
CoModIDE – The Comprehensive Modular
Ontology Engineering IDE?

Cogan Shimizu1� and Karl Hammar2[0000−0001−8767−4136]

1 Data Semantics Lab
Wright State University, USA

shimizu.5@wright.edu
2 Jönköping AI Lab

Jönköping University, Sweden
karl.hammar@jonkoping.ai

1 Introduction

Ontology engineering is a complex and time-consuming process, requiring an
intimate knowledge of description logic and predicting non-local effects of differ-
ent ontological commitments. Acquiring such expertise is a major hurdle in the
adoption of semantic web technologies. As proliferating our techniques and tech-
nologies is a major goal of the semantic web community [4], there have been many
attempts to improve the accessibility of ontology engineering through intuitive
methodologies and robust tooling. Pattern-based modular ontology engineering
coupled with a graphical modelling paradigm can help bridge this gap [6,9].

A pattern-based modular ontology is an ontology that retains the patterning
metadata associated with the modules that comprise it. An ontology design pat-
tern (ODP) is a small, reusable set of concepts and axioms that solve a problem
that is invariant across many domains. To create such ontologies, some method-
ologies have been developed (e.g. Extreme Design [2,3] and the eponymous Mod-
ular Ontology Modelling [5]). Unfortunately, neither methodology focuses on the
retention of pattern metadata, but how to identify and instantiate patterns.

Over the years, there have been various approaches for representing ontolo-
gies visually and enabling their development through a graphical modelling in-
terface, e.g., VOWL, the visual syntax for OWL and its WebVOWL editor [7,11];
OWLGrEd, a graph editor that displays a UML inspired subsumption hierarchy
[1]; Gra.fo3, an online, collaborative platform that supports ontology develop-
ment via lightweight semantics and a modified VOWL syntax.; and OWLAx
[8] and SDOnt [10], Protégé plugins that enable axiom generation from schema
diagrams, and diagram generation from axioms, respectively. However, none of
these tools offer any support for graphical pattern discovery or instantiation.

To combine pattern-based modular ontology engineering with the graphical
modelling paradigm, we have developed the Comprehensive Modular Ontology
IDE (CoModIDE, pronounced ‘commodity’), a plug-in for the Protégé platform.

? Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 https://gra.fo/

https://gra.fo/


2 C. Shimizu and K. Hammar

2 System Design and Features

CoModIDE was designed to simplify ontology engineering for users who are not
ontology experts. Our experience indicates that such non-experts rarely need or
want to make use of the full set of language constructs that OWL 2 provides;
instead, they typically, at least at the outset, want to model rather simple se-
mantics. Our experience also indicates that such users (and, indeed also more
advanced users) prefer to do initial modeling graphically – whether that be on
whiteboards, in vector drawing software, or even on paper. Finally, our experi-
ence indicates that while this category of users are generally enthusiastic about
the idea of reusing design patterns, they are quickly turned off of the idea when
they are faced with patterns that lack documentation or that exhibit link rot4.

These experiences led directly to the design criteria for CoModIDE:

– CoModIDE should support visual-first ontology engineering, based on a
graph representation of classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE should be consistent across
restarts, machines, and operating system or Protégé versions.

– CoModIDE should support the type of OWL 2 constructs that can be easily
and intuitively understood when rendered as a schema diagram. To model
more advanced constructs (unions and intersections in property domains or
ranges, the subsumption hierarchy, property chains, etc), the user can drop
back into the standard Protégé tabs.

– CoModIDE should embed an ODP repository. Each included ODP should
be free-standing and completely documented. There should be no external
dependency on anything outside of the user’s machine. If the user wishes,
they should be able to load a separately downloaded ODP repository, to
replace or complement the built-in one.

– CoModIDE should support simple composition of ODPs; patterns should
snap together like Lego blocks, ideally with potential connection points be-
tween the patterns lighting up while dragging compatible patterns. A pattern
or ontology interface concept will need be developed to support this.

CoModIDE is developed as a plugin to the versatile and well-established
Protégé ontology engineering environment. The plugin provides three Protégé
views, and a tab that hosts these views (see Figure 1). The schema editor view
provides an a graphical overview of an ontology’s structure, including the classes
in the ontology, their subclass relations, and the object and datatype properties
in the ontology that relate these classes to one another and to datatypes. All of
these entities can be manipulated graphically through dragging and dropping.
The pattern library view provides a set of built-in ontology design patterns,
sourced from various projects and from the ODP community wiki5. A user can
drag and drop design patterns from the pattern library onto the canvas to in-
stantiate those patterns as modules in their ontology. The configuration view lets

4 Typically patterns that depend on other patterns which no longer resolve.
5 http://ontologydesignpatterns.org/

http://ontologydesignpatterns.org/


CoModIDE – The Comprehensive Modular Ontology Engineering IDE 3

the user configure the behavior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to the video walkthrough
on the CoModIDE webpage6. We also invite the reader to download and install
CoModIDE themselves, from that same site.

