
EvalNE: A Framework for Evaluating Network Embeddings on Link Prediction∗

Alexandru Mara† Jefrey Lijffijt† Tijl De Bie†

Abstract

Network embedding (NE) methods aim to learn low-

dimensional representations of network nodes as vectors,

typically in Euclidean space. These representations are then

validated on a variety of downstream prediction tasks. Link

prediction is one of the most popular choices for assessing

the performance of NE methods. However, the complex-

ity of link prediction requires a carefully designed evalu-

ation pipeline in order to provide consistent, reproducible

and comparable results. We argue this has not been con-

sidered sufficiently in many recent works. The main goal of

this paper is to overcome difficulties associated with eval-

uation pipelines and reproducibility of results. We intro-

duce EvalNE, an evaluation framework to transparently as-

sess and compare the performance of NE methods on link

prediction. EvalNE provides automation and abstraction

for tasks such as hyper-parameter tuning, model validation,

edge sampling, computation of edge embeddings and model

validation. The framework integrates efficient procedures for

edge and non-edge sampling and can be used to easily eval-

uate any off-the-shelf embedding method. The framework is

freely available as a Python toolbox. Finally, demonstrating

the usefulness of EvalNE in practice, we conduct an empir-

ical study in which we try to replicate and analyse experi-

mental sections of several influential papers.

Keywords: network embedding; link prediction;
evaluation; edge sampling; negative sampling; graphs

1 Introduction

Link prediction is an important task with applications
in a wide range of fields such as computer science,
social sciences, biology, and medicine [8, 18, 19, 29]. It
amounts to estimating the likelihood for the existence
of edges, between pairs of nodes that do not form an
edge in the input graph.

Many recent Network Embedding (NE) methods,
e.g., [1, 3, 7, 10, 13, 15, 21, 22, 23], have been applied
to solving link prediction problems, showing promising

∗The research leading to these results has received funding

from the ERC under the EU’s Seventh Framework Programme

(FP7/2007-2013) / ERC Grant Agreement no. 615517, from the
FWO (project no. G091017N, G0F9816N), and from the EU’s

Horizon 2020 research and innovation programme and the FWO

under the Marie Sklodowska-Curie Grant Agreement no. 665501.
†Ghent University. Email: firstname.lastname(at)ugent.be

results. These methods map nodes in the network
to d-dimensional vectors, typically in Euclidean space.
The obtained representations are then used as features
for a variety of tasks such as visualization, multi-label
classification, clustering or link prediction.

The challenges of evaluating NE methods for
link prediction Unfortunately, the practical perfor-
mance of most NE methods is poorly understood and
not comparable due to inconsistent evaluation proce-
dures. In this paper, we focus on a number of difficulties
specific to the evaluation of NE methods for link predic-
tion. Link prediction is particularly challenging as the
evaluation involves a number of design choices that can
confound the results and are prone to errors.

For example, the implicit assumption is that the
input graph is not complete and the purpose is to
predict the missing edges as accurately as possible.
To evaluate the performance of a NE method for link
prediction, one thus needs an (incomplete) training
graph along with a (more) complete version of that
graph for testing.

Much research has been devoted to determining
the best approach to generate these training graphs
[8, 18, 29]. Theoretical and empirical evidence suggest
that in order to fairly evaluate link prediction methods,
snapshots of the networks at different points in time
should be used for training and testing. In this way,
the methods are tested on natural evolutions of the net-
works. Nonetheless, the availability of such snapshots is
uncommon and raises additional questions, such as how
to choose the time intervals for splitting the networks.

For these reasons, in most cases [7, 10, 13, 15]
authors resort in their evaluations to sampling sets of
edges from the input graphs and using the resulting
subgraphs for training. The remaining edges are later
used as positive test examples. The process of sampling
edges is not standardized and varies in several ways
between studies. The relative sizes of the train and
test sets, for example, is a user-defined parameter which
varies significantly between experimental setups. In
[10, 13] the authors use a 50-50 train-test split, in [7]
a 60-40, in [15] an 80-20 and in [26] values ranging
from 30-70 up to 80-20. Moreover, certain methods
have requirements such as connectedness of the training
graph [10], while others do not [15].

A related problem is the fact that, in addition
to the ‘positive’ train and test edges, in most cases
also ‘negative’ train and test edges (also called non-
edges) are required. Sometimes these are used also
to derive the embedding, while in other cases they are
used only to train a classifier that predicts links. These
sets of non-edges can be selected according to different
strategies [14] and can be of various sizes.

Furthermore, many NE methods only provide node
embeddings. From these, edge embeddings need to
be derived prior to performing predictions. There are
several approaches for deriving edge embeddings [4],
and the selection of the edge embedding approach has
a strong impact on the performance [10].

Also the metrics used to report the accuracy of
different methods vary wildly, from, e.g., AUC-ROC [13]
to precision-recall [27] to precision@k [26].

