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Abstract 
Mobile health (mHealth) and other highly pervasive, interac-
tive and adaptive digital systems offer an enormous oppor-
tunity for enabling theory-based health behavior-change in-
terventions that are replicable, scalable, and sustainable. Such 
advances could have great impact, and they offer great op-
portunities for advances in artificial intelligence (AI), psy-
chology, and social science. Unfortunately, the technical 
challenges of developing AI to support healthier behaviors 
generally fall into the category of “not suitable for machine 
learning.” This presentation will summarize recent research 
with the Fittle+ mHealth systems and predictive models of 
the daily effects of individual-level mHealth interventions. 
The models are developed in a computational cognitive ar-
chitecture and rely on Instance Based Learning Theory and 
ACT-R learning mechanisms. 

Introduction 
Mobile health (mHealth) systems offer an opportunity for 
pervasive support of health behavior change in the actual 
ecology of people’s everyday environments. Such advances 
could have vast impact since individual and social behavior, 
including poor diet, sedentary lifestyle, and social isolation 
are central to the etiology and management of many health 
outcomes, and yet are typically resistant to change (Klein et 
al., 2014).  It is estimated that 70% of health care costs are 
due to changeable behavior, and behavioral and environ-
mental factors account for more deaths than genetics (Riley, 
Nilsen, Manolio, Masys, & Lauer, 2015).  

However, the mHealth field is still relatively new and 
lacks integrated theories of long-term behavior change that 
address multiple interventions and a multiplicity of individ-
ual, social, and environmental factors. As with digital health 
interventions in general, mHealth systems suffer high attri-
tion rates (Eysenbach, 2005). However, recent research sug-
gests that mHealth systems that adapt to  the individual 
(Konrad et al., 2015; Pirolli, 2016), use evidence-based in-
terventions (Pirolli et al., 2018), and include online social 
support (Du, Venkatakrishnan, Youngblood, Ram, & 
Pirolli, 2016; Du, Youngblood, & Pirolli, 2014) reduce 

attrition and improve achievement of behavior change goals.  
Intelligent mHealth systems that utilize multiple ap-
proaches, automate personalization, and increase social sup-
port can be a scalable approach to current healthcare chal-
lenges.  

Novel computational theories of the psychological and 
social mechanisms of behavior change are needed in order 
to accelerate the development of mHealth systems so that 
they can help people build healthier lifestyles (Riley et al., 
2011; Spruijt-Metz et al., 2015).  In turn, we could use 
mHealth systems as experimental platforms for accelerated 
development of such theories. These theoretical and empir-
ical foundations would then provide a basis for intelligent 
interactive agents that reason about causal models of the dy-
namics of individual human behavior--models that enable 
the planning and delivery of interventions and assessments 
that optimize the acquisition and maintenance of healthy 
habits. 

Human Goal-Striving and Habit Formation 
 
An unhealthy lifestyle can be viewed, in part, as a complex 
set of interrelated habits that need to be switched out for 
healthy ones, a few tiny habits at a time (Fogg & Hreha, 
2010). Commercial and health-care provider weight loss 
programs can often involve months to years of counseling, 
which suggests thousands to tens of thousands of elementary 
habits being acquired (Feltovich, Prietula, & Ericsson, 
2006). The working assumption for our own mobile health 
research is that to master the complex fabric of a new 
healthy lifestyle, one must master and weave together a new 
set of elementary habits 

Unfortunately, modeling human behavior change and in-
tervening in ways that shape healthier habits is enormously 
challenging and not suitable for current machine learning 
approaches (Brynjolfsson & Mitchell, 2017). This presenta-
tion gives a theoretical approach and several computational 



models that provide an integrated account of multiple mech-
anisms associated with people striving to achieve healthier 
behavior and their long-term habit formation. Interestingly, 
the mechanisms modeled in health-behavior change are also 
implicated in well-known human cognitive biases (Lebiere 
et al., 2013) and, in a sense, the success of the interventions 
we have studied appears to be the result of taking advantage 
of those biases. 

I will present an overview of the Fittle+ mHealth systems 
(Pirolli et al., 2018)  that have been used to study several 
evidence-based behavior change interventions. These sys-
tems provide scaffolding interventions:  Behavior-change 
techniques and associated mHealth interactions (e.g., SMS 
reminders; chatbot dialogs; user interface functionality; etc.) 
that support the acquisition and maintenance of healthy hab-
its.   

I will present models developed in the ACT-R computa-
tional cognitive architecture (Anderson, 2007) that address 
data collected about individual-level daily achievement of 
behavioral goals for improved eating and exercise using Fit-
tle+ mHealth applications. The models refine the psycho-
logical constructs of  perceived goal difficulty, self-efficacy 
(Bandura, 1998) and intended effort (a kind of motivation) 
(Kukla, 1972). The models provide a plausible account of 
how intentions can lead to the initial effortful striving to 
carry out goals, how repeated execution of behaviors can be-
come automated habits, and how specific intervention tech-
niques support the development of habits. Together the 
models map a trajectory from initial effortful pursuit of a 
behavior-change goal to new stable habits.  

The motivation for developing these models is that they 
may serve as a foundation for intelligent mHealth interac-
tion algorithms. By developing these in a cognitive architec-
ture, the models are not only predictive, but provide insight 
as to the underlying causal mechanisms, which is necessary 
for reasoning about optimal personalized interventions that 
help people achieve healthy lifestyles. 
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