CEUR-WS.org/Vol-2447/paper3.pdf

Foundations to Query Labeled Property Graphs
using SPARQL"
Olaf Hartig

Dept. of Computer and Information Science (IDA), Linképing University, Sweden
olaf.hartig@liu.se

Abstract The RDF*/SPARQL" approach extends RDF and SPARQL
with means to capture and to query annotations of RDF triples, which
is a feature that is natively available in graph databases modeled as
Labeled Property Graphs (LPGs). Hence, the approach presents a step
towards making the different graph database models interoperable. This
paper takes this step further by providing a solid theoretical foundation
for converting LPGs into RDF* data and for querying LPGs using the
query language SPARQL". Regarding the latter, the contributions in this
paper consider approaches that materialize the RDF* representation of
the LPGs into an RDF*enabled triplestore as well as approaches in which
the queried LPGs may reside in an LPG-specific database system.

1 Introduction

Modern graph database systems can be broadly categorized into two classes:
One of these classes comprises systems—called triplestores—that support the
Resource Description Framework (RDF) [2] and its query language SPARQL [3].
The foundation of RDF is an abstract data model that represents graph data
as triples of the form (subject, predicate, object). A set of such RDF triples is
called an RDF graph and it may be illustrated as a directed, edge-labeled mul-
tigraph. The systems in the other class support some form of so-called Property
Graphs [7], which are directed multigraphs in which nodes and edges may be
associated with a set of key-value pairs, called properties. In the most prevalent
form of these graphs—called Labeled Property Graphs (LPGs)—the nodes and
edges may additionally have labels. Hence, the data that the systems in these
different classes manage takes different forms, and there are different query lan-
guages for these different forms of graph data. The overall goal of our research
is to make these different forms of graph data interoperable.

To this end, in earlier work [5,4] we have introduced an extension of RDF with
a notion of key-value-based annotations for triples. These annotations resemble
an important feature of LPGs which is not available natively in the RDF data
model, namely, the notion of edge properties. Our extension of RDF, which we
call RDF* supports annotations of triples by allowing users to nest RDF triples.
That is, in RDF* nested triples may be used to annotate another triple by
directly mentioning this other triple as their subject or their object. Analogous
to RDF* we have extended the RDF query language SPARQL. Our extension,
called SPARQIL, enables users to natively express queries for nested RDF* data.

Copyright © 2019 for this paper by its author. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

—n ick™) ¥ mentioned
name = %tanley Kubrick’ Kubrick Welles | name = "Orson Welles" |
birthyear = 1928 .
g influencedBy A

\/significance =0.8

Figure 1. A Labeled Property Graph (LPG) with two nodes and two edges.

In addition to extending RDF and SPARQL, we envision that RDF* and
SPARQL may also serve as the foundation of a conceptual mediator layer for
integrating RDF data and LPGs, and for using SPARQL" as a common query
language. In this context, this paper focuses on the following research question:

How can the query language SPARQL" be used to query LPGs?

We address this question by providing a solid theoretical foundation for con-
verting LPGs into RDF* data and for querying LPGs using SPARQL*. Regarding
the latter, the contributions in this paper consider approaches that materialize
the RDF* representation of the LPGs in an RDF*enabled triplestore! as well as
approaches in which the queried LPGs may reside in an LPG system.

As a basis of this work we introduce a customizable mapping from the LPG
model to the RDF* data model. The idea of the mapping is simple: Every
edge (including its label) in a given LPG is represented as an ordinary RDF
triple in the resulting RDF* data; the same holds for the label of every node, as
well as for every node property. Every edge property is represented as a nested
triple that contains as its subject the triple representing the corresponding edge.

Ezample 1.1. An RDF*representation (given in Turtle* format [5]) that is the re-
sult of applying the proposed mapping to the LPG in Figure 1 is given as follows:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix p: <http://example.org/property/> .
Q@prefix r: <http://example.org/relationship/> .

:bl rdfs:label "Kubrick" .

:bl p:name "Stanley Kubrick" .

:bl p:birthyear 1928 .

:b2 rdfs:label "Welles" .

:b2 p:name "Orson Welles" .

_:b2 r:mentioned _:bl .

<<_:bl r:influencedBy _:b2>> p:significance 0.8 .