Finally, it appears to be common practice in recent
literature to use recommended default settings for exist-
ing methods, while tuning the hyper-parameters for the
method being introduced. Especially when the recom-
mended default settings were informed by experiments
on other graphs than those used in the study at hand,
this can paint an unduly unfavorable picture.

Contributions In this paper we propose EvalNE,
a framework that simplifies the complex and time con-
suming process of evaluating NE methods for link pre-
diction. EvalNE automates many parts of the eval-
uation process: hyper-parameter tuning, selection of
train and test edges, negative sampling, and more. The
framework: (1) Implements guidelines from research
in the area of link prediction evaluation and sampling
[8, 18, 29]. (2) Includes (novel) efficient edge and non-
edge sampling algorithms. (3) Provides the most widely
used edge embedding methods. (4) Evaluates the scala-
bility and accuracy of methods, through wall clock time
and a wide range of fixed-threshold metrics and thresh-
old curves. (5) Integrates in a single operation the eval-
uation of any set of NE methods coded in any language
on any number of networks. (6) Finally, EvalNE en-
sures reproducibility and comparability of evaluations
and results through shareable configuration files.

The remainder of this paper is organized as follows.
In Section 2 we give a brief overview of related work.
Section 3 presents the proposed evaluation framework.
Our experiments reproducing the experimental setups
of several papers and empirical analysis of the proposed
edge set selection strategy are reported in Section 4.
Finally Section 5 concludes this paper.

The open-source toolbox is freely available at
https://github.com/Dru-Mara/EvalNE and the doc-
umentation and examples at ReadTheDocs https://

evalne.readthedocs.io/en/latest/index.html.

2 Related Work

Our work is related to the evaluation of link predic-
tion which has been studied in several recent works, i.e.,
[8, 18, 20, 29]. These studies focus on the impact of dif-
ferent train set sampling strategies, negative sampling
and fair evaluations criteria.

Link prediction as evaluation for the representations
learned by a NE algorithm was first introduced in the
pioneering work of Grover et al. [10]. The survey work
of Zhang et al. [31] points out the importance of link
prediction as an application of network representation
learning. The authors also signal the inconsistencies in
the evaluation of different NE approaches and conduct
an empirical analysis of many of these methods on a
wide range of datasets. Their empirical study, however,
only focuses on vertex classification and clustering. The
importance of standard evaluation frameworks as tools
to bridge the gap between research and application of
NEs is discussed in Hamilton et al. [12].

To the best of our knowledge only two frame-
works for the evaluation of NE methods currently exist.
OpenNE is a recently proposed toolbox for evaluating NE
methods on multi-label classification. The toolbox also
includes implementations of several state-of-the-art em-
bedding methods. GEM [9] is a similar framework which
also implements a variety of embedding methods and
includes basic evaluation on multi-label classification,
vizualization and link prediction tasks. These frame-
works, however, are focused on the implementations of
embedding methods rather than the evaluation pipeline.
Furthermore, these libraries are limited to the NE meth-
ods provided by the authors or require new implemen-
tations that comply with pre-defined interfaces.

3 EvalNE

In this section we discuss the key aspects of EvalNE.
The framework has been designed as a pipeline of in-
terconnected and interchangeable building blocks, as il-
lustrated in Figure 1. These blocks have specific func-
tions such as providing sets of train and test edges or
computing edge embeddings from given node embed-
dings. The modular structure of our framework simpli-
fies code maintenance and the addition of new features,
and allows for flexible model evaluation. The framework
can be used to evaluate methods providing node embed-
dings, edge embeddings, or similarity scores (we include
in this category the link prediction heuristics). Next,
we describe the core functions as well as other building
blocks that constitute EvalNE and provide some details
regarding the software design.

3.1 Evaluation framework The core building
blocks of our framework are the data split and model

Figure 1: Diagram showing the types of methods which can be evaluated using EvalNE. Gray blocks represent
modules provided by the library while white blocks are the user-specified methods to be evaluated. The library
allows for the evaluation of end-to-end prediction methods (several LP heuristics are included here as baselines),
edge embedding methods, and node embedding methods.

evaluation. These blocks constitute the most basic
pipeline for assessing the quality of link predictions. Be-
fore describing these, we introduce some notation.

We represent a directed weighted network as G =
(V,E,W) with vertex set V = {1, . . . , N}, edge set
E ⊆ V × V and weight matrix W ∈ IRN×N. Edges are
represented as ordered pairs e = (u, v) ∈ E with weights
we ∈ [0,∞). Etrain and Etest denote the training
and testing edge sets. We represent the embedding
of network nodes into a d-dimensional space as X =
(x1, x2, . . . , xN) where X ∈ IRN×d.

3.1.1 Data split As pointed out in Section 1, in
order to perform link prediction on a given input graph
G, sets of train and test edges are required. The
set of train edges is generally required to span all
nodes in G and induce a training graph Gtrain with
a single connected component, because embeddings of
independent components will be far away from and
unrelated to each other.

