
The architecture of the software tool for the
agent-based simulation models specification

development?

A.I. Pavlov1[0000−0002−7753−7514], A.B. Stolbov1[0000−0001−6513−7030], and A.S.
Dorofeev2[0000−0002−8498−3301]

1 Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of
the Russian Academy of Sciences, 134 Lermotov st., Irkutsk, Russia

{asd,stolboff}@icc.ru
http://http://idstu.irk.ru

2 Irkutsk National Research Technical University, 83 Lermotov st., Irkutsk, Russia
dorbaik@istu.edu

https://www.istu.edu

Abstract. The architecture and a set of components of the software tool
providing the development of agent-based simulation models (ABSMs)
specifications are considered in the paper. The underlying of the proposed
tool is the author’s methodology which specializes the well-known MDD
(Model-Driven Development) approach to the ABSM development pro-
cess. The components are implemented as interacting web-oriented appli-
cations utilizing modern standards of communications (HTTPS, SOAP,
WSS). The third-party software (Madkit, Jade, Drools, Jboss) was also
adapted for supporting component functionality.

Keywords: agent-based simulation models ·Model-Driven Development
· web-oriented software.

1 Introduction

The overall contemporary level of software and hardware development has sig-
nificantly enhanced in recent years and the practical relevance of many areas of
artificial intelligence and system analysis has thereby increased. The accumu-
lation of large amounts of data, together with the high-performance processing
capabilities, has led to the emergence and active development of research areas
such as data mining, machine learning, and simulation. In the current situation,
a multi-agent approach has great prospects in carrying out simulations. Recent
authors studies contribute to developing methods and tools that provide non-
programming users with the ability to create and use agent-based simulation
models (ABSMs) in various subject areas. The relevance of this direction is due
to the need to expand the scope of application of ABSM and the intensity of
their use in solving applied problems. The limiting factor affecting the popularity

? Supported by RFBR 18-07-01164, 18-08-00560

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0).



of the multi-agent modeling paradigm is the high entry threshold for mastering
ABSM technologies: lack of clear, uniform and well-established methodological
approaches and guidelines; a variety of languages for representing ABSM; a large
number of software libraries and tool platforms for implementing ABSM.

One of the ways to solve the mentioned problem related to the spread rate
of the simulation modeling approaches in general, and ABSM in particular, in
the practice of solving applied problems is to create problem-oriented systems
based on general-purpose tools (for example, anyLogistix is a tool for designing,
optimizing and analyzing supply chains from developers of a multi-paradigm
general platform AnyLogic). Another approach is the development of the tools,
the architecture of which would originally include methods and tools for design-
ing and implementing ABSM, paying attention to the low level of user skills in
programming and modeling, i.e. it would provide an opportunity for domain ex-
perts to create applied ABSMs independently (in an ideal case) or with minimal
participation of specialists in simulation modeling.

2 The application of MDD approach to the process of
ABSMs development

The rich scientific and applied experience accumulated to date in the creation
and application of ABSM allows one to proceed to solve the problems of design-
ing and implementing ABSM at a higher level, abstracting from specific means
by unifying existing methods and software development systems. It is proposed
to use a model-driven approach, MDD (Model-Driven Development) [1], as a
methodological basis, according to which all the information needed to develop
ABSM is formalized in the form of a hierarchical set of models, and the speci-
fications of a specific applied ABSM are obtained as a result of transformation
of elements of this set. A more detailed description of the approach, a system of
models, and transformation rules are presented in a series of publications by the
authors [2–5].

Currently, the number of models at all levels of the hierarchy reaches 15. At
the same time, research is carrying out to create new and detail existing models.
Further, as part of a brief description of the capabilities of the MDD approach, we
describe the most significant models. The top-level metametamodel MOnt defines
the most abstract elements for the specification of lower-level metamodels. The
MOnt is defined as a well-known ontological form: concept - attribute - relation:

MOnt =< Concept, Attribute,Relation, Instance >,

< Concept >=< Name >< Description > < Attribute >,

< Attribute >=< Name >< Attributetype >< Defaultvalue >,

< Attributetype >= Literal|Concept,

< Relation >=< Concept >< Name >< Relationtype >< Concept >,

< Relationtype >= Literal.



