximity naturally
leads to a user-based CF system.

Spatio-temporal proximity has also been used for filtering in the work of
Xu et al. [10]. Their system comprises an extended notion of resources shared
between users which are not restricted to ratings. However, the filtering is based
on proximities between users and items described by the resources, rather than
between users.

This work evolved out of a project to develop an interactive guide for visi-
tors to the Edinburgh festivals based on interactive paper and an audio output
channel. Users are provided with a printed festival brochure, a digital pen and
an earpiece in addition to a portable computer coupled with a GPS unit. The

UMICS'06 915

digital pen, based on Anoto technologies [11], tracks a user’s interactions with
the printed brochure via a camera embedded in the pen and a special position
encoding pattern of tiny dots printed on the paper. An example of a brochure
entry is shown in Fig. 1.

A NIGHT AT THE PICTURES - STEVE DAY Rating

GSOH Comedy

Café Royal Fringe Theatre, 17 West Register Street, 0131 556 2549
Grid Ref: D5

Are you tired of comedians and their cliched routines about Rembrandt? Caravaggio? When will they do
something different? It's just another deaf comedian talking about art! '... revelatory... very funny' Guardian.
www.isitmyround.com
Aug 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28: 20.00 (60mins) £6.00 (£4.00)
Dates:

OMID DJALILI - NO AGENDA Rating

Omid Djalili - www.boundandgaggedcomedy.com

Pleasance Courtyard, 60 The Pleasance, 0131 556 6550
Grid Ref: E6

'Djalili is Supercalifrajalisticexpialidocious' Scotsman. 'He struts across the stage raining cluster bombs of
comedy genius' Metro. 'If you're going to see one show this year make sure it is this one' Sunday Express. Book
early!
Aug 15, 17, 18, 22, 23, 24, 25, 29: 20.50 (60mins) £13.50 (£12.00)
Aug 19, 20, 21, 26, 27, 28: 20.50 (60mins) £14.50 (£13.00)
Dates:

POLITICAL ANIMAL Rating

BBC Radio 4

Pleasance Courtyard, 60 The Pleasance, 0131 556 6550
Grid Ref: E6

John Oliver and Andy Zaltzman plus special guests cut to the chase on the issues that matter. Serious subjects
tackled in a thought provoking yet hilarious fashion, without pandering to cheap jokes.
Aug 27: 15.00 (60mins)
Dates:

POOL OF LIFE Rating

Big Value Comedy

Café Royal Fringe Theatre, 17 West Register Street, 0131 556 2549
Grid Ref: D5

Following his critically successful show of 2003, Keith Carter returns as alter-ego 'Nige'. With new characters, a
show celebrating Liverpool's capital of culture. 'Nige thinks he's a superhero. In comedy terms he already is ****'
Evening News.
Aug 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28: 21.20 (60mins) £7.00 (£6.00)
Dates:

comedy

10 Stop Repeat Help

Fig. 1. Interactive festival brochure entry

A key feature of our system was to provide an easy means for users to input
and access ratings and reviews. By touching pictograms on the paper with the
pen, users can enter ratings of 1–5 for each event. The average of all ratings
recorded can be retrieved by pointing to another pictogram. However, the system
is not limited to numeric ratings only. Users can also submit their own comments
on events by writing them in the blank comments pages provided at the back of
the brochure and then linking them to an event in the brochure. This handwritten
text is processed by Intelligent Character Recognition (ICR) software and can
later be accessed by other users via a text-to-speech engine. Details of the system
can be found in [12], including a description of the Anoto functionality and the
general information infrastructure that we developed to support experimentation
with mobile information systems.

In the previous version of the system, no collaborative filtering was per-
formed and the ratings were simply averaged. Another disadvantage was that,
while most of the functionality of the brochure could be handled by a mobile
client without network access, the entry of and access to ratings and reviews
required network access to a server. While we did consider the use of kiosks as
special network access points for the uploading and downloading of ratings and
comments, this together with existing CF techniques still did not meet our re-
quirements for filtering based on social contexts. We therefore chose the option
of an architecture based on ad-hoc peer-to-peer information sharing which es-
sentially uses opportunistic network connectivity between peers to perform the
user matching aspect of CF.

3 Collaborative Filtering

The most fundamental query in user-based CF consists of inferring a rating
for a specific item by aggregating individual ratings from users with similar
interests [9]. This process involves two stages, the computation of similarities
that form the basis for the selection of the relevant users and the aggregation of
their ratings about the specific item. In this section we show how users who share

916 Ubiquitous Mobile Information and Collaboration Systems

ratings when they are in spatio-temporal proximity automatically perform a
filtering of similar users. Finally, we also present an example aggregation method.