Most studies resort to a naive algorithm to derive
a connected Gtrain. The procedure removes edges from
an input graph iteratively until the required number of
train edges remain. The removed edges are used as test
samples. In each iteration, the connectedness of the
graph needs to be checked and only remove an edge if
it does not cause the graph to become disconnected.
This requirement is generally satisfied by running a
Breadth First Search (BFS) on the graph after each edge
removal, which is a costly operation (O(|V |+ |E|)).

Integrated in our evaluation framework, we include
a novel algorithm to perform the train-test splits which,
as we will show in Section 4, is orders of magnitude
faster yet equally simple. Our algorithm, also accounts
for the fact that the training graph Gtrain must span all
nodes in G and contain a single connected component.

Given as input an undirected graph G = (V,E,W)
and a target number of train edges |Etrain|, the pro-
posed algorithm to split the train and test edges pro-
ceeds as follows:

1. Obtain a uniform spanning tree ST of G

2. Initialize the set of training edges Etrain to all edges
in ST

3. Select edges uniformly at random without replace-
ment from the remaining edges E \ Etrain.

We select a spanning tree uniformly at random from
the set of all possible ones using Broder’s algorithm [2]:

1. Select a random vertex s of G and start a random
walk on the graph until every vertex is visited. For
each vertex i ∈ V \ {s} collect the edge e = (j, i)
that corresponds to the first entrance to vertex i.
Let T be this collection of edges.

2. Output the set T.

The complexity of the uniform spanning tree gen-
eration methods is O(n log n) on expectation [2]. The
same bound applies for the proposed train-test split al-
gorithm as the addition of random edges to the train
set can be efficiently done in O(|Etrain|) time. A more
efficient algorithm for constructing a uniform spanning
tree of a given graph exists. This method, named Wil-
son’s algorithm [28], will be included in future versions
of EvalNE.

For directed graphs G we first construct an equiv-
alent undirected version G∗ by adding reciprocals for
every edge in E. We then run the same algorithm de-
scribed above on G∗ and include in the train set only
those edges present in the initial directed graph G. This
method results in a weakly connected training graph
spanning the same nodes as the original G.

In addition to train and test edges, sets of train
and test non-edges (also referred to as negative samples)
are required in order to evaluate link prediction. These
are edges between pairs of vertices u, v such that e =
(u, v) /∈ E. The proposed toolbox can compute these
non-edges according to either the open world or the
closed world assumption. The two strategies only differ
in the selection of the train non-edges. Under the open
world assumption, train non-edges are selected such
that they are not in Etrain. Thus, this strategy allows
overlapping between train non-edges and test real edges.

Under the closed world assumption, we consider the
non-edges to be known a priori and therefore select
them so that they are neither in Etrain nor in Etest.

The number of train and test edges and non-edges
are user-controlled parameters. The minimum number
of train edges is determined by the size of the spanning
tree and the combined sets of non-edges have a trivial
upper limit of (N ·N)− |E|. However, for the train set
size, fractions between 50% and 90% of total edges E
are recommended. For values below 50%, the resulting
training graph will often not preserve the properties of
the original graph G as shown in [16].

3.1.2 Evaluation The proposed framework can eval-
uate the scalability, parameter sensitivity and accuracy
of embedding methods. We assess the scalability di-
rectly by measuring the wall clock time. The perfor-
mance of the methods can be easily reported for dif-
ferent values of embedding dimensionality and hyper-
parameter values. Finally, the link prediction accuracy
is reported using two types of metrics: fixed-threshold
metrics and threshold curves. Fixed-threshold metrics
summarize the performance of the methods to single val-
ues. The framework provides the following measures:
confusion matrix (TP, FN, FP, TN), precision, recall,
fallout, miss, accuracy, F-score and AUC-ROC. Thresh-
old curves present the performance of the methods for
a range of threshold values between 0 and 1. EvalNE
includes precision-recall curves [18] and receiver oper-
ating curves [6]. The framework also recommends the
most suitable metrics based on the evaluation setup.

3.2 Baselines and building blocks In addition to
the core building blocks, and in order to extend the eval-
uation process to different types of embedding methods,
our framework also provides data preprocessing, data
manipulation, and node to edge embedding functions.
Moreover, EvalNE integrates a standard binary classi-
fication technique which can be used, for example, to
obtain link predictions from edge embeddings. Further-
more, the toolbox contains a series of built-in link pre-
diction heuristics which can be used as baselines.

3.2.1 Preprocessing The toolbox offers a variety
of functions to load, store, and manipulate networks.
These include methods to prune nodes based on degree,
remove self-loops, relabel nodes, obtain sets of specific
types of edges, restrict networks to their main connected
components and obtain common network statistics. The
preprocessing functions of EvalNE build on top of and
can be used in combination with those provided by other
mainstream software packages (e.g. NetworkX [11]).