We emphasize that, while in this example the two nodes of the LPG have
been mapped to RDF blank nodes (as represented by the symbols _:b1 and _:b2
in the given Turtle* serialization), our proposed mapping also allows users to
specify that LPG nodes are mapped to IRIs. Similarly, the mapping gives users
the freedom to define patterns for generating IRIs that denote property names
and edge labels, respectively. These IRIs become the predicates of triples in the

! Based on RDF*to-RDF and SPARQL*“to-SPARQL mappings in our earlier work [4],
it is even possible to use triplestores that do not yet support RDF* and SPARQL"

resulting RDF* data (e.g., such as http://example.org/property/birthyear in
the example). Furthermore, node labels can be defined to be mapped either to
literals (as in the example—e.g., "Kubrick") or to IRIs.

Ezxample 1.2. Given the concepts in this paper, the LPG in Figure 1 may also
be queried using SPARQL queries such as the following (prefix decl. omitted).

SELECT ?n 7s WHERE { 7k p:name "Stanley Kubrick" .
<<?k r:influencedBy ?x>> p:significance 7s .
?X p:name ?n . }

Contributions. We make the following concrete contributions in this paper:

1. We introduce a user-configurable direct mapping from LPGs to the RDF*
data model, and we provide a formal definition of this mapping. (Section 3)
2. We show that, for edge-unique LPGs (cf. Definition 4.3), our mapping is
information preserving, which is the desirable property of being able to con-
vert any resulting RDF* data back into an LPG that is equivalent to the
original LPG used as input to the mapping. (Section 4)
3. We define a user-configurable formal semantics for evaluating SPARQL*
queries directly over any LPG, including LPGs that are not edge-unique.
Hence, based on this semantics, LPGs can be queried using SPARQL" with-
out converting them into RDF* data first. (Section 5)
4. We show that our new LPG-specific query semantics coincides with the
RDF*based semantics defined in our earlier work [5]. (also Section 5)

2 Preliminaries

Before focusing on the aforementioned contributions, we need to define the rele-
vant notions of RDF*/SPARQL* and the notion of LPGs that we use in this pa-
per. We begin with the structural part of the RDF* data model. Thereafter, we
define the SPARQLF query language by introducing a syntax and a formal query
semantics over the RDF* data model. In the end of this section, we define LPGs.

2.1 RDF*

The RDF* data model is an extension of the RDF data model [2]. Consequently,
we assume three pairwise disjoint, countably infinite sets: Z (IRIs), B (blank
nodes), and £ (literals). As usual, a tuple (s,p,0) € (ZUB) xZ x (ZUBUL) is
an RDF triple and a set of RDF triples is called an RDF graph [2].

RDF* extends the notion of such triples by permitting a form of nesting; i.e.,
a triple may have another triple in its first or its third position. Such nesting may
be arbitrarily deep. Formally, an RDF* triple is defined recursively as follows [5].

Definition 2.1 (RDF* triple). An RDF* triple is a 3-tuple such that:
1. Every RDF triple is an RDF* triple.

2. Let t and ¢’ be RDF* triples; for every s € (ZUB),p€ Z and o € (ZUBUL),
the tuples (¢,p,0), (s,p,t) and (¢, p,t") are RDF* triples.

To denote the (infinite) set of all RDF* triples we write T*. Moreover, for
any RDF* triple t = (s,p,0) we write Elmts’(t) to denote the set of all the
RDF terms (IRIs, blank nodes, and literals) and all the RDF* triples that occur
within ¢; i.e., Elmts'(t) = {s,p,0} U {z € Elmts"(¢') | ¢’ € {s,0} N T*}.

Ezample 2.1. Consider the two RDF* triples ¢; = (ex:Bob, ex:knows, ex:Alice) and
to = (1, ex:certainty, 0.8). Notice that ¢; is an ordinary RDF triple (i.e., a non-
nested RDF* triple) whereas to is a nested RDF* triple. We have that

Elmts"(t;) = {ex:Bob, ex:knows, ex:Alice}, and

Elmts+(t2) = {ex:Bob, ex:knows, ex:Alice, {1, ex:certainty, 0.8}.

Similar to the notion of an RDF graph, we refer to a set of RDF* triples as an
RDF* graph. For each such graph G we write T1(G) to denote the set of all RDF*
triples that recursively occur in G, i.e., THG) = GUU,cq (ElInts+(t) NTY.