A rating is a tuple (user, item, value) containing a rating user, a rated item
and a rating value. Such a tuple can be seen as a directed weighted edge
of a graph, pointing from a user node to an item node and weighted with
the rating value. Therefore, a set of ratings defines a directed bipartite graph
Gr = (U ∪ I, Er) where U is the set of nodes representing users, I the set of item
nodes and Er the set of directed weighted edges.

The use of a graph to model ratings is not a novel approach. It has been
proposed by Aggarwal et al. [9] and confirmed in subsequent works such as
Mirza et al. [13] and Huang et al. [14]. We have chosen to represent ratings
with a graph for several reasons. First, a graph captures all information based
on which we infer ratings. Then, the use of a graph opens the rich variety of
existing graph algorithms. Additionally, a graph representation allows network
properties such as connectivity, clusters and cliques to be extracted and the
construction of social network and recommender graphs [13].

Stage 1: Computing Similarity and Selecting User

Normally the first stage of user-based CF involves computing similarities be-
tween users and selecting the most similar ones. However, in our approach, the
selection of users is performed implicitly and in the absence of any prior simi-
larity computations. We now introduce some concepts forming the basis for our
selection process of similar users.

User Similarity: The application domain of our CF system consists of users
and items where users are visitors to the Edinburgh Festival using our interactive
guide and items are things that they visit such as events, venues, bars and
restaurants. If users consume an item, their location matches the location of the
item for a specific period of time. Some items such as restaurants or bars can
be consumed at any time within predefined opening hours and the duration of
consumption can be anything from the time to drink a beer to eating a dinner.
In contrast, items such as comedy shows or plays can be consumed only during
a specific time period and the duration is usually well defined. We will refer to
these two kinds of items as location and event items, respectively. Note that
event items may happen only once or be repeated periodically.

Our selection of similar users takes advantage of the fact that, if two users
consume the same item, they consequently find themselves at the same location.
We cannot assume that users consuming the same location or periodic event
items do so simultaneously, whereas, it is reasonable to assume so if they consume
non-recurring event items. However, all items have in common the fact that, if
users meet while consuming them, they probably stay in each other’s vicinity for
longer than if they would pass each other in the street. Users who consume the
same items obviously share some similar properties such as interest and taste.
If they meet when they consume location or periodic items, they also share

UMICS'06 917

these properties simultaneously in absence of temporal constraints. This can be
regarded as an additional similarity feature that they have in common. Based
on these observations, we declare two users to be similar if they consume the
same items simultaneously.

Spatio-Temporal Proximity: Such a similarity can be derived from a so-called
spatio-temporal proximity of the users that covers two aspects of proximity, a
spatial and a temporal one. If multiple users are consuming a particular item,
their locations will match the location of the item. Thus, their spatial proxim-
ity will not exceed an item-specific boundary. If users are consuming an item
simultaneously, the periods of time, during which they are consuming, overlap.
This overlap is a result of temporal proximity. We conclude that if users are in
spatio-temporal proximity, they are consuming the same items simultaneously
and thus they are similar. Most importantly, the proximity implies that they
have been in each other’s vicinity at some time.

The history of item consumptions of a particular user ua can be regarded as
a set of item consumption tuples of the form (itemi, [tk, tl]) where each tuple is
a composition of two entries. The first entry identifies a particular item itemi,
and the second one defines the period of time [tk, tl] during which the item was
consumed. Thus, the history H(ua) of a user ua can be written as

H(ua) = {(item1, [t1, t2]), (item2, [t3, t4]), . . .}

The condition for item consumption tuples to be equal is

(itemi, [tk, tl]) = (itemj , [tm, tn]) ⇐⇒ (itemi = itemj)∧ ([tk, tl]∩t [tm, tn] ≥ p)

where we define ∩t as a temporal intersection of two time periods. The condition
[tk, tl] ∩t [tm, tn] ≥ p holds if the time periods overlap for a duration of at least
p. The first component (itemi = itemj) accounts for spatial proximity while the
temporal intersection accounts for temporal proximity.

If two user histories contain equal consumption tuples, then they have con-
sumed an item simultaneously. The parameter p determines the duration of
temporal proximity required for consumption tuples to be equal. If the value of
p is too small, users are assumed to have consumed the same item simultane-
ously as a result of a transient encounter. In contrast, if it is too large, users
who actually do consume the same item simultaneously are not recognised as
doing so. In the first version of our system, we have chosen a fixed value p = 10
minutes with the intention of ruling out transient encounters, while accounting
for overlapping periods of consumption.