3.2.2 Link prediction heuristics A training graph
Gtrain = (V,Etrain,W) spanning the same set of
vertices as the initial graph G but containing only
the edges in the train set is provided as input to the
link prediction heuristics. Depending on the input
graph type we use one of the following definitions. For
undirected graphs we use the ones presented below,
where Γ(u) denotes the neighbourhood of a node u. For
directed graphs we restrict our analysis to either the
in-neighbourhood (Γi(u)) or the out-neighbourhood
(Γo(u)) of the nodes.

Common neighbours (CN):

CN(u, v) = |Γ(u) ∩ Γ(v)|

Jaccard coefficient (JC):

JC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

Adamic-Adar index (AA):

AA(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

log |Γ(w)|

Resource allocation index (RAI):

RAI(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

|Γ(w)|

Preferential attachment (PA):

PA(u, v) = |Γ(u)| · |Γ(v)|

Katz:

Katz(u, v) =

∞∑
l=1

βl · |ρ(u, v|l)|

For Katz, the parameter β ∈ [0, 1] is a damping
factor and |ρ(u, v|l)| represents the number of paths of
length l from node u to node v.

In addition to these methods, a random prediction
model is provided for reference. This method simply
outputs a uniform random value in [0, 1] as the likeli-
hood of a link between any pair of given vertices (u, v).

3.2.3 Node to edge embeddings Unlike for the
abovementioned LP heuristics where the output can
be directly used for link prediction, for NE methods
this is generally not the case. Most implementations of
NE methods produce only node embeddings. Thus, an
additional step of learning edge embeddings is required
in order to predict links via binary classification.

The edge representations are typically derived in an
unsupervised fashion. For example, to derive the edge
embedding y(u,v) for edge e = (u, v), we apply a binary
operator ◦ over the embeddings of nodes u and v, i.e.
xu and xv respectively:

y(u,v) = xu ◦ xv.

In [10] the authors propose the following alter-
natives for the operator ◦ which we include in our
evaluation framework. Any other user-defined opera-
tors can be also easily integrated.

Average (Avg.):

xu ⊕ xv ≡
xu,i + xv,i

2

Hadamard (Had.):

xu � xv ≡ xu,i ∗ xv,i

Weighted L1:

||xu · xv||1̄ ≡ |xu,i − xv,i|

Weighted L2:

||xu · xv||2̄ ≡ |xu,i − xv,i|2

3.2.4 Binary classification Most NE methods
(e.g., [7, 10, 13, 15]) rely on a logistic regression classi-
fier to predict link probabilities from edge embeddings.
In EvalNE we include logistic regression with 10-fold
cross validation. The framework, however, is flexible
and allows for any binary classifier to be used.

3.3 Software design The EvalNE framework is pro-
vided as a Python toolbox compatible with Python2 and
Python3 and which can be easily installed and used on
Linux, MacOS, and Microsoft Windows. The toolbox
depends only on a small number of popular open-source
Python packages and the coding style and code docu-
mentation comply with the PEP8 and numpy docstring
standards, respectively. The documentation provided
includes instructions on the installation and use as well
as examples of high-level and low-level use and integra-
tion with existing code.

EvalNE can be used both as a command line tool
and an API. As a command line tool, the framework
requires as input a configuration file defining a com-
plete experimental setup, from methods to evaluate to
networks, edge splits and parameters to be tuned. For
convenience, several pre-filled configuration files which
reproduce the experimental sections of influential pa-
pers on NE are provided as examples. Users can create

new files defining their own evaluations (e.g. by adding
new methods or different networks) and share them in
order to ensure the reproducibility of results.

When used as an API, the framework exposes
a modular design with blocks providing independent
and self contained functionalities which can be easily
exploited. The user interacts with the library trough an
evaluator object which integrates all the building blocks
and orchestrates the evaluation pipelines. As an API
EvalNE provides users with access to more advanced
capabilities and more flexible evaluation workflows.

4 Experiments

In this section we seek to prove the simplicity and
usefulness of our evaluation framework. To this end
we have selected four papers from the NE literature,
i.e. Node2vec, PRUNE, CNE and SDNE and replicated
their experimental setups. We have also conducted a
series of experiments in which we compare our edge
set selection algorithm to the naive approach. We
performed these comparisons in terms of both scalability
and link prediction accuracy. All experiments were run
on a single machine equiped with a Intel R© CoreTM i5
processor and 16GB of RAM.

4.1 Experimental setups Next, we present the
main characteristics of the experimental settings we
have replicated and some important remarks:

Node2vec [10]: In this work the authors evalu-
ate the following embedding methods and link predic-
tion heuristics: Node2vec, DeepWalk [22], LINE [23],
Spectral Clustering [24], CN, JC, AA, and PA. Experi-
ments are performed on the Facebook [17], PPI [10], and
AstroPh[17] datasets with 50-50 train-test splits. The
same number of edges and non-edges are used through-
out the experiment. The results are reported in terms of
AUC-ROC and the edge embedding methods used are
average, Hadamard, weighted L1 and weighted L2.