Ezample 2.2. Recall the triples ¢; and t; of Example 2.1, and consider an RDF*
graph G that only contains to; i.e., G={t2}. Then, it holds that TH(G) ={t1,t2}.

2.2 SPARQL*

SPARQLris an RDF*aware extension of the RDF query language SPARQL. The
basic building block of SPARQL queries is a basic graph pattern (BGP); that
is, a finite set of triple patterns, where a triple pattern is a tuple of the form
(s,p,0) € (WUIUL) x (VUI) x (VUZUL) with V being a set of query variables
that is disjoint from Z, B, and L, respectively. On top of BGPs, SPARQL provides
many other query operators which are defined based on an algebra [3,6].
SPARQLF extends these concepts by adding the possibility to nest triple pat-
terns. The resulting notion of a triple* pattern is defined recursively as follows [5].

Definition 2.2 (triple* pattern). A triple* pattern is a 3-tuple such that:

1. Any triple pattern is a triple* pattern.

2. Let tp and tp’ be triple* patterns; for every s € (WUZUL), p € (VUZ) and
o€ (VUZIUL), tuples (tp, p,0), (s,p,tp) and (tp,p,tp’) are triple* patterns.

Similar to the notion of a BGP, we call any finite set of triple* patterns a
BGP*. Note that, by this definition, every ordinary BGP is also a BGP* While
our technical report defines more expressive types of SPARQIL* queries [5] (in-
cluding a complete extension of the W3C specification of SPARQL), in this pa-
per we focus on the BGP* fragment of SPARQIL. However, based on our earlier
work [4,5], the results in this paper trivially extend to full SPARQL"

To define a formal semantics of SPARQL* queries, we recall that the semantics
of SPARQL queries is defined based on the notion of solution mappings [3,6].
For SPARQLF we extend this notion to so-called solution* mappings that may
bind variables not only to IRIs, blank nodes, or literals, but also to RDF* triples.
Hence, a solution* mapping p is a partial mapping p:)V + (T*UI UuBU E).

Given a solution* mapping p and a triple* pattern ¢p, we write p[tp] to denote
the triple* pattern obtained from ¢p by replacing the variables in ¢p according
to p (variables that are not in dom(u) are not replaced). By extension, for any
solution* mapping y and BGP* B, we define pu[B] = Uy, p pltp]-

Now we are ready to define an evaluation function that formalizes the se-
mantics of SPARQL* queries over RDF* graphs.

Definition 2.3 (evaluation). Let B be a BGP*and G be an RDF* graph. The
evaluation of B over G, denoted by [B]g, is a set of solution* mappings:

[Ble = {n | dom(u) = Uy,epvars(tp) and p[B] € TH(G) },

where vars(tp) is the set of all variables in a triple* pattern tp = (s,p,0), i.e.,
vars(tp) = ({s,p, o} NV)U{zevars(tp’) | tp’ €{s,0} and tp'is a triple* pattern}.

Ezample 2.3. Consider the three triple* patterns tp; = (ex:Bob,ex:knows, 7x),
tpa = (tp1, ex:certainty, ?¢), and tps = (7t, ex:certainty, 7¢). Then, given the RDF*
graph G = {t} of Example 2.2, we obtain the following query results.

[{tri}]le = {p} where p = {72 — ex:Alice},
[{tp2}]lc = {p} where p = {72 — ex:Alice, 7¢ — 0.8},

{tps}tle = {p} where p = {7t — t1,7c — 0.8}.

2.3 Labeled Property Graphs

There exist several proposals to define the notion of a Labeled (or unlabeled)
Property Graph formally. For our work in this paper we adopt the following defi-
nition of Angles et al. [1], which assumes three infinite countable sets: Labels (la-
bels), Props (property names), and Values (property values).

Definition 2.4 (LPG). An LPG is a tuple (V, E, p, A\, o) where:

— V is a finite set of vertices (or nodes);

— FE is a finite set of edges such that V N E = ();

— p: E— (V xV)is a total function;

— X: (VUE) — Labels is a total function;

o: (VUE) x Props - Values is a partial function.