Metamodel MA is a domain-independent, agent-related metamodel for de-
scribing the architectural elements of a certain ABSM development methodology,
including both structural and behavioral aspects. In this case, the corresponding
metamodels of the implementation tools are used, which describe, for example,
the interfaces of the simulation tool, the inference engine, the imperative engine
for invoking external procedures, etc. Models MOnt−D and MKB−D are respec-
tively the ontology of the domain area under consideration and the knowledge
base that describes the meaningful domain-specific behavior. Model MA−D – an
overall specification of a specific ABSM for the domain area under consideration
– includes both information from MA, and MOnt−D , MKB−D. The MA−D−I

model is about the specificity of the initial conditions of a particular ABSM.
The codI structure contains results of the MA−D simulation execution in some
ABSM specifications interpreter with particular initial conditions taken from
MA−D−I .

Thus, in terms of the models, the process of ABSM developing from the
non-programming user point of view can be defined by the following sequence:

1. Creation of a conceptual model for the domain area under consideration
(MOnt−D).

2. Development of the MKB−D knowledge base, including rules and fact tem-
plates, created on the basis of concepts, attributes and relationships from
the MOnt−D model.

3. Selection of the appropriate ABSM architecture described in the MA meta-
model. This metamodel is developed by experts (system analysts, model
designers) and related implementation details, if necessary, can be hidden
from a non-programming user.

4. Setting the correspondence between the elements of the MOnt−D and MA,
i.e. integrating ABSM into the domain.

5. Clarification of MKB−D with information related to ABSM (possible, but
not mandatory).

6. Setting the parameters of the computational experiment (creation/clarification
of the MA−D−I model).

7. Performing the simulation.
8. Representation of the simulation results.

In the current article, the authors present the results associated with stages 1-6,
i.e. the formation of specific ABSM specification. The issues related to stages 7
and 8 are not considered in this paper. An approach to related solutions can be
found in publications [2–8].

3 The software architecture description

The software tool that implements the proposed approach for the formation of
agent-based simulation models is a natural evolution of the author’s previous
projects: a prototype support system for designing agents [7, 8] and the soft-
ware platform for creating knowledge-based systems [4]. Thus, experience in the



development of a typical agent allowed us to proceed to the creation of the ba-
sic ABSM-related component models. The former imperative block of a typical
agent is currently described in more general terms using models of the simulation
engine and the run-time controller. The former declarative part of a typical agent
transforms into the inference engine model. When implementing a software tool,
these models are the basis for creating appropriate software interfaces.

At the current stage of the software tool development the creation of a new
version of architecture (see Fig. 1) pursued the following goals:

1. Implementation of the technical feasibility of forming models and metamod-
els and their transformations during the development of ABSM in accordance
with the original methodology based on the MDD approach.

2. Reuse of existing software developed by the authors.
3. Providing the possibility of utilizing the currently existing third-party li-

braries and tool platforms at the stage of interpreting ABSM specifications.
4. Orientation on modern software development approaches, including the ac-

tive use of new technologies for network data exchange (Websocket), the
latest versions of the DBMS and user interface implementation libraries.

WSS

HTTP/HTTPS

SCom

SData

SDialog

Service components Frontend Backend

HTTP/HTTPS

SCM
SRule/Drools

SRule

SOAP

SRule/Jess

SAgent/Madkit

WSS

SAgent/Jade

SAgent
SExp

SABSM

Applied components

WSS

HTTP/HTTPS

SCom

SData

SDialog

Service components

WSS

HTTP/HTTPS

SCom

SData

SDialog

Service components Frontend Backend

HTTP/HTTPS

SCM
SRule/Drools

SRule

SOAP

SRule/Jess

SAgent/Madkit

WSS

SAgent/Jade

SAgent
SExp

SABSM

Applied components

Fig. 1. The software tool architecture

At the moment, the list of components of the software tool is as follows:
data management component – SData, component for conceptual modeling –
SCM , component for the reasoning based on the rules – SRule, component for
the organization of two-way data exchange – SCom, component for the dialogue
interaction with the user – SDialog, an entry point of the tool for the user – SAgent

component used for direct management of the ABSM specification creation,
component for the computational experiment management - SExp, component



for the simulation implementation (specification interpretation) - SABSM . At the
same time, some of these components are service ones and are used to implement
the functionality of other (applied) components.