PRUNE [15]: This experimental setup includes
Node2vec, DeepWalk, LINE, SDNE, PRUNE and
NRCL [27]. The networks used are HepPH [17], FB-
wallpost [25] and Webspam and the train-test fraction
is 0.8 with similar sizes of the non-edge sets. The node
to edge embedding operator used is not reported by the
authors and the results are presented in terms of AUC-
ROC. In this setting, the network used are directed.

CNE [13]: The evaluation setup in this case is sim-
ilar to that of Node2vec with the following differences:
CNE and Metapath2vec [5] methods are also evaluated;
BlogCatalog [30], Wikipedia [17] and StudentDB are in-
cluded in the list of evaluated networks and the results
are only reported for the Hadamard operator. It should
be noted that two authors of this paper are also authors

Dataset Category |V | |E|
Facebook Social 4039 88234
FB-wallpost Social 43953 262631
BlogCatalog Social 10312 333983
StudentDB Social 395 3423
HepPh Citation 34546 421578
AstroPh Collaboration 17903 196972
GR-QC Collaboration 4158 26844
PPI Biological 3852 37841
Wikipedia Language 4777 92295

Table 1: All the datasets used for evaluation.

of CNE, and to some degree the development of CNE in-
spired this work. However, the code used for evaluation
in that paper was completely separate.

SDNE [26]: The authors report in this case exper-
iments using the following methods: DeepWalk, LINE,
SDNE, GraRep [3], LapEig [1] and CN. The link predic-
tion experiments are performed on the GR-QC dataset
[17] with a 0.85 train-test fraction. The results are re-
ported only for the Hadamard operator and in terms
of precision@k for a collection of values between 2 and
10000. In this setup, the number of train non-edges is
the same as that of train edges while all the remaining
non-endges in the graph are used for testing.

In our experiments we have replicated these setting
with the following exceptions (1) for node2vec we did
not include spectral clustering and (2) for PRUNE we
could not obtain NRCL and lacked the computational
resources to evaluate the NE methods on the Webspam
dataset. In all cases we report the same metrics as the
original authors and average the results over five inde-
pendent executions. We used the open-world assump-
tion for the non-edges, logistic regression for binary clas-
sification and tuned the same hyper-parameters. All
experiments were run using specific configuration files
created for each setting which will be made public.

Regarding the implementations, we evaluated the
LP heuristics included in EvalNE; original code by the
authors for Deepwalk1 , Node2vec2, LINE3, PRUNE4,
CNE5, and Metapath2vec6, and for the remaining ones,
the implementations in the OpenNE7 library. Table 1
contains the main characteristics of all the networks
used. Network sizes are those corresponding to the main
(weakly) connected components of each graph.

1https://github.com/phanein/deepwalk
2https://github.com/aditya-grover/node2vec
3https://github.com/tangjianpku/LINE
4https://github.com/ntumslab/PRUNE
5https://bitbucket.org/ghentdatascience/cne/
6https://ericdongyx.github.io/metapath2vec/m2v.html
7https://github.com/thunlp/OpenNE

Facebook PPI AstroPh
CN 0.0226 0.0031 0.0189
JC 0.0134 0.0066 0.0178
AA 0.0245 0.0031 0.0189
PA 0.0242 0.0321 0.0393

Table 2: Absolute difference in recall between results
obtained using the naive and proposed edge split.

4.2 Evaluation results For each of the experimen-
tal settings reproduced we present a table containing
the original values reported in the paper, and in paren-
theses the difference between our result and these values
(Tables 3–6). Positive values in parentheses, thus, indi-
cate that our results are higher than the ones reported
in the original papers by that margin, while negative
values indicate the opposite.

The results obtained show that our experiments
align fairly well with those reported in the CNE and
PRUNE papers. The only exception is the result of
Metapath2vec on the Facebook dataset, which substan-
tially differs from the CNE paper. For Node2vec and
SDNE, the differences are larger and occasionally severe
(differences over 0.15 are marked in bold in all tables).
Possible explanations for these inconsistencies are the
use of different implementations of NE methods, differ-
ent not reported default parameters or the use of par-
allelization. In addition, we have also observed impor-
tant differences when computing the AUC-ROC directly
from class labels or from class probabilities. In order to
reproduce the CNE experiments we used class probabil-
ities, while for Node2vec we used class labels as seem to
have been done by the original authors.

These results illustrate the need to: (a) create re-
producible pipelines for experiments, and (b) report
specifics about the parameter settings and precise im-
plementations used in the evaluation.

