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1 Introduction 

The global market intelligence firm IDC estimates that more than 90% of enterprise 
data that are generated are unstructured (Gantz and Reinsel 2011). Discussion about 
structured or unstructured data have resurfaced recently as organizations try to create 
competitive advantage by analyzing and repurposing data (Schneider 2016). Some of 
the work in this area studies the tradeoff of using structured vs. unstructured formats. 
Structured data formats inherently provide the context for that data’s use, however, 
unstructured formats can provide support not only to current use cases but also to 
future ones (e.g., in a web form, the user can be afforded flexibility on what data to 
enter rather than having to select from a pre-defined list of options in a drop-down 
menu) (Lukyanenko et al. 2014). Regardless of the choice, research has found that a 
mismatch between the IS class model (e.g., which would define the options in a drop-
down menu) and the data the user wishes to enter can lead to low quality data or pre-
vent users from contributing (Lukyanenko et al. 2014), and once the specification is 
made, the design choice can both serve to enable and constrain the IS (Hirschheim et 
al. 1995). 

It seems logical that providing at least some degree of structure to data is beneficial 
as it provides context to the data points by design, and allows for differing various 
levels of expertise.  Lukyanenko et al (2014) showed that expertise plays a major role 
in the “ideal” level of specificity in presenting users with options from a data quality 
perspective, in work using citizen-science data.  Providing highly specific category 
options for bird watchers to log data, such as “Cygnus Atratus”, as opposed to “Black 
Swan” or more broadly, “Swan”, provides good data quality from the perspective of 
the experts, but the novices are left essentially guessing. Conversely, providing the 
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more friendly category of “Black Swan” may help a novice’s selection be more accu-
rate, but it is at the detriment of specificity (e.g. was it actually a Cygnus Atratus, or 
could it have been a Cygnus Melancorypus?). The level of specificity in designing a 
system that presents users with choices is therefore a very important consideration 
that requires care is taken to truly understand the population it is designed to serve.   

Personalization of a system to serve multiple types of users is challenging.  In or-
der to present a user with a list of options, the system designer must decide on what 
areas within a taxonomy to present the user.  A taxonomy is a hierarchical structure 
that organizes related information based on super/subset relationships from most ge-
neric (higher-order categories) to most specific. These categories effectively become 
the classes in the conceptual model. A subset of this taxonomy is usually presented to 
the user when organizing information, and system menus intended for the general 
population, such as e-commerce navigation, are designed for the most inclusivity by 
providing broader (higher-order) categories for their data. This achieves cognitive 
efficiency for the average user searching for a product, but it also can frustrate their 
expert user base with the lack of inferential utility (Parsons 1996; Roach 1978).  For 
example, navigating Amazon for all competitor products to the niche Microsoft Sur-
face computer.  This product is often called  a “2-in-1” device because it has charac-
teristics of both a computer and a tablet. Finding it in the Amazon category hierarchy 
can be challenging, since it has no category of its own.  Arguably, this is probably for 
the best as it presents a menu choice that works for the majority of their customers, 
however truly personalized systems should aim to reduce information overload and 
cognitive effort of their users by prioritizing information that is relevant for the user.  
In order to do this, the presentation of choice to the user needs to take into account 
what the user is looking for as well as the user’s level of comfort within a given do-
main (or subdomain).  

Larger-scale design challenges, where analysts face significant difficulty in decid-
ing on how to organize and present information and choices to a variety of users and 
contexts, have also been described in the literature (Castellanos et al. 2016; Lukya-
nenko et al. 2017): 

• System openness: How can we design for users with diverse backgrounds, 
education, and functional needs? 

• Physical context: How can we flexibly design for a variety of physical con-
texts, including physical constraints?  

• Cold-start problem: How can we generate recommendations when little is 
known about a user? Which categories are universal for the average user? 

