
GMRs: Reconciliation of Generic Merge
Requirements in Ontology Integration

Samira Babalou[0000−0002−4203−1329], Birgitta König-Ries[0000−0002−2382−9722]

Heinz-Nixdorf Chair for Distributed Information Systems
Institute for Computer Science, Friedrich Schiller University Jena, Germany

{samira.babalou,birgitta.koenig-ries}@uni-jena.de

Abstract. With growing popularity of ontologies as semantics-aware
integration solutions, various ontology merging methods have been
proposed. Each of them uses their own set of criteria to determine a
desirable merge result. In this work, we first categorize these criteria into
generic merge requirements (GMRs). Not all of these requirements can
be met simultaneously. We argue that users should be able to select those
requirements that are most important to them, but that system support
is required to determine a compatible set of requirements based on user
inputs. We propose a graph-theory based approach to determining such
sets.

Keywords: Ontology merging . Merge requirements . Graph theory

1 Introduction
An ontology is a formal explicit description of a domain. It contains a set
of entities including classes, properties, and instances. Given a set of input
ontologies and a set of correspondences between them, an ontology merging
process creates a new merged ontology. One aspect that various approaches to
ontology merging differ in is the set of criteria they aim to fulfill, i.e., what are
the requirements they expect the merged ontology to meet. We have conducted
an analysis of the literature and determined which criteria, here called generic
merge requirements (GMR), are used by different approaches. Our ultimate aim
is to provide a flexible merging approach, where users can actively choose which
requirements are important to them, instead of allowing only a very indirect
choice by picking the right merging method, something that is not transparent
to the user. Unfortunately, not all GMRs are compatible with each other. For
instance, one may want to preserve all classes contained in the original ontology
in the merged ontology. On the other hand, one could wish to achieve class
acyclicity. Likely, these goals conflict. Thus, once a user has chosen which GMRs
they consider important, a system is needed that is able to check whether these
are compatible and which other requirements can be met simultaneously.

In this paper, we take the first step towards this goal: We analyse the
literature to compile a list of GMRs, we provide first insights into their
compatibility and we describe a graph-theory based method for determining
maximal sets of compatible GMRs.

Ricardo Usbeck

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).�

𝑅𝑅12. Entailment deduction
satisfaction

Deduction
Logic Properties

Model Properties

Integrity
𝑅𝑅𝑅. Class preservation

𝑅𝑅𝑅. Property preservation

𝑅𝑅𝑅. Instance preservation

𝑅𝑅4. Correspondence preservation

Completeness

𝑅𝑅5. Correspondences’ Property
preservation

𝑅𝑅6. Property’s value preservation

𝑅𝑅7. Structure preservation

𝑅𝑅8. Class redundancy prohibition

𝑅𝑅9. Property redundancy
prohibition

𝑅𝑅𝑅𝑅. Instance redundancy
prohibition

Minimality

𝑅𝑅𝑅𝑅. Extraneous entity
prohibition

𝑅𝑅𝑅𝑅. Acyclicity in the property
hierarchy

𝑅𝑅18. Prohibition of properties
being inverses of themselves

Acyclicity

𝑅𝑅𝑅𝑅. Acyclicity in the class hierarchy

𝑅𝑅𝑅𝑅. One type restriction

𝑅𝑅14. Property value’s constraint

Constraint

𝑅𝑅𝑅𝑅. Property’s domain and
range oneness

𝑅𝑅𝑅𝑅. Unconnected property
prohibition

Connectivity

𝑅𝑅19. Unconnected class prohibition

GMRAspectLegend Dimension

Fig. 1: GMR classification

2 GMRs Overview and Classification

To discover the most commonly used GMRs, we have studied and analyzed three
different research areas including (i) ontology merging methods [1,2,3,6,7,10], (ii)
ontology merging benchmarks [4,9], and (iii) ontology engineering [5,8]. Overall,
we classify the GMRs according to three dimensions subdivided into different
aspects (see Fig. 1). The three dimensions we identified are:

– Integrity: This dimension refers to the degree of knowledge coverage in
the merge process via (i) the completeness aspect, and to the amount of
knowledge redundancy by (ii) the minimality aspect.

– Model Properties: Within this dimension, the principles of creating a new
ontology model are investigated. In this dimension, (i) acyclicity, and (ii)
connectivity satisfaction aspects are taken into account.