4.3 Edge sampling We compared the proposed edge
and non-edge sampling strategy in terms of accuracy
and scalability to the naive approach. For the accuracy
experiment we selected the Facebook, PPI, and AstroPh
datasets, and performed link predictions with the CN,
JC, AA, and PA heuristics. We collected all the metrics
available in EvalNE and computed for each the absolute
difference between the naive and proposed approach.
The recall presents the highest deviation, so we show
these results in Table 2. Although recall differs up to
0.0393, in this case it is traded off with precision. The
accuracy in this case differs only by 0.0154. For the
AUC-ROC, one of the most widely used metrics, the
maximum deviation is of 0.015 reached on the AstroPh
dataset by the PA heuristic. Across methods and

Facebook PPI AstroPh
CN 0.81 (+0.14) 0.71 (+0.06) 0.82 (+0.13)
JC 0.88 (+0.04) 0.70 (+0.04) 0.81 (+0.12)
AA 0.83 (+0.13) 0.71 (+0.06) 0.83 (+0.12)
PA 0.71 (+0.04) 0.67 (+0.13) 0.70 (+0.08)
DeepWalk 0.72 (−0.01) 0.69 (+0.08) 0.71 (+0.01)

Avg. LINE 0.70 (−0.03) 0.63 (+0.12) 0.65 (+0.14)
node2vec 0.73 (−0.01) 0.75 (−0.01) 0.72 (−0.02)
DeepWalk 0.97 (−0.03) 0.74 (−0.2) 0.93 (−0.12)

Had. LINE 0.95 (−0.06) 0.72 (−0.01) 0.89 (+0.05)
node2vec 0.97 (0.0) 0.77 (−0.17) 0.94 (−0.05)
DeepWalk 0.96 (−0.01) 0.60 (+0.14) 0.83 (+0.09)

W L1 LINE 0.95 (−0.33) 0.70 (−0.01) 0.88 (−0.28)
node2vec 0.96 (−0.01) 0.63 (−0.03) 0.85 (+0.03)
DeepWalk 0.96 (−0.01) 0.61 (+0.14) 0.83 (+0.09)

W L2 LINE 0.95 (−0.33) 0.71 (−0.02) 0.89 (−0.27)
node2vec 0.96 (0.0) 0.62 (−0.02) 0.85 (+0.03)

Table 3: Reported AUC-ROC values in the node2vec paper and difference to our reproduced values.

DeepWalk LINE Node2vec SDNE PRUNE
HepPh 0.80 (−0.05) 0.80 (−0.09) 0.81 (−0.05) 0.75 (−0.04) 0.86 (−0.03)
FB-wallpost 0.83 (+0.01) 0.78 (+0.09) 0.85 (−0.09) 0.86 (−0.02) 0.88 (−0.01)

Table 4: Reported AUC-ROC values in the PRUNE paper and difference to our reproduced values.

Facebook PPI AstroPh BlogCatalog Wikipedia StudentBD
CN 0.97 (+0.01) 0.77 (0.0) 0.94 (+0.01) 0.92 (+0.01) 0.84 (0.0) 0.42 (−0.01)
JS 0.97 (+0.01) 0.76 (0.0) 0.94 (+0.01) 0.78 (0.0) 0.50 (−0.01) 0.42 (−0.01)
AA 0.98 (0.0) 0.77 (+0.01) 0.94 (+0.01) 0.93 (0.0) 0.86 (+0.01) 0.42 (−0.01)
PA 0.83 (+0.01) 0.89 (+0.01) 0.86 (+0.01) 0.95 (0.0) 0.91 (+0.01) 0.91 (+0.01)
DeepWalk 0.98 (0.0) 0.64 (+0.01) 0.92 (+0.01) 0.61 (−0.01) 0.56 (0.0) 0.76 (+0.03)
LINE 0.95 (0.0) 0.75 (+0.01) 0.98 (0.0) 0.76 (+0.01) 0.71 (0.0) 0.86 (−0.02)
Node2vec 0.99 (0.0) 0.68 (+0.02) 0.97 (0.0) 0.73 (−0.05) 0.67 (−0.08) 0.83 (0.0)
Metapath 0.74 (+0.17) 0.85 (0.0) 0.83 (+0.02) 0.91 (0.0) 0.83 (+0.02) 0.92 (−0.01)
CNE(unif.) 0.99 (0.0) 0.89 (+0.01) 0.99 (0.0) 0.92 (+0.01) 0.84 (0.0) 0.93 (0.0)
CNE(deg.) 0.99 (0.0) 0.91 (0.0) 0.99 (0.0) 0.96 (0.0) 0.92 (−0.01) 0.94 (0.0)

Table 5: Reported AUC-ROC values in the CNE paper and difference to our reproduced values.

