
Knowledge Graph Embedding for Triples Fact
Validation

Alexis Pister, Ghislain Atemezing

MONDECA, 35 boulevard de Strasbourg 75010 Paris, France.
<firstname.lastname@mondeca.com>

Abstract. This poster1 presents a methodology for designing and im-
plementing a knowledge graph fact checking using graph embeddings
models. The implementation has been tested on the dataset of task 1
of the ISWC 2019 challenge to assess the correctness of a statement.
We trained 6 embedding models : DistMult, HolE, TransE, TransR,
ComplEx and RDF2VEC. Several machine learning algorithms have
been tested to classify the triples given their embeddings using a 4-fold
cross validation scheme on the entire dataset. The results indicate that
RDF2VEC gives the higher AUC score of 0.877 for the prediction of
the correctness of the statements. According to the evaluation report
obtained from the challenge board, our team’s score came third among
nine participating teams to the fact validation task 1 challenge.

Keywords: Knowledge Graph embedding, Fact validation, drugs dataset.

1 Introduction

A knowledge graph (KG) is an oriented graph formed of a set of entities cor-
responding of the vertices of the graph, and a set of relations which consist of
edges connecting the entities. A KG aims at representing entities of a given do-
main with their relations. We saw a rapid growth of this type of data in the
recent years, mainly because of the wide possibilities of applications, such as
disambiguation or question answering.

Given a knowledge base constituted of positives and negatives statements,
the task 1 of the ISWC 2019 challenge 2 aims to give an idea of the correctness of
any new statement similar entities. A training set and a testing set both made of
25,000 statements distributed between positives and negatives triples are given.
11,990 drugs and diseases form the entities of the graph, linked by 5 different
predicates giving information on the interactions between the drugs and diseases.
Some entities existing in true statements are never seen in false statements, and
some entities present in the testing graph are not used in the training set. We
present in this paper our machine learning approach to tackle the problem.

1 Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 https://dice-group.github.io/semantic-web-challenge.github.io/



2 Alexis Pister, Ghislain Atemezing

2 Related Work

Because of their symbolic nature, knowledge graph can be hard to manipulate
for some computing tasks. A new strategy has been elaborated to bypass this
issue, called knowledge graph embedding [1], which gained massive attention in
the recent years for its flexibility and various applications [5]. The aim of this
type of method is to transform the components of the graph, i.e. the entities and
the relations into continuous vector spaces, which describe the topological and
semantic relations of the different components with numerical values.

The majority of knowledge graph embedding methods are based on the max-
imization of a scoring function, for example the dot product of the embeddings
of the subject, object and predicate of a given known statement [1]. However,
other types of methods such as RDF2VEC [4] takes into account the semantic
and topological local environment of every entity of the graph by generating
large amount of random walks and then applying the Word2Vec algorithm on
the generated walks.

The embeddings can then be used for many tasks such as link prediction,
entity classification or triplet classification. Triplet classification consists of clas-
sifying new triplets as true or false. However, the public datasets used for this
tasks such as WN11 or FB13 do not have any explicitly false triplets [6], and
they have to be generated, contrary to the dataset given in this task.

3 Our Approach for Fact Validation

3.1 Knowledge Graph Embedding on RDF Triples

Our approach has been to transpose the semantic and topology of the entire
training graph into a vector space to be able to describe any triple by a set
of numeric value. It is then possible to apply statistic and machine learning
methods to separate the vector space in the purpose of distinguishing true and
false statements by their describing vectors.

To have a vector space describing the graph, we used different methods of
knowledge graph embedding found in the literature. We tried the following 6
embedding models : DistMult, HolE, TransE, TransR, ComplEx which are based
on a scoring function, and RDF2VEC which is based on a Word2Vec model
trained on random walks of the graph. The RDF2VEC model was trained in 10
epochs with a window of 8 using the skip-gram scheme, while we used 200 epochs
for all the other models. We chose a dimension of 150 for the vector space, and
tried as well a 300-length vector model for RDF2VEC 3.