The basic functionality of the SData, SCM , SRule, SCom, SDialog components
is based on the capabilities of the authors platform for creating knowledge-based
systems [4]. Let us consider in more detail the changes that are proposed to be
made to existing components.

4 The software components description

The SCM component ensures the creation of a conceptual model (CM) for the
selected domain area with a given level of details [4]. For the current version of
the tool, it is proposed to expand the functionality of the SCM with the pos-
sibility of establishing a connection between two CMs, in which the first CM
will be interpreted as an abstract model, and the second as its implementation.
Supporting the connections between the concepts of different conceptual models
will provide the possibility of implementing the double inheritance mechanism
when a certain concept inherits the structure not only from the basic concept
within its CM, but also from the concept of the associated CM. The main ad-
vantage of this innovation is the possibility of obtaining several variants of the
agent-related, subject-dependent description of the ABSM structure for one CM
domain.

The SRule component provides the creation of rule-based knowledge bases
with the CM of the subject area as a data source, as well as the visual con-
struction of the rules, the formation of initial conditions, code generation and
execution of reasoning [4]. In addition to the existing SRule functionality that
uses JESS [9] to process rules, the support for the new environment [10] was
provided, with the Drools code generation implemented on the basis of the mvel
dialect.

The component of two-way data exchange (SCom) is introduced to provide
the possibility of fast, asynchronous data exchange between users and/or compo-
nents of the tool, as well as to enable the option of starting data exchange by the
server’s initiative. For example, to organize a request for additional information
from the user in the process of inference. The SCom component is proposed to
be developed on the basis of one of the existing libraries for working with the
WebSocket protocol, for example, Node.js WS.

The SDialog component contains a standard set of graphical controls, firstly,
providing support for the most common simple data types: single/multi-line
input fields, date and time representations, a checkbox for working with a logical
type. Secondly, more complex elements for displaying data in tabular form are
implemented for SDialog, including nested tables, selecting one/several options
from the list, and displaying data in the form of a network.

The following components are developed as new problem-oriented based on
the functionality of the components described above. So, the SAgent component
is a key in terms of ensuring the organization of the ABSM specification devel-



opment process and provides a unified user terminal through which interaction
with other components is carried out. The main tasks of the SAgent include the
following: control the sequence of stages for designing the ABSM specification;
storage of all necessary information about the state of the design process, support
for model transformations according to the used methodology [2–5]; adapting the
functionality of other components to the current context and calling the appro-
priate methods. The current implementation of the SAgent user terminal is made
in fairly general terms related to the field of multi-agent systems and simula-
tion. However, the component architecture allows, if necessary, the development
of domain- and problem-oriented modifications of the SAgent, replacing specific
concepts of the ABSM paradigm with terms more appropriate for the end-user.

The component for computational experiment management (SExp) allows
you to create the initial conditions of ABSM and save the simulation results,
as well as directly control the simulation process: start, stop and/or pause the
ABSM, dynamically change the ABSM parameters (number and duration of
simulation steps, manual generating new ABSM elements, editing or deleting
them).

The responsibilities of the SABSM component include the interpretation of
ABSM specifications. To this end, SABSM uses the capabilities of the existing
Madkit multi-agent modeling support library [11] and the platform for creating
multi-agent Java Agent DEvelopment framework (Jade) systems [12], for which
software shells using the facade design pattern have been developed. In the pro-
cess of interpretation, the SABSM core provides a call to the methods of these
third-party means required in accordance with the specific ABSM specification.