Spatio-Temporal Proximity as User Similarity Measure: The spatio-
temporal proximity Ploc,t between two users ua and ub can be expressed as

P N
loc,t(ua, ub) =

{
1 if H(ua) ∩H(ub) 6= ∅
0 else

918 Ubiquitous Mobile Information and Collaboration Systems

This is a binary proximity measure in the sense that users are in spatio-temporal
proximity if they have at least one tuple of their consumption history in common
and they are not otherwise. It is reasonable to assume that the more often
users consume the same item, the more similar they are. This calls for a second
proximity measure that takes into account the number of common simultaneous
item consumptions.

P R
loc,t(ua, ub) =

{
|H(ua)∩H(ub)|

|H(ua)| if H(ua) 6= ∅
0 else

On the one hand this continuous measure quantifies the degree of spatio-temporal
proximity while, on the other hand, it also establishes a ranking of the users ac-
cording to their proximity to the user denoted by the first argument. We say
that two users ua and ub are similar if their binary spatio-temporal proxim-
ity P N

loc,t(ua, ub) equals 1 or if it is greater than 0 for the continuous measure
P R

loc,t(ua, ub). A user ua is more similar to a user ub than to another user uc if
P R

loc,t(ua, ub) > P R
loc,t(ua, uc).

Ad-Hoc Networking Entails Spatio-Temporal Proximity: Every user of
our tourist information system maintains a local set of rating tuples. This set
contains entries for item ratings made explicitly by the user as well as tuples
received from other users. A user ua receives rating tuples from another user
ub if they are within reachability for a duration of at least p. Thus, ratings are
exchanged if the users consume an item simultaneously at least once. In terms of
our proximity measure, this is the case if they have at least one item consumption
tuple in common in their consumption history. Consequently, it also holds that

H(ua) ∩H(ub) 6= ∅

and therefore
P N

loc,t(ua, ub) = 1

With this and the fact that users only exchange ratings made by themselves,
we conclude that if ua exchanges ratings while consuming items, the local set of
rating tuples contains tuples from similar users only where similarity is measured
in terms of spatio-temporal proximity.

Stage 2: Aggregation of Item-specific Ratings

The second stage of user-based CF consists of aggregating rating values from
similar users about the target item. As stated before, the deployment of a graph
to manage the local set of rating tuples enables the use of arbitrary aggregation
functions. The most common approach is to compute the average. In order to
do so, we select all incoming edges of the node representing the target item and
compute the average of their weights.

UMICS'06 919

We can additionally take into account the degree of similarity as expressed
with the continuous proximity measure. Therefore, we maintain a social network
graph as proposed by Mirza et al. [13]. A social network graph Gs = (U,Es)
contains the user nodes of a rating graph Gr. The edges in Es are directed
weighted edges pointing from a user ua to a user ub if P N

loc,t(ua, ub) = 1.This is
the case between the local user and all users from which ratings are received.
The weight of an edge pointing from a user ua to another ub is the value of
P R

loc,t(ua, ub).
If we are to infer a rating value from a requesting user ur to a target item

itt we compute the average of the rating values contained in Gr, each weighted
with the respective edge weights in Gs. When computing this weighted average,
we only need the continuous proximity values for the rating user to all other
users. The similarity between other users does not affect the aggregation and
thus no continuous proximity information needs to be passed on when ratings
are exchanged.

Fig. 2. Visualisation of rating and social graph

Figure 2 shows an example rating and social graph. The round vertices rep-
resent users and rectangular vertices visualise items. Edges between user vertices
belong to the social graph whereas the ones pointing from a user to an item are
part of the rating graph.

4 Implementation

The implementation of the CF system presented in the previous section requires
components that discover users in the vicinity, exchange rating tuples and main-

920 Ubiquitous Mobile Information and Collaboration Systems

tain a set of ratings made explicitly by the local user or previously received
from remote users. A main component implements the aggregation procedure
and serves as an interface to applications making use of CF such as our tourist
information system. In developing an architecture and implementing these com-
ponents, we were keen to obtain a flexible ad-hoc peer-to-peer service framework.
The framework enables a straightforward integration with other applications and
also establishes a platform for rapid prototyping of arbitrary peer-to-peer ser-
vices. Multiple services can be deployed seamlessly and managed separately. We
first describe the individual components and then show how they work together
in order to implement our CF system.