– Logic Properties: The inference of the expected knowledge with involved
constraints is analyzed in this dimension. This includes (i) deduction, and
(ii) constraint satisfaction aspects.

We determined six aspects that GMRs can be grouped into:

Completeness refers to knowledge preservation and coverage:

R1. Class preservation: Each class in (all/target) 1 input ontologies should have
a mapped class in the merged ontology [1,3,6,7,10].

R2. Property preservation: Each property from the (all/target) input ontologies
is explicitly in or implied by the merged ontology [7,10].

R3. Instance preservation: All instances of (all/target) input ontologies should
be preserved in the merged ontology [7,10].

R4. Correspondence preservation: If two entities of the input ontologies are
corresponding 2, both should map to the same merged entity in the merged
ontology [6,7,10].

1 Preserving all entities from all input ontologies or a preferred one.
2 This can be equality, similarity or is-a correspondences. In each case, the same type

of corresponding should be preserved.

R5. Correspondences’ property preservation: If any of the corresponding entities
from the input ontologies has a certain property, the merged entity should
also have this property [6,7].

R6. Property’s value preservation: Properties’ values from the (all/target) input
ontologies should be preserved in the merged ontology [6,7]. In case of
conflicts a resolution strategy is required.

R7. Structure preservation: If two entities are connected via a certain property
in an input ontology, their mapped entities in the merged ontology should be
connected via the respective mapped property [1], thus preserving the input
ontologies’ structures in the merged ontology.

Minimality refers to knowledge redundancy and controlling of semantic overlap:

R8. Class redundancy prohibition: A class from the (all/target) input ontologies
should have at most one mapping in the merged ontology [1,3,4,7,10].

R9. Property redundancy prohibition: A property from the (all/target) input
ontologies should have at most one mapping in the merged ontology [4].

R10. Instance redundancy prohibition: An instance from the (all/target) input
ontologies should have at most one mapping in the merged ontology.

R11. Extraneous entity prohibition: No additional entities other than input
ontologies’ entities should be added in the merged result [7].

Deduction refers to the deduction satisfaction with R12 :

R12. Entailment deduction satisfaction: The merged ontology is desirable to be
able to entail all entailments of the (all/target) input ontologies [2]. As the
semantic consequences of the integration, it can include more entailments
but it should at least not miss knowledge from the input ontologies.

Constraint reflects the satisfaction of the ontology constraints:

R13. One type restriction: Two corresponding entities should follow the same data
type [7]; e.g., if the range of author Id in one of the input ontology is
String and in the other one is Integer, then the range of the merged entity
author Id in the merged ontology cannot have both types.

R14. Property value’s constraint : If the (all/target) input ontologies place some
restriction on a property’s values (e.g., in terms of cardinality or by
enumerating possible values) this should be preserved without conflict in
the merged ontology [7].

R15. Property’s domain and range oneness: The merge process should not result
in multiple domains or ranges defined for a single property. This rule is recast
from the ontology modelling issues in [8].

Acyclicity refers to controlling the chain problem in the merged ontology:

R16. Acyclicity in the class hierarchy : A cycle of is-a relationships implies equality
of all of the classes in the cycle, since is-a is transitive. Therefore, the merge
process should not produce a cycle in the class hierarchy [1,3,5,7,8,10].

R17. Acyclicity in the property hierarchy : The merge process should not
produce a cycle between properties with respect to the is-subproperty-of
relationship [8].

R18. Prohibition of properties being inverses of themselves: The merged process
should not cause an inverse recursive definition on the properties [8].

Connectivity refers to the hierarchy connectivity satisfaction:

R19. Unconnected class prohibition: The merge process should not make the
classes unconnected [3,7]. Every class that had some connections in the input
ontologies before the merge process, should not be unconnected after merge
process in the merged ontology.

R20. Unconnected property prohibition: The merge process should not make the
properties unconnected [6,8]. Every property that had some connections in
the input ontologies before the merge process, should not be unconnected
after merge process in the merged ontology.

3 GMR Compatibility

Intuitively, not all GMRs are compatible, e.g., completeness and minimality are
difficult to achieve simultaneously. In our ongoing work, we are determining the
precise relationships. Typically, users will, however, not be interested in all of
them anyhow. Depending on the application they want to create an ontology for,
some GMRs might be important to them while others are only nice to have. We
therefore propose an approach that takes as input a set of user-selected GMRs,
namely U and an undirected graph G reflecting the relationship among GMRs.
G = (V, E), where V is the set of vertices representing the GMRs, and E is the
set of edges. Two GMRs are connected via an edge iff they are compatible.