Ezample 2.4. Figure 1 illustrates the LPG g = (V, E, p, A\, o) such that

V= {’I’LK,TLW}, E= {em7ei}7 p= {em - (TLW,TZK), € — (TZK,TLW)},

A= {nK — "Kubrick", nyw — "Welles",
em — "mentioned", €; — "influencedBy"}, and

o = {(nk, "name") — "Stanley Kubrick", (nk,"birthyear") — 1928,
(nW7 "name") — "Orson Welles", (ei, "significance") — 0.8}.

While the given definition of an LPG does not restrict the types of property
values, in this paper we assume that all values can be converted to distinct RDF
literals. More precisely, we assume a bijective function vm: Values — Lyajues Such
that Lyaes is a set of literals; i.e., Lyames C L and |Lvanes| = | Values|. Note that
this assumption rules out LPGs with property values that are of some form of
collection (e.g., lists). Hereafter, function vm is called the property value mapping
and its inverse is denoted by vm! (i.e., we have that vm™: Lyujes — Values).

3 Property Graph to RDF* Direct Mapping

This section formalizes our proposed mapping from LPGs to RDF* graphs. We
refer to such type of a mapping as an LPG-to-RDF* mapping which, formally,
is a function that maps from the set of all LPGs to the set of all RDF* graphs.

As illustrated in Example 1.1, the idea of our particular LPG-to-RDF* map-
ping is to represent each node of a given LPG either by a blank node or by an
IRI; each edge is represented as an ordinary (non-nested) triple whose subject
and object are the blank node or IRI of the adjacent LPG nodes and whose pred-
icate is an IRI that denotes the label of the edge; moreover, node labels and node
properties are also represented as ordinary triples, and edge properties are rep-
resented as nested triples whose subject is the triple for the corresponding edge.

To formally capture the option for users to customize the mapping by speci-
fying patterns for generating IRIs that denote LPG nodes, labels, and property
names we introduce the notion of an LPG-to-RDF* configuration.

Definition 3.1 (LPG-to-RDF* configuration). An LPG-to-RDF* configu-
ration is a tuple (nm, nlm, elm, pm, wjapel) Where:

— nm is a function, called node mapping, that maps every pair (g, n) consisting
of an LPG g = (V,E,p,\,0) and a node n € V to a blank node or an IRI
such that for every LPG g = (V, E,p, A\,0) and every pair of nodes n € V
and n’ € V' we have that nm(g,n) = nm(g,n’) if and only if n = n/,

— nlm is an injective function nim: Labels — Z U L called node label mapping,

— elm is an injective function elm: Labels — 7 called edge label mapping,

— pm is an injective function pm: Props — T called property name mapping,

— Ulabel is an IRIL.

Ezxample 3.1. The property name mapping assumed in Example 1.1 is a function
that, for any pn € Props, returns http://example.org/property/urlenc(pn) where
urlenc(pn) is the URL-encoding of the property name pn. Similarly, the edge
label mapping returns http://example.org/relationship/urlenc(?) for all £ € Labels.
Furthermore, the node mapping in the example returns blank nodes, the node
label mapping maps each label to a string literal, and the IRI wuj,pe is rdfs:label.

Now we have what we need to define the proposed LPG-to-RDF* mapping.

Definition 3.2 (direct LPG-to-RDF* mapping). Let ¢ = (nm, nlm, elm,
PM, Ujabel) be an LPG-to-RDF* configuration. The c-specific direct LPG-to-RDF*
mapping, denoted by dm{,g«, is an LPG-to-RDF* mapping that, for every LPG
g= (V,E,p,\ 0), maps g to an RDF* graph dm{,g«(9) = Gni U Ge U Gnp U Gep
that consists of the following four sets of RDF* triples:
={nl*n) |neV},

Ge = {€“Y(e) | e € E such that (e, pn) ¢ dom(c) for all pn € Props },

Ghp = {np 9(n,pn) | (n,pn) € dom(o) such that n € V }, and

Gep = {ep(e,pn) | (e,pn) € dom(c) such that e € E },

where
— nl®Y maps every node n € V to an RDF* triple

nl“9(n) = (nm(g,n), abel, Pim(A(n)));
— e%“9 maps every edge e € F with p(e) = (n,n’) to an RDF* triple
e“I(e) = (nm(g,n), elm(X(e)), nm(g,n’));
— np®Y maps every (n,pn) € dom(o) for which n € V' to an RDF* triple
np®(n,pn) = (nm(g,n), pm(pn), vm(a(n,pn)));
— ep®9 maps every (e,pn) € dom(o) for which e € E to an RDF* triple
ep™9(e, pn) = (e“¥(e), pm(pn), vm(a(e,pn))).