Interaction Architecture

The general peer-to-peer interaction architecture shown in Fig. 3 forms the core
of our framework. It provides the means for deploying peer services by specifying
participating components and their roles in implementing the service interaction.
In the figure, we reduce service interaction to the transfer of request and response
data between a requesting local system shown on the left-hand side and a re-
sponding remote system on the right-hand side. One-to-many and many-to-one
interactions can always be broken down to multiple one-to-one data transfers. In
the local system, a request handler is used to post a local request. Depending on
the concrete peer service, data may have to be provided by the requesting client.
The handler creates a message object containing the request data and sends its
XML string representation to a remote request handler a©. On the remote side,
the message is reconstructed from the string value received and the request data
is extracted b©. The remote request handler then processes the request which
includes access to data structures and computational services yielding a response
data object c©. This response data object is wrapped with a message object and
its XML string representation is sent back to the local response handler d©. The
response handler reconstructs the message and extracts the response data e©.
Typically, the response is then integrated into a local data structure.

Local Response Handler
Remote Request Handler

Message

Data

Message

Data

Local Request Handler

Message

Data

Message

Data

XMLString

XMLString
a b

c

de

Fig. 3. Interaction architecture for peer services

UMICS'06 921

We can identify three components each responsible for a particular aspect
of service interaction: handlers, data and message objects. A Data class en-
capsulates the content transferred between peers while a Message class enables
content-independent implementation of message formats such as plain XML,
SOAP, binary, compressed or encrypted representations. Handlers implement
concrete peer services in terms of request and response data processing.

As part of the framework, we provide abstract implementations of these
classes covering the interface definitions expected by the components. A UML
diagram of the RequestHandler and ResponseHandler classes declaring the
methods to be implemented by a concrete service is shown in Fig. 4. Note that,
unlike the architecture in Fig. 3, the local and remote request handler are put
together into a single class.

This interaction architecture does not define a component responsible for
building a physical channel through which messages are sent. Neither does it
address the issues of discovering and identifying remote peers. We decided to
separate the aspects of interaction and connection so that each can be imple-
mented, extended and exchanged independently.

Connection Service

Our interaction architecture stipulates handlers processing local and remote re-
quests as well as remote responses. These handlers form a logic communication
channel between peers. They rely on a connection service providing the means
to address a particular or multiple peers and to send and receive messages. This
functionality is encapsulated in a connection service component. It consists of a
peer abstraction that can be identified by other peers, a connection handler cre-
ating and maintaining physical channels to remote peers and a networking layer
discovering and identifying remote peers. We have previously implemented such
a component based on existing technologies including the JXTA [15] peer-to-peer
framework and Apache Axis [16] web services. Due to the lack of existing ad-hoc
networking frameworks, we implemented our own ad-hoc networking layer. The
left part of Fig. 4 shows the UML diagrams of the Peer, ConnectionHandler
and AdHocNetworkingLayer classes that provide the ad-hoc connection service
to the request and response handlers.

The connection handler defines an interface method for sending messages to
remote peers. In our case, the request message is always sent to a particular peer
which is why a peer identifier must be provided. A request handler features a
reference to a connection handler in order to post local requests. The connection
handler has a reference to the local remote request handler, i.e. the handler
notified upon incoming remote requests. The latter returns the response message
which is forwarded to the requesting peer. It also has a reference to the remote
response handler which is notified when a remote response arrives.

The peer abstraction is responsible for starting and stopping a connection
handler and it maintains a collection of running connection handlers. Each
connection handler contains a pair of service-specific request and response han-
dlers. The respective request and response handlers must be registered with the

922 Ubiquitous Mobile Information and Collaboration Systems

+processLocalRequest(Data)
+processRemoteRequest(Message) : Message

-ConnectionHandler

RequestHandler

+processRemoteResponse(Message)

-Collection<Data>

ResponseHandler
extends Observable

+sendRequest(Message, PeerID)
+broadcast(Message)
+start()
+stop()

-RequestHandler
-ResponseHandler

ConnectionHandler

+registerService(ServiceID, RequestHandler, ResponseHandler)
+unregisterService(ServiceID)
+run()

-Collection<ConnectionHandler>
-AdHocConnectionLayer

Peer

-Collection<PeerID>

AdHocNetworkingLayer
extends Observable

Fig. 4. Ad-hoc peer-to-peer platform

peer to deploy a particular service. The peer creates a new connection handler
object, assigns the handlers to it and sets the reference in the request handler.
We can deploy multiple services using the same class of connection handlers, in
which case, each of them forms a logical peer-to-peer channel while they all use
the same physical connection. On the other hand, we can have multiple connec-
tion handler classes, each implemented for a different connection technology. In
this case, technologies such as JXTA, web services and ad-hoc networking can
be used in parallel.