Given the set U containing the GMRs the user is interested in, we find the
maximum subset of V containing all vertices out of U and no incompatible nodes.
This may not always be possible, since the user might have chosen incompatible
GMRs already. In this case, we search for a maximum subset of V that preserves
as many nodes out of U as possible and contains compatible nodes only.

Precisely, we recast the problem at hand as maximum clique extraction on G.
A clique is a set of fully connected vertices. We thus extract a compatible clique
KC-Clique, where K indicates the number of vertices in the clique, and C denotes
that the clique is compatible. KC-Clique includes compatible GMRs from U and
some additional compatible GMRs related to U ’s elements. KC-max-Clique, is a
clique containing at least K vertices that is not a subset of any other cliques. To
compute the KC-max-Clique, we use the CLIQUES algorithm in [11].

To illustrate our approach with an example, Fig. 2 left shows the graph G,
for six GMRs where U = {R2, R8, R11}. Based on this graph, three different
cliques have been extracted, in which the user-selected compatible GMRs, the
incompatible U ’s elements, and the additional compatible GMRs related to U
are indicated with green, red, and yellow circles, respectively. Two possible
represented 3C-Clique are compatible cliques however they are not a maximal
clique. The 4C-max-Clique is the best match to the U and indicates the maximal
compatible subset on the sketched G.

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟖𝟖 𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟒𝟒 𝑹𝑹𝟐𝟐

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟒𝟒

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟖𝟖

𝑹𝑹𝟐𝟐

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟒𝟒

𝑹𝑹𝟖𝟖

𝑹𝑹𝟐𝟐

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟒𝟒

𝑹𝑹𝟏𝟏𝟏𝟏

𝑹𝑹𝟐𝟐

𝑹𝑹𝟖𝟖

Fig. 2: From left to right: a graph G for six GMRs; two different compatible
3C-Clique; a compatible 4C-max-Clique.

4 Conclusion
There is a variety of generic merge requirements (GMR) in the ontology
engineering domain. We gathered the most common GMRs 3, and classified
them into three dimensions. Since not all GMRs can be fulfilled at the same
time, we propose an approach that allows users to specify the most important
GMRs for their specific task, then determines the maximal compatible subset
of GMRs. This result can then be used to select a proper merge method or to
parameterize a generic merge method. We are currently working on two aspects
of this problem: First, a systematic determination of GMR compatibility and
second the development of a generic, parameterizable merge method.

Acknowledgments. S. Babalou is supported by a scholarship from German
Academic Exchange Service (DAAD).

References
1. F. Duchateau and Z. Bellahsene. Measuring the quality of an integrated schema.

In ER, pages 261–273, 2010.
2. E. Jiménez-Ruiz, B. C. Grau, I. Horrocks, and R. Berlanga. Ontology integration

using mappings: Towards getting the right logical consequences. In ESWC, 2009.
3. S. P. Ju, H. E. Esquivel, A. M. Rebollar, and M. C. Su. Creado–a methodology to

create domain ontologies using parameter-based ontology merging techniques. In
MICAI, 2011.

4. M. Mahfoudh, G. Forestier, and M. Hassenforder. A benchmark for ontologies
merging assessment. In KSEM, pages 555–566, 2016.

5. N. F. Noy, D. L. McGuinness, et al. Ontology development 101: A guide to creating
your first ontology, 2001.

6. N. F. Noy and M. A. Musen. The prompt suite: interactive tools for ontology
merging and mapping. IJHCS, 59(6):983–1024, 2003.

7. R. A. Pottinger and P. A. Bernstein. Merging models based on given
correspondences. In VLDB Endowment, 2003.

8. M. Poveda-Villalón, M. C. Suárez-Figueroa, and A. Gómez-Pérez. Validating
ontologies with oops! pages 267–281, 2012.

9. S. Raunich and E. Rahm. Towards a benchmark for ontology merging. In OTM,
volume 7567, pages 124–133, 2012.

10. S. Raunich and E. Rahm. Target-driven merging of taxonomies with atom. Inf.
Syst., 42:1–14, 2014.

11. E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for
generating all maximal cliques and computational experiments. TCS, 2006.

3 see also: http://comerger.uni-jena.de/requirement.jsp

	GMRs: Reconciliation of Generic Merge Requirements in Ontology Integration