Example 3.2. As specified by Definition 3.2, the RDF* graphs resulting from the
proposed mapping consist of four subsets, Gni, Ge, Gnp, and Gep. For the RDF*
graph in Example 1.1, these subsets are the following (with b; € B and by € B):

Gni = {(by, rdfs:label, " Kubrick"), (ba, rdfs:label, " Welles") },
Ge 7{ ba, r:mentioned, by) },

(
(
{(bl, p:name, " Stanley Kubrick”), (b1, p:birthyear, 1928),
(b2, p:name, " Orson Welles” } and
(

{ (b1, riinfluencedBy, b2), p:5|gn|f|cance70.8)}.

4 Fundamental Properties of the Mapping

In this section we discuss several properties of the proposed mapping.

First, note that our notion of an LPG-to-RDF* configuration distinguishes
between node label mappings and edge label mappings (cf. Definition 3.1). While
the IRIs returned by an edge label mapping are used as predicates of triples
(see function e®? in Definition 3.2 and, for instance, set G. in Example 3.2),
a node label mapping specifies the objects to use in triples that capture node
labels (see function nl®? in Definition 3.2 and set G, in Example 3.2). Note
furthermore that, by the definition of node label mappings, such objects in triples

(o directed —
| name = "The Shining" |{ Film Director)| name = "Stanley Kubrick" |
. /. produced :

Figure 2. An LPG in which the node labels are used to capture type information.

for node labels do not need to be literals—as in the examples above—but they
may also be IRIs instead. A specific use case for the latter is to carry over type
information when mapping LPGs whose node labels represent types and to make
the semantics of this typing explicit in the resulting RDF* data.

Ezample 4.1. Consider the LPG in Figure 2 in which the node labels capture the
types of the respective nodes. We may use an LPG-to-RDF* configuration with
the same nm, elm, and pm as before (cf. Example 3.1). However, as node label
mapping nlm, we may use a function that, for every label ¢ € Labels, returns
the IRI http://example.org/type/urlenc(f), and as uiape) Wwe may use the IRI rdf:type.
Then, the result of applying the proposed mapping to the LPG in Figure 2 is
the following RDF* graph (with b, € B and bs € B):

G = {(by, rdf:type, http://example.org/type/Film), (b1, p:-name, " The Shining”),
(bo, rdf:type, http://example.org/type/Director), (b, p:name, " Stanley Kubrick"),
(ba, r:directed, b1), (ba, r:produced, by) }.

Given this resulting data and an accompanying ontology about relationships be-
tween the types and predicates used, it is now even possible to automatically infer
additional information using standard RDFS or OWL reasoning. For instance,
we may infer that Kubrick was not only a film director but also a film producer.

Another noteworthy (and desirable) property of the proposed mapping is
that the mapping is linear. More precisely, based on Definition 3.2 (see also
Properties 3a-3d in Note 1 below), it is easy to verify that, for every LPG g, the
size of the resulting RDF* graph dm{,z.(g) is linear in the size of g.

As a basis for discussing another property, consider the following example.

Ezample 4.2. Figure 3 illustrates a variation of the initial example LPG (cf.
Figure 1) in which we have two edges with the same label, connecting the same
nodes, but with different edge properties. The G, subset of the RDF* graph that
the proposed mapping would return in this case contains two nested triples:

Gep = {(t, p:src, "http://.../Kubr.html"), (¢, p:significance, 0.8)},

where ¢ denotes the triple (by, riinfluencedBy, b). Based on these two nested triples
it is not possible anymore to notice that this data captures two separate edges.
The mapping has collapsed the two edges into a single triple, namely, t.

The limitation revealed by the example indicates that there are cases in
which applying the proposed mapping results in a loss of some information.

\/src = "http://.../Kubr.html"]

— ick™) influencedBy)
gﬁtmheearitiglgg Kubrick J Kubrick Welles)| name = "Orson Welles" J
: Y influencedBy 2\ ‘

o

[significance = 0.8]

Figure 3. An LPG that is not edge-unique.

This observation brings us to the following question: In which cases does the
mapping guarantee to preserve all the information captured in the given LPG?