Fig. 1. CoModIDE User Interface featuring 1) the schema editor, 2) the pattern library,
and 3) the configuration view.

When a pattern is dragged onto the canvas, the constructs in that pattern
are copied into the ontology (optionally having their IRIs updated to corre-
spond with the target ontology namespace), but they are also annotated using
the OPLa vocabulary, to indicate 1) that they belong to a certain pattern-based
module, and 2) what pattern that module implements. In this way module prove-
nance is maintained, and modules can, provided that tool support exists (see
Section 3) be manipulated (folded, unfolded, removed, annotated) as needed.

3 Discussion and Future Work

CoModIDE is under active development and is not yet feature-complete. Specif-
ically, during the autumn of 2019 we will implement the following features:

– Wrapping instantiated modules (e.g., in dashed-line boxes) to indicate cohe-
sion and to allow module folding/unfolding.

6 https://comodide.com

https://comodide.com


4 C. Shimizu and K. Hammar

– An interface feature, allowing design patterns to express how they can be
connected to one another; and adding support for this to the canvas, lighting
up potential connection points as the user drags a pattern.

– Support for custom pattern libraries; and vocabulary specifications indicat-
ing hos pattern libraries should be annotated to be useful with CoModIDE.

To evaluate the viability of our approach to ontology engineering, and the
usability of the CoModIDE tool, we will be deploying CoModIDE in two research
projects with non-ontologist domain experts.

References

1. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.: OWLGrEd: a
UML style graphical notation and editor for OWL 2. In: Proceedings of the 7th
International Workshop on OWL: Experiences and Directions (OWLED 2010), San
Francisco, California, USA, June 21-22, 2010. CEUR-WS.org, vol. 614 (2010)

2. Blomqvist, E., Hammar, K., Presutti, V.: Engineering Ontologies with Patterns
– The eXtreme Design Methodology. In: Hitzler, P., Gangemi, A., Janowicz, K.,
Krisnadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design
Patterns: Foundations and Applications, pp. 23–50. IOS Press (2016)

3. Hammar, K.: Ontology design patterns in WebProtégé. In: Villata, S., Pan, J.Z.,
Dragoni, M. (eds.) Proceedings of the ISWC 2015 Posters & Demonstrations Track
co-located with the 14th International Semantic Web Conference (ISWC-2015).
CEUR Workshop Proceedings, vol. 1486. CEUR-WS.org (2015)

4. Hammar, K., Blomqvist, E., Carral, D., et al.: Collected research questions con-
cerning ontology design patterns. In: Hitzler, P., Gangemi, A., Janowicz, K., Kris-
nadhi, A., Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns
- Foundations and Applications, pp. 189–198. IOS Press (2016)

5. Hitzler, P., Krisnadhi, A.: A tutorial on modular ontology modeling with ontology
design patterns: The cooking recipes ontology. CoRR abs/1808.08433 (2018)

6. Hitzler, P., Shimizu, C.: Modular ontologies as a bridge between human concep-
tualization and data. In: Chapman, P., Endres, D., Pernelle, N. (eds.) 23rd In-
ternational Conference on Conceptual Structures, ICCS 2018, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10872, pp. 3–6. Springer (2018)

7. Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL.
Semantic Web 7(4), 399–419 (2016)

8. Sarker, M.K., Krisnadhi, A.A., Hitzler, P.: Owlax: A protege plugin to support
ontology axiomatization through diagramming. In: Kawamura, T., Paulheim, H.
(eds.) Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located
with 15th International Semantic Web Conference (ISWC 2016), Kobe, Japan,
October 19, 2016. CEUR Workshop Proceedings, vol. 1690. CEUR-WS.org (2016)

9. Shimizu, C.: Towards a comprehensive modular ontology IDE and tool suite. In:
Kirrane, S., Kagal, L. (eds.) Proceedings of the Doctoral Consortium at ISWC
2018. CEUR Workshop Proceedings, vol. 2181, pp. 65–72. CEUR-WS.org (2018)

10. Shimizu, C., Hirt, Q., Hitzler, P.: MODL: A modular ontology design library. CoRR
abs/1904.05405 (2019), http://arxiv.org/abs/1904.05405

11. Wiens, V., Lohmann, S., Auer, S.: Webvowl editor: Device-independent visual on-
tology modeling. In: Proceedings of the ISWC 2018 Posters & Demonstrations,
Industry and Blue Sky Ideas Tracks. CEUR Workshop Proceedings, vol. 2180.
CEUR-WS.org (2018)

http://arxiv.org/abs/1904.05405

	CoModIDE – The Comprehensive Modular Ontology Engineering IDE