The peer is also responsible for creating and maintaining the networking
layer. This ad-hoc networking layer encapsulates the tasks of discovering and
identifying peers entering the area of reachability. It features an event mechanism
notifying registered listeners about the arrival or departure of reachable peers.
It can be extended to make use of any connection technology such as Wireless or
Bluetooth. In the scope of this work, we have developed an extension for IEEE
802.xx wireless facilities.

Collaborative Filtering

We have implemented two classes, the RatingModel and RatingManager, shown
at the bottom of Fig. 5, to manage rating tuples and perform rating inference.
The rating model maintains a graph containing all ratings received from other
users or made explicitly by the local user. For our implementation, we used the
Java Universal Network/Graph Framework (JUNG) [17] since it contains basic
graph algorithms and features visualisation facilities useful for debugging. The
rating model features methods to add and retrieve rating tuples as required by
the remote request and local response handlers. The main class of our CF system,
a rating manager, defines an interface to other applications. One method allows
the local user to make an explicit rating which is treated equally to ratings from

UMICS'06 923

other users. It is added to the graph model and hence is included in the aggre-
gation rather than replacing it. Another method takes a target item identifier as
argument and returns the inferred rating as presented earlier in Sect. 3.

RequestHandler ResponseHandler
extends ObservableConnectionHandler

+addRating(Item, int)
+getRating(Item) : int

-RatingModel

RatingManager

+addRating(RatingTuple)
+getRatings() : Collection<RatingTuple>
+getRating(Item) : int

-Graph

RatingModel

AdHocNetworkingLayer
extends Observable

notify

notify

sendRequest

processRemoteRequest

processRemoteResponse

getRatings

a b

c
d

e

f

Fig. 5. UML diagrams of CF classes and workflow.

The interaction of the components that perform collaborative filtering if a
new remote peer appears in the vicinity of a local peer is indicated in Fig. 5.
The local request handler is a registered listener of the ad-hoc networking layer.
It is notified whenever a new peer has entered the area of reachability a©. As
a result, the request handler issues a request using the connection handler b©.
However, this request is not sent immediately but rather queued for a duration p,
the parameter introduced in Sect. 3. Consequently, when a request is actually
sent, the peer might no longer be reachable and no response will be received.
Hence, by delaying the request, we avoid the case of exchanging ratings based on
a transient encounter. Eventually, the connection handler receives the response
and forwards it to the local response handler e©. The new rating tuples are added
to the rating model where they will be available for future rating inference f©.
For each response message received, the weight of the edge pointing from the
local user to the responding user is increased. At the same time, the remote
peer also requests the local peer for rating tuples. Hence, the connection handler
receives a request message and forwards it to the remote request handler c©.
The request processing consists in returning all ratings made by the local user
retrieved from the rating model d©. Note that the local request handler keeps
track of peer encounters per consumed item such that ratings are not exchanged
multiple times during a single consumption. The number of rating tuples stored
in the rating model can be bound to a given size. Therefore, the continuous
proximity measure is used to remove the ratings received from the furthest away
users.

924 Ubiquitous Mobile Information and Collaboration Systems

<?xml version="1.0" encoding="UTF-8" ?>
<message>

<from>Fred Fergusson</from>
<to>Mary MacBean</to>
<ratings>

<rating>
<item>Pool Of Life</item>
<value>1</value>

</rating>
...

</ratings>
</message>

Fig. 6. Example response message

Since no information must be provided by a requesting peer for the respond-
ing peer to process the request, the request data simply consists of the identifiers
of the requesting and requested peers. In contrast, the response data addition-
ally contains a collection of rating tuples. In the scope of this work, requests
and responses are sent as plain XML strings without compression or encryption.
Figure 6 shows an example response message received by Mary from Fred. It
contains ratings made by Fred which are also displayed in the graph in Fig. 2.

5 Conclusion

We have presented a technique to perform user-based CF by exploiting the
opportunistic mode of information sharing that results from ad-hoc peer-to-
peer networking. Each user’s mobile device stores all explicit ratings made by its
owner as well as ratings received from other users. Only users in spatio-temporal
proximity are able to exchange ratings and we have shown how this provides a
natural filtering based on social contexts. An initial version of our CF system
has been implemented based on a general peer-to-peer platform developed for
the rapid prototyping of peer services.