To answer this question formally, we need to define the information preserva-
tion property [8] for LPG-to-RDF* mappings. Informally, this property requires
the existence of another mapping based on which it is possible to convert any
resulting RDF* graph back into an LPG that is equivalent to the original LPG.
Since, by definition of the LPG model, the identity of nodes and edges is local to
any given LPG, we define equivalence of LPGs based on a structure-preserving
bijective mapping from nodes to nodes and from edges to edges.

Definition 4.1 (equivalence of LPGs). Two LPGs g = (V, E,p,\,0) and
g = (V' E p, N o) are equivalent, denoted by g = ¢/, if there exists a bijection
b: (VUE) — (V'UE') such that the following six properties holds:

for every n € V it holds that b(n) € V';

for every e € E it holds that b(e) € E';

for every e € E it holds that p'(b(e)) = (b(n),b(n’)) such that p(e) = (n,n’);
for every € (V U E) it holds that A\(z) = X (b(x));

for every (z,pn) € dom(o) it holds that o(z,pn) = o’(b(z), pn);

for every (z,pn) ¢ dom(o) it holds that (b(x), pn) ¢ dom(c’).

S G W=

Note that this notion of equivalence is symmetric; i.e, ¢’ = gif and only if g = ¢’

Based on this equivalence relationship, we now can define the information
preservation property. The following formal definition captures a notion of this
property that shall allow us to indicate that specific LPG-to-RDF* mappings
have this property only for designated subsets of all possible LPGs.

Definition 4.2 (information preservation of LPG-to-RDF* mappings).
Let P be a set of LPGs. An LPG-to-RDF* mapping m is information preserving
for P if there exits a mapping m’ from RDF* graphs to LPGs such that i) m’ is
computable and ii) for every g € P it holds that m’(m(g)) = g.

We shall show that our proposed LPG-to-RDF* mapping is information pre-
serving for LPGs that do not contain multiple distinct edges with the same head,
the same tail, and the same label. Hereafter, such LPGs are called edge-unique.

Definition 4.3 (edge unique). An LPG (V, E, p, A\, 0) is edge-unique if for
every pair of edges e, e’ € E with p(e)=p(e’), it holds that A(e)#A(e’) or e#¢€’.

Ezxample 4.3. While the LPGs illustrated in Figures 1 and 2 are edge-unique,
respectively, the LPG in Figure 3 is not edge-unique.

Now we have provided all the preliminaries for our first main technical result:

Proposition 1. Let ¢ = (nm, nlm, elm, pm, wape) be an LPG-to-RDF* configu-
ration such that uape ¢ img(pm), where img(pm) denotes the image of the prop-
erty name mapping pm. The c-specific direct LPG-to-RDF* mapping dm§ ,p. is
information preserving for the set of all LPGs that are edge-unique.

Proof (sketch). The idea to prove Proposition 1 is to construct an inverse of the
mapping dm{,g. as required by Definition 4.2. The crux is to use the inverse
vm! of the property value mapping vm (cf. Section 2.3) as well as the inverses of
the injective functions nim, elm and pm. Then, it is not difficult to construct the
required inverse mapping by taking into account the properties in Note 1 below.

Note 1. For every LPG g = (V, E, p, A\, 0), the following properties of the re-
sulting RDF* graph dm{,g.(g) follow trivially from Definition 3.2.

Property 1. The four subsets Gni, Ge, Gnp, and Ge, are pairwise disjoint.

Property 2. If wjape ¢ img(pm), then it is possible to decide for every RDF*
triple ¢ = (s,p,0) in the RDF* graph dm{,g.(g) whether ¢t € Gy, t € G,
t € Ghp, or t € Gep. That is,
— if p = jaber, then t € Gy
if s € T*, then t € Gep;
— if p % Wabel, s ¢ T*, and 0 € L, then ¢ € Gpp;
— if p # Wiabel, s € T5 and 0 ¢ L, then t € Ge.

Property 3a. The number of triples in Gy, is equivalent to the size of V. Hence,
for every node n € V, there exists a unique triple in Gy.

Property 3b. If g is edge-unique, then the number of triples in G, is equivalent
to the number of edges e € E for which there does not exist a pn € Props
such that (e, pn) ¢ dom(o).