prec@100 prec@200 prec@300 prec@500 prec@800 prec@1000 prec@10000
SDNE 1 (0.0) 1 (0.0) 1 (+0.01) 0.99 (0.0) 0.97 (+0.03) 0.91 (+0.09) 0.25 (−0.12)
LINE 1 (0.0) 1 (0.0) 0.99 (+0.01) 0.93 (+0.06) 0.74 (+0.26) 0.79 (+0.11) 0.21 (−0.13)
DeepWalk 0.6 (+0.40) 0.55 (+0.45) 0.44 (+0.56) 0.34 (+0.65) 0.29 (+0.70) 0.29 (+0.71) 0.15 (+0.01)
GraRep 0.04 (+0.96) 0.03 (+0.97) 0.03 (+0.97) 0.04 (+0.96) 0.03 (+0.97) 0.03 (+0.97) 0.19 (+0.16)
CN 1 (0.0) 0.96 (+0.03) 0.96 (+0.03) 0.98 (0.0) 0.87 (+0.05) 0.79 (+0.09) 0.19 (0.0)
LapEig 0.93 (+0.07) 0.85 (+0.15) 0.82 (+0.17) 0.66 (+0.34) 0.46 (+0.53) 0.39 (+0.48) 0.05 (+0.15)

Table 6: Reported precision@k values in the SDNE paper and difference to our reproduced values.

datasets, the results obtained with the naive approach
were slightly higher than those using our method.

Regarding the scalability experiments, in Figure 2
we summarize the execution time in seconds of both
methods on four different datasets. This experiment

shows that the proposed method is several order of mag-
nitude faster than the naive approach and independent
on the number of train and test edges required. The
execution time of the naive approach decreases, as ex-
pected, as the number of test edges requested becomes

0.4 0.5 0.6 0.7 0.8 0.9
Proportion or train edges

10 1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(s

ec
.)

StudentDb Facebook GrQc PPI

Figure 2: Execution times of proposed and naive edge
split methods w.r.t. proportion of train edges. Solid
lines correspond to the proposed sampling method,
while dashed lines correspond to the typically used
(naive) sampling method.

smaller. In Figure 3 we select the BlogCatalog dataset
and restrict it to sub-graphs of different number of nodes
ranging from 400 up to 10000. The execution times us-
ing both sampling strategies are reported in Figure 3.

For our proposed strategy we have also evaluated
the variance observed in the performance metrics for
different number of repetitions of the experiments (or
equivalently, the effect of averaging the results over
different number of edge splits). In this case we used
the same datasets, NE methods and LP heuristics as
in the node2vec experiment and 50-50 and 90-10 train-
test splits. We compared the results obtained in a
single run with those averaged over five independent
runs for both split fractions. For the 50-50 split the
average difference observed over all methods, datasets
and metrics is 3.4 · 10−3 with a variance of 1.8 · 10−5

and a maximum difference of 0.0293. For the 90-10
split, the average difference is 3.0 · 10−3 the variance of
1.0 ·10−5 and maximum difference 0.0186. These results
indicate that a single train and test split already gives a
sufficiently good estimate of the generalization error of
the models. Thus, experiment repeats are not necessary
for networks of similar sizes. These observations seem
to hold for different train-test split fractions.

Finally, we study the effect of the train-test split
sizes on the method results. We use an indentical setting
as described above and compare the absolute difference
of the results obtained using a 50-50 split with those
obtained using a 90-10. The average difference across
all methods, datasets and metrics is 0.038, the variance

0 2000 4000 6000 8000 10000
Number of graph nodes

10 2

10 1

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(s

ec
.)

Proposed edge split
Naive edge split

Figure 3: Execution times of proposed and naive edge
split methods on sub-graphs of BlogCatalog of increas-
ing sizes. The results are reported for a 50-50 train-test
split.

0.0016 and maximum difference 0.2429. This indicate
that, in general, the train-test split size has indeed a
strong impact on the method results.

5 Conclusions

The recent surge of research in the area of network em-
beddings has resulted in a wide variety of data sets,
metrics, and setups for evaluating and comparing the
utility of embedding methods. Comparability across
studies is lacking and not all evaluations are equally
sound. This highlights the need for specific tools and
pipelines to ensure the correct evaluation of these meth-
ods. Particularly, the use of representation learning for
link prediction tasks requires train and test sampling,
non-edge sampling, and in many cases selection of edge
embedding methods and binary classifiers. The eval-
uation procedure, thus, becomes an ensemble of tasks
which allow for many errors or inconsistencies.

In this work we have proposed EvalNE, a novel
framework that can be used to evaluate any network
embedding method for link prediction. Our pipeline
automates the selection of train and test edge sets,
simplifies the process of tuning model parameters and
reports the accuracy of the methods according to many
criteria. Our experiments highlight the importance
of the edge sampling strategy and parameter tuning
for evaluating NE methods. We have also introduced
a scalable procedure to sample edge sets from given
networks and showed empirically that is orders or
magnitude faster than the naive approach that has been
used in recent literature.

References

[1] M. Belkin and P. Niyogi, Laplacian eigenmaps and
spectral techniques for embedding and clustering, in
Proc. of NIPS, 2002, pp. 585–591.