5 Software implementation features

The software package is designed as a web application using the thin client tech-
nology, within which the components of the tool are hosted on a server, and a
standard web browser acts as a user terminal. As a part of a typical component
of a software tool, we can distinguish the client part, which contains the imple-
mentation of the user interface, and the server part, where the implementation
of data processing methods that constitute the components functionality is lo-
cated. In the case when a component uses existing software, libraries or services
to implement its functionality, there are two sets of modules in its server-side:
one available to the users and another with limited access. For example, in SRule

modules for designing knowledge bases, code generation, and logical inference
are available to the users, whereas access to inference engines of Jess and Drools
have only SRule modules. Thus, on the server side of the software tool, it is pos-
sible to distinguish both the external (frontend) and internal (backend) parts
(see Fig. 1).

In the process of organizing the interaction between the external and internal
parts of the server for calling methods and receiving (sending) data, it is proposed
to use the following set of protocols: HTTP, SOAP, and WebSocket. This kit



provides the ability to utilize a significant portion of existing software systems
and libraries.

To implement the user interface of components, a well-established approach
to creating interactive web pages using the languages of HTML, CSS, JavaScript
and popular libraries (jQuery, jQueryUI, jQueryGrid, jsPlumb) was used. The
data exchange process is organized both on the basis of client-initiated requests
via the HTTPS protocol, and using bidirectional channels of the WebSocket pro-
tocol. Currently, the server part includes two HTTP servers: based on Apache
and Node.js, which together with the Node.js WSS server form the external part
of the server (see Fig. 1). HTTP-Apache server provides access to the functional-
ity of the following components: SData, SCM , and partially to the functionality of
SRule (designing knowledge bases and code generation). Node.js HTTP server
provides a solution to the tasks of authorizing SCom clients, and the Node.js
WSS server provides SCom with the possibility of organizing bidirectional data
exchange, in which each client is able to interact with others in an arbitrary
order.

6 Future works

As one of the directions of the future works let us describe the possible imple-
mentation of the proposed software tool and related ABSM development ap-
proach into educational process for project-based learning (PBL). The main
features of PBL pedagogy model are the following: long-term study, multidis-
ciplinary, student-oriented, focusing on problems with practical relevance (from
understanding the phenomenon to possible application in real life). The students
design projects to learn as much as possible about the topic under considera-
tion, rather than looking for the right answers to questions asked by a teacher.
So, theoretically, the final result can be obtained from different sources via a
long-lasting iterative process throughout the studying period.

From a methodological point of view, the multi-agent modeling paradigm
provides the appropriate facilities to meet the requirements of PBL. MAS and
ABSM are especially valuable in situations where the output of the work (and
it is the project) can be composed of heterogeneous elements with consistent
refinement. So, on the one hand, the project itself can be represented in terms
of MAS/ABSM. On the other hand, the project can be a part of another higher-
order MAS project. Thus on the macro and micro levels due to its MAS nature,
the evolution, inclusion, and integration of the project can be done regarding
MAS principles.

The suggested author’s approach allows the explicit separation domain-specific
and agent-related parts of ABSM, so there is no predefined development method-
ology and build in software means. This feature gives an additional freedom de-
gree increasing the variety of methods and tools to study and apply in a project.
The application of the considered in the paper software tool for supporting the
process of project-based learning gives us the following preliminary structure of



the typical educational project (TEP ):

< TEP >=< Project− description >,< Educational − resources >,

< MAS −method >,< MAS − software >,< Domain−model >,

where the last three elements have supported by existing functionality of the
proposed system, whereas the first two are under construction.

From a practical perspective, the project topics can be related to the digital
economy, IoT, AI that nowadays in need of qualified specialists. And here the
objects under consideration and research tool also would have a common nature.
In that case, Irkutsk National Research Technical University campus can be
chosen as a sandbox for testing the vitality and adequacy of the projects.