Property 3c. The number of triples in G, is equivalent to the number of pairs
(n,pn) € dom(o) such that n € V.

Property 3d. If g is edge-unique, then the number of triples in Ge, is equivalent
to the number of pairs (e, pn) € dom(o) such that e € E. O

As a final remark we emphasize that, in practice, the limitation of edge
uniqueness may not be as limiting as it may seem. Information represented
by introducing multiple edges between nodes can also be modeled by using an
alternative, more explicit approach. For instance, the relationship captured by
each of the multiple edges may be modeled as a separate node.

5 Property Graph-based Query Semantics for SPARQL"

Our proposed LPG-to-RDF* mapping is sufficient as a formal foundation for
users who aim to query LPGs using SPARQL* after first converting the LPGs into
RDF* graphs. To also support use cases in which a conversion into RDF* graphs
is not desired or not practical, in this section we define a formal semantics for
evaluating SPARQLF queries directly over LPGs. Hence, this semantics provides

the foundation for implementations in which users express SPARQL" queries in
terms of a wvirtual RDF* view of an LPG that is stored in an LPG system.

Our approach to formalize the new LPG-specific query semantics in this sec-
tion is to first define an evaluation function for triple* patterns only. Thereafter,
we define the LPG-specific evaluation function for BGP* queries, which then
may easily be extended to full SPARQL" using exactly the same formalization as
used in our technical report [5] for the RDF*based semantics (cf. Section 2.2).

The idea of evaluating a triple* pattern tp over an LPG is to identify RDF*
triples that match ¢p and that exist in the virtual RDF* view of the LPG, where
this view is established by the same functions nl“?, €9, np©9 and ep®9 that we use
to define our LPG-to-RDF* mapping (Definition 3.2). The following definition of
an LPG-based evaluation function for triple* patterns captures this idea formally.

Definition 5.1 (evaluation of triple* patterns over LPGs). Let ¢ = (nm,
nlm, elm, pm, wjabel) be an LPG-to-RDF* configuration, tp = (s, p, 0) be a triple*
pattern, and g = (V, E, p, \, 0) be an LPG. The c-specific evaluation of tp over g,
denoted by [[tp]];, is a set of solution* mappings that is defined as

[[tp]]g =00 U2 U 2, U2, where
20 ={p | dom(u) = vars(tp) and there exists n € V' s.t. u[tp] = nl(n)},
2 ={p|dom(u) = vars(tp) and there exists e € E s.t. u[tp] = e“I(e)},
2, = {p | dom(p) = vars(tp) and
there exists (n,pn) € dom(o) s.t. n € V and p[tp] = np®I(n,pn)},
Np = {p | dom(p) = vars(tp) and
there exists (e,pn) € dom(o) s.t. e € E and ultp] = ep9(e, pn)}.

Ezample 5.1. Let g be the LPG in Figure 1 (as captured formally in Exam-
ple 2.4). If we use the LPG-to-RDF* configuration of Example 3.1 to evaluate
the three triple* patterns tp; = (?x, p:name, 7n), tps = (?y, riinfluencedBy, 7z), and
tps = (7, p:significance, 7s) over g, we get the following results (with by, by € B):

[tpi] = {u, 1’} where p = {?2 — by, ?n — "Stanley Kubrick” }

and p' = {7z — by, 7n — " Oscar Welles" },
[tpa]y = {n} where p = {7y — b1,72 = b2},
[tps]; = {u} where = {7t — (b1, r:influencedBy, ba), ?s — 0.8}.

We now define the LPG-specific evaluation function for BGP* queries in terms
of joins of the results obtained from the triple* patterns in the given BGP*

Definition 5.2 (LPG-specific evaluation). Let ¢ = (nm, nlm, elm, pm, wjapel)
be an LPG-to-RDF* configuration, B = {tp1,tpa,...,tpm} be a BGP* and
g = (V,E,p,\,0) be an LPG. The c-specific evaluation of B over g, denoted
by [B]g, is a set of solution* mappings that is defined as

[Blg = [tpalg » [tpelg > ... » [tom]g,
where the join of two sets {2 and (2’ of solution* mappings is defined as usual [5]:

Qu2={pup |peRand ' € 2 st. pand i are compatible [5] }.

Ezample 5.2. Consider the following BGP* consisting of three triple* patterns:

B = { ((?p1, r:influencedBy, ?p2), p:significance, 7s),
(?pl, p:name, ?nl), (?p2,p:name, ?n2) }.