[2] A. Broder, Generating random spanning trees, in
Proc. of FOCS, 1989, pp. 442–447.

[3] S. Cao, W. Lu, and Q. Xu, GraRep: Learning graph
representations with global structural information, in
Proc. of CIKM, 2015, pp. 891–900.

[4] H. Chen, B. Perozzi, R. Al-Rfou, and S. Skiena,
A Tutorial on Network Embeddings. arXiv:1808.02590,
2018.

[5] Y. Dong, N. V. Chawla, and A. Swami, Metap-
ath2vec: Scalable representation learning for hetero-
geneous networks, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’17, New York, NY,
USA, 2017, ACM, pp. 135–144.

[6] T. Fawcett, ROC graphs: Notes and practical consid-
erations for researchers, tech. rep., 2004.

[7] M. Gao, L. Chen, X. He, and A. Zhou, Bine:
Bipartite network embedding, in Proc. of SIGIR, 2018,
pp. 715–724.

[8] D. Garcia-Gasulla, C. U. Cortes, E. Ayguade,
and J. J. Labarta, Evaluating link prediction on large
graphs, in Proc. of CAAI, 2015, pp. 90–99.

[9] P. Goyal and E. Ferrara, Gem: A python package
for graph embedding methods, JOSS, 3 (2018), p. 876.

[10] A. Grover and J. Leskovec, node2vec: Scalable
feature learning for networks, in Proc. of KDD, 2016,
pp. 855–864.

[11] A. A. Hagberg, D. A. Schult, and P. J. Swart,
Exploring network structure, dynamics, and function
using networkx, in Proceedings of the 7th Python in
Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, eds., Pasadena, CA USA, 2008, pp. 11 –
15.

[12] W. L. Hamilton, R. Ying, and J. Leskovec, Rep-
resentation learning on graphs: Methods and applica-
tions. arXiv:1709.05584, 2017.

[13] B. Kang, J. Lijffijt, and T. De Bie, Conditional
Network Embeddings. arXiv:1805.07544, 2018.

[14] B. Kotnis and V. Nastase, Analysis of the impact
of negative sampling on link prediction in knowledge
graphs, CoRR, abs/1708.06816 (2017).

[15] Y.-A. Lai, C.-C. Hsu, W. H. Chen, M.-Y. Yeh,
and S.-D. Lin, Prune: Preserving proximity and global
ranking for network embedding, in Proc. of NIPS, 2017,
pp. 5257–5266.

[16] J. Leskovec and C. Faloutsos, Sampling from large
graphs, in Proc. of KDD, 2006, pp. 631–636.

[17] J. Leskovec and A. Krevl, SNAP Datasets: Stan-
ford large network dataset collection. http://snap.

stanford.edu/data, June 2014.
[18] R. N. Lichtenwalter and N. V. Chawla, Link

prediction: Fair and effective evaluation, in Proc. of
ASONAM, 2012, pp. 376–383.

[19] L. Lü and T. Zhou, Link prediction in complex
networks: A survey, Physica A, 390 (2011), pp. 1150–
1170.

[20] V. Mart́ınez, F. Berzal, and J.-C. Cubero, A
survey of link prediction in complex networks, ACM
Comp. Surv., 49 (2016).

[21] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu,
Asymmetric transitivity preserving graph embedding, in
Proc. of KDD, 2016, pp. 1105–1114.

[22] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk:
Online learning of social representations, in Proc. of
KDD, 2014, pp. 701–710.

[23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan,
and Q. Mei, LINE: Large-scale information network
embedding, in Proc. of WWW, 2015, pp. 1067–1077.

[24] L. Tang and H. Liu, Leveraging social media networks
for classification, Data Mining and Knowledge Discov-
ery, 23 (2011), pp. 447–478.

[25] B. Viswanath, A. Mislove, M. Cha, and K. P.
Gummadi, On the evolution of user interaction in
facebook, in Proceedings of the 2nd ACM SIGCOMM
Workshop on Social Networks (WOSN’09), August
2009.

[26] D. Wang, P. Cui, and W. Zhu, Structural deep
network embedding, in Proc. of KDD, 2016, pp. 1225–
1234.

[27] X. Wei, L. Xu, B. Cao, and P. S. Yu, Cross view
link prediction by learning noise-resilient representa-
tion consensus, in Proc. of WWW, 2017, pp. 1611–
1619.

[28] D. B. Wilson, Generating random spanning trees
more quickly than the cover time, in Proc. of STOC,
1996, pp. 296–303.

[29] Y. Yang, R. N. Lichtenwalter, and N. V.
Chawla, Evaluating link prediction methods, KAIS, 45
(2015), pp. 751–782.

[30] R. Zafarani and H. Liu, Social computing data
repository at ASU, 2009.

[31] D. Zhang, J. Yin, X. Zhu, and C. Zhang, Network
representation learning: A survey. arXiv:1801.05852,
2018.