Once we compute the the embeddings for every entity and relation, we express
the embedding of a statement (〈subject〉 〈predicate〉 〈object〉) by combining the
three given vectors. We then tackle the problem as a binary classification task,

3 We used the python library Ampligraph [2] for the implementation of DistMult,
HolE, TransE and Complex, pykeen for transR and the official implementation of
RDF2VEC



Knowledge Graph Embedding for Triples Fact Validation 3

by training different machine learning algorithms on the training dataset, trying
to separate true and false statements by their corresponding embeddings in the
vector space.

To find the best embedding model and machine learning classifier, we split
the released training set into a training and a validation (or development) set
with a 0.75/0.25 split. The embedding models were trained on this entire dataset
available, while the machine learning models were trained on the training set and
tested and optimized on the validation set.

Once the machine learning models were trained, we applied them on the
validation set constituted of new true and false statements, previously unseen
by the model. A truth score was then given for each statement as the output of
the classification.

3.2 Machine Learning Classifiers

We tested two machine learning algorithms to classify the triples given their
embeddings for the 6 models : MultiLayerPerceptron (MLP) and RandomForest
(RF). The MLP followed a gridsearch parameters optimization for the hidden
layers shape, the optimization technique and the hidden layer activation func-
tion. The best parameters were 2 hidden layers of size 300 and 100, the ADAM
optimization strategy and a ReLU activation function. The models have first
been trained on the training set and applied on the development set. They have
been implemented with scikit-learn library in Python.

The results are presented in Table 1. The RDF2VEC embedding gives the
best results with MLP model, with an AUC score of 0.877 for the prediction
regarding the correctness of the development dataset statements.

AUC score RandomForest MultiLayerPerceptron

HolE 0.856 0.827

ComplEx 0.855 0.825

TransE 0.848 0.823

DistMult 0.857 0.821

TransR 0.831 0.754

RDF2VEC 0.869 0.877
Table 1. AUC scores on the development dataset for the 6 embedding models

4 Evaluation

We used the embedding model which gave the best AUC score in the develop-
ment data set, i.e. RDF2VEC, and tested it on the test dataset with the same
parameters. We trained this model on all the data available, that is the training,



4 Alexis Pister, Ghislain Atemezing

validation and test sets, to have an embedding vector for each entity and relation
present in the test set. We then trained the machine learning model which gave
the best score in the development process, i.e. an MLP, on the triplets embed-
dings of the training and validation sets and applied it on the embeddings of the
test triplets to classify them as true or false.

Our approach has been submitted4 using the GERBIL interface provided by
the organizers of the challenge. The evaluation given by the organizers using
GERBIL shows a value of 0.9979 corresponding to AUC.

At the time of writing this paper, our team represented with the nickname
“Mdk Team” was ranked third out of nine participants in the leaderboards of the
challenge. The AUC difference with the winner team is 0.0018. As four systems
have a score higher than 0.9900, we can

5 Conclusion and Future Work

This poster proposes a fact validation workflow for the task 1 of the ISWC 2019
challenge. The presented method consists of the training of an knowledge graph
embedding model on the entire dataset, whose inputs are used for machine learn-
ing models. Based on our implementation and experiments, RDF2VEC which
is based on the generation of random walks outperform all the scoring function
based embedding models. As four systems have a score higher than 0.9900 in the
competition, we can question the difficulty of this challenge. our system should
thus be tested on other datasets. Moreover, the main drawback of the current
model is that it can not take as input previously unseen entity or relation to
map them to the vector space. New approaches such as graph neural networks
could overcome this issue because they directly classify subsets of a graph and
seem to give good results on graph classification tasks in the literature [3].

References

1. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating
embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

2. L. Costabello, S. Pai, C. L. Van, R. McGrath, and N. McCarthy. AmpliGraph: a
Library for Representation Learning on Knowledge Graphs, Mar. 2019.

3. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

4. P. Ristoski and H. Paulheim. Rdf2vec: Rdf graph embeddings for data mining.
pages 498–514, 10 2016.

5. Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A sur-
vey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering, 29(12):2724–2743, 2017.

6. Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In Twenty-Eighth AAAI conference on artificial intelligence,
2014.

4 http://w3id.org/gerbil/kbc/experiment?id=201906030011