If we use the LPG-to-RDF* configuration of Example 3.1 to evaluate B over
the LPG g in Figure 1, we obtain [B]j = {u} where u = {7pl — by, 7p2 — ba,
?nl — "Stanley Kubrick”, ?n2 — " Oscar Welles", ?s — 0.8} with b; € B and by € B.

A natural question at this point is whether it makes a difference in terms of
query results to use our new LPG-specific query semantics directly over an LPG
as opposed to converting the LPG into an RDF* graph and then using the query
semantics defined for the RDF* data model (as introduced in Section 2.2).

Our second main technical result shows that it makes no difference. More
precisely, the following proposition shows that query results under the new LPG-
specific query semantics coincide with the query results of the RDF*specific
semantics when applying our LPG-to-RDF* mapping in the context of the latter.

Proposition 2. For every LPG-to-RDF* configuration c, every BGP* B, and
every LPG g, it holds that [B]; = [B]a where dm§,.(g) = G.

Proof (sketch). To prove Proposition 2 it is sufficient to show that the semantics
coincide for triple* patterns. Then, the fact that the semantics coincide for every
BGP* B = {tp1,tpa,...,tpm} follows from the following equivalence that holds
for every RDF* graph G:

[[B]]G = ﬂtpl]]c X [[tpg]]g X... X [[tpm]](;. (1)

Note that this equivalence can easily be shown based on Definition 2.3 and the
definition of the join operation for sets of solution mappings (cf. Definition 5.2).

To show that the semantics coincide for every triple* pattern tp, let ¢ be
an arbitrary LPG-to-RDF* configuration, g be an arbitrary LPG, and G be an
RDF* graph such that dm{,z.(9) = G. We have to show that [{tp}]; € [{tp}]c
and [{tp}]¢ 2 [{tp}]a- The crux of showing both of these subset relationships
is that both the four subsets G, Ge, Gnp and Gep in Definition 3.2 and the four
subsets (2, {2¢, {2np and (2, in Definition 5.1 are defined in terms of the same
functions nl“9, %9, np®9 and ep9. O

6 Closing Remarks

Establishing a precise understanding of formal mappings and query semantics
as done in this paper is a necessary foundation to systematically develop solid,
practical approaches to make the different graph database models interoperable.
As a concrete next step, enabled by the work in this paper, we aim to develop
efficient algorithms that apply the proposed mapping to convert LPGs to RDF*
data and to use SPARQL" as a common query language.

Acknowledgments. The author’s work on this paper has been funded by the
CENIIT program at Linkoping University (project no. 17.05).

References

1.

2.

R. Angles, M. Arenas, P. Barcelé, A. Hogan, J. Reutter, and D. Vrgoc. Foundations
of Modern Query Languages for Graph Databases. ACM Comp. Surv., 50(5), 2017.
R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J. J. Carroll, and B. McBride.
RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, Feb. 2014.

. S. Harris, A. Seaborne, and E. Prud’hommeaux. SPARQL 1.1 Query Language.

W3C Recommendation, Mar. 2013.

O. Hartig. Foundations of RDF* and SPARQL* — An Alternative Approach to State-
ment-Level Metadata in RDF. In Proc. of the 11th AMW Workshop, 2017.

O. Hartig and B. Thompson. Foundations of an Alternative Approach to Reification
in RDF. CoRR, abs/1406.3399, 2014. Online: http://arxiv.org/abs/1406.3399.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Transactions on Database Systems, 34(3), 2009.

I. Robinson, J. Webber, and E. Eifrém. Graph Databases: New Opportunities for
Connected Data. O’Reilly Media, Inc., 2nd edition, 2015.

J. Sequeda, M. Arenas, and D. P. Miranker. On Directly Mapping Relational
Databases to RDF and OWL. In Proc. of the 21st World Wide Web Conf., 2012.

http://arxiv.org/abs/1406.3399

	Foundations to Query Labeled Property Graphs using SPARQL*
	Introduction
	Preliminaries
	RDF*
	SPARQL*
	Labeled Property Graphs

	Property Graph to RDF* Direct Mapping
	Fundamental Properties of the Mapping
	Property Graph-based Query Semantics for SPARQL*
	Closing Remarks