The idea for this CF approach and the scenario presented in Sect. 2 evolved
from an ongoing project to develop mobile information systems for visitors to the
Edinburgh festival. In the next stage of this project, the CF system presented
in this paper will be integrated with a general interactive festival guide and
evaluated at the festival in August 2006. This integration will also involve the
incorporation of user reviews and comments. As opposed to numerical rating
values, these cannot be aggregated in the manner we have proposed to aggregate
ratings. Nevertheless, the CF technique we have presented can also be used to
filter reviews and comments.

We also want to investigate how we can extend our CF approach to allow
for ratings and reviews exchanged between users in spatial, but not temporal,
proximity. In Sect. 3, we introduced the notion of location and periodic event
items and the fact that we cannot assume that users consuming such items do so
simultaneously. Users consuming these simultaneously were regarded as sharing
an additional similarity, namely that they are consuming the item during this
particular period of time. However, users consuming the same location item or
attending the same periodic event at different times still share a similarity in
terms of interest and taste, whereas they do not meet.

UMICS'06 925

References

1. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item
Collaborative Filtering. IEEE Internet Computing (2003)

2. Edinburgh Festival Fringe. (http://www.edfringe.com/)
3. Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using

Filtering Agents to Improve Prediction Quality in the GroupLens Research Col-
laborative Filtering System. In: Proceedings of CSCW ’98, ACM Conference on
Computer Supported Cooperative Work, Seattle, USA (1998) 345–354

4. Breese, J., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms
for Collaborative Filtering. In: Proceedings of UAI ’98, 14th Conference on Un-
certainty in Artificial Intelligence, Madison, USA (1998)

5. Claypool, M., Gokhale, A., Miranda, T., Mumikov, P., Netes, D., Sartin, M.: Com-
bining Content-Based and Collaborative Filters in an Online Newspaper. In: Pro-
ceedings of SIGIR ’99, Workshop on Recommender Systems, Berkeley, USA (1999)

6. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.T.: Item-based Collaborative
Filtering Recommendation Algorithms. In: Proceedings of WWW 10, 10th Inter-
national World Wide Web Conference. (2001) 285–295

7. Robu, V., Poutré, J.L.: Constructing the Structure of Utility Graphs Used in Multi-
Item Negotiation through Collaborative Filtering of Aggregate Buyer Preferences.
In: Proceedings of RRS 2006, 2nd International Workshop on Rational, Robust
and Secure Negotiations in Multi-Agent Systems, Hakodate, Japan (2006)

8. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An Open
Architecture for Collaborative Filtering of Netnews. In: Proceedings of CSCW ’94,
ACM Conference on Computer Supported Cooperative Work, Chapel Hill, USA
(1994) 175–186

9. Aggarwal, C.C., Wolf, J.L., Wu, K., Yu, P.S.: Horting Hatches an Egg: A New
Graph-Theoretic Approach to Collaborative Filtering. In: Proceedings of KDD ’99.
5th International Conference on Knowledge Discovery and Data Mining, San Diego,
USA (1999) 201–212

10. Xu, B., Ouksel, A., Wolfson, O.: Opportunistic Resource Exchange in Inter-Vehicle
Ad-Hoc Networks. In: Proceedings of MDM 2004, IEEE International Conference
on Mobile Data Management, Berkeley, USA (2004)

11. Anoto AB. (http://www.anoto.com)
12. Belotti, R., Decurtins, C., Norrie, M.C., Signer, B., Vukelja, L.: Experimental

Platform for Mobile Information Systems. In: Proceedings of MobiCom 2005, 11th
Annual International Conference on Mobile Computing and Networking, Cologne,
Germany (2005) 258–269

13. Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying Recommendation Algo-
rithms by Graph Analysis (2001)

14. Huang, Z., Chung, W., Ong, T., Chen, H.: A Graph-Based Recommender System
for Digital Library. In: Proceedings of JDCL 2002, 2nd Joint Conference on Digital
Libraries, Portland, USA (2002) 65–73

15. Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.C.,
Pouyoul, E., Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network. Technical
report, Sun Microsystems, Inc. (2003)

16. Apache Axis. (http://ws.apache.org/axis)
17. Java Universal Network/Graph Framework (JUNG). (http://jung.sourceforge.net)

926 Ubiquitous Mobile Information and Collaboration Systems