7 Conclusions

The architectural solutions proposed in the article make it possible to implement
the original methodology developed with the participation of the authors to the
process of creating agent-based simulation models based on the specialization
of the MDD approach. The application of this methodology allows us to solve
the problem of expanding the areas in which agent-based simulation models can
be utilized by supporting non-programming users at all phases of the model
development process, from the conceptualization stage the automated creation
of an executable model.

The component organization of the software tool architecture provides the
capabilities of reuse, modification, and refinement of previously obtained results
regarding knowledge-based systems and agent modeling support systems. The
article provides a brief description of the main components of the tool and the
features of its software implementation. The structure of a typical component
in the context of the client-server interaction model is considered. The future
plans concerning introducing the proposed tool into the educational process are
discussed.

The current research is partially supported by RFBR (18-07-01164, 18-08-
00560).

References

1. France, R., Rumpe, B.: Model-Driven Development of Complex Software: A Re-
search Roadmap. In: Briand, L.C., Wolf, A.L. (eds.) Proceedings of the Interna-
tional Conference ”Future of Software Engineering”, pp. 37–54, IEEE, Minneapolis
MN (2007).

2. Nikolaychuk, O.A., Pavlov, A.I., Stolbov, A.B.: Web-Oriented Software System
for Agent-Based Modeling Driven by Declarative Specification of Implementa-
tion Process. In: Proceedings of the 3rd Russian-Pacific Conference on Computer
Technology and Applications (RPC), pp. 1–5. IEEE, Vladivostok Russia (2018).
https://doi.org/10.1109/RPC.2018.8482149



3. Nikolaychuk, O.A., Pavlov, A.I., Stolbov, A.B.: Models and software for agent-based
model development based on model-driven approach. In: Bychkov, I.V., Karastoy-
anov D., Arshinsky, L.V. (eds.) Proceedings for First Scientific-practical Workshop
Information Technologies: Algorithms, Models, Systems (ITAMS), CEUR Workshop
Proceedings, vol. 2221, pp. 13–19. CEUR-WS.org, Irkutsk Russia (2018).

4. Nikolaychuk O.A., Pavlov A.I., Stolbov A.B.: The software platform architecture for
the component-oriented development of knowledge-based systems. In: Proceedings
of the 41st International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), pp. 1234–1239. IEEE, Opatija
Croatia (2018). https://doi.org/10.23919/MIPRO.2018.8400194

5. Nikolaychuk, O.A., Pavlov, A.I., Stolbov, A.B.: The Agent-Based Modeling Method
For The Study Of Unique Mechanical Systems. In: Shakhmametova, G., Mironov,
K., Galimova, L. (eds.) Proceedings of the 7th Scientific Conference on Informa-
tion Technologies for Intelligent Decision Making Support (ITIDS 2019), Advances
in Intelligent Systems Research, vol. 166, pp. 201–206. Atlantis Press, Ufa Russia
(2019).

6. Korshunov, S.A., Pavlov, A.I., Nikolaychuk, O.A.: Concept of simulation visual-
ization software based on ontology approach. Scientific Visualization 8(2), 332-343
(2016).

7. Pavlov, A. I., Stolbov, A.B.: Architecture of agents design support system for com-
plex systems simulation models. Software & Systems 109(1), 12-16 (2015).

8. Pavlov, A.I., Stolbov, A.B.: A prototype of an agents design support system for
complex system simulation models. Software & Systems 29(3), 79-84 (2016).

9. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications
Co., Greenwich (2003).

10. Salatino, ., Maio, M., Alivertie, E.: Mastering JBoss Drools 6. Packt Publishing
Ltd., Birmingham (2016).

11. Gutknecht, O., Ferber, J. The madkit agent platform architecture. In: Wagner,
T., Rana, O.F. (eds.) Infrastructure for Agents, Multi-Agent Systems, and Scal-
able Multi-Agent Systems, LNCS, vol. 1887, pp. 48–55. Springer, Berlin Heidelberg
(2000).

12. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-agent systems with
JADE. Wiley Series, NJ Wiley (2007).