 
These design challenges are even more challenging when the design or decision-

making space must be derived from unstructured text. Machine learning, natural lan-
guage processing, and other data analysis methods have provided a means of identify-
ing the entities described in unstructured text, both within documents (Feldman and 
Sanger 2007; Jordan and Mitchell 2015), and across a corpus of documents (Abbasi 
and Chen 2005; Abbasi and Chen 2008). However, there is little work addressing the 
challenge of adding structure over those entities.  In this context, it is important to 
understand the relationships among data elements, i.e., the meta-structure.  Ideally, 
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this would be a navigable structure, capable of representing hierarchical relationships 
and allowing a designer to easily locate the desired level of specificity, and prune 
away excess detail when needed. 

In this work, we propose a first step in this direction.  Specifically, we propose a 
method for inferring a hierarchical structure based on class membership (i.e., an ob-
ject is member-of) and determining candidate classes with higher utility (i.e., catego-
ries that are highly relevant to the user), and provide a use case example based on data 
drawn from Netflix categories. 

This paper is organized as follows. We describe the theoretical background and re-
lated work in Section 2.  We then describe our method, as well as a similar method 
based on current literature as a comparative method, in Section 3.  

2 Psychological Foundation and Literature Review 

According to theories in psychology, categories support cognitive economy and infer-
ential utility (Rosch and Lloyd 1978). These are two vital functions of organisms and 
one of the defining mechanisms of human cognition and behavior (Corter and Gluck 
1992). These functions compete for the same limited cognitive resources of human 
memory, attention, and processing power. Cognitive economy is achieved by maxi-
mally abstracting individual differences among objects and then grouping them in 
categories of larger scope (e.g., German-Shepherd and Labrador Retriever belong in 
the category dog) (Fodor 1998). By storing only a few categories, humans can easily 
memorize identifying characteristics of the different objects in a class. This promotes 
communication efficiency and social interaction (Murphy 2004). In contrast, inferen-
tial utility refers to a category’s usefulness in predicting the specific behavior or prop-
erties of objects within the category, based on similarities among category members. 
Here, it is not necessary to have observed every peculiarity of a given object, since 
knowing the object’s category membership implies a set of behaviors and characteris-
tics. Generally, emphasizing larger scope categories (i.e. higher cognitive economy) 
comes at the expense of capturing and communicating individual characteristics of 
objects that are unique, while emphasizing uniqueness (i.e. higher inferential utility) 
comes at the expense of having categories that are narrow (specific).  

Rosch, Mervis, Gray, Johnson and Boyes-Braem (1976) argued that humans favor 
classes that are most capable of supporting these competing objectives of classifica-
tion. Research found that objects are typically identified at a particular level of ab-
straction that is neither the most general nor the most specific possible (Jolicoeur et al. 
1984) but an intermediate one coined basic level category (Rosch et al., 1976). These 
categories are generally at the middle level and are the most differentiated (Murphy 
and Brownell 1985). Objects at the subordinate (lower than basic) level need higher 
perceptual processing compared to that of basic level categorization (Jolicoeur et al., 
1984) whereas middle-level categories are learned most quickly or can be named 
more quickly after they were learned (Corter & Gluck, 1992). 

Building on the above theories, Corter and Gluck (1992) proposed a model of clas-
sification optimality and category utility (CU). This model is designed to directly 
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operationalize the tradeoff between cognitive economy and inferential utility in a way 
that adheres to widely held propositions about human cognition in psychology. They 
argue that the usefulness of a class is rooted in its ability to predict unobservable at-
tributes (inferential utility) and optimize information processing and transfer (cogni-
tive economy). 

To summarize, classification theory in psychology amasses considerable evidence 
for the existence of classes that maximize agreement among people with different 
backgrounds, education, and functional needs. Coined “basic level categories”, these 
categories have been shown to carry a multitude of benefits, resulting in a significant 
cognitive bias toward these categories.  

Using psychology theory as the basis for better understanding the hierarchical rela-
tionship among categories, we extend Corter and Gluck’s work to produce a data-
driven ontology.  

3 Method for Ontology generation and BLCs 

We used probability-driven models to derive an ontology and identify categories at 
different levels of abstraction (superordinate, basic, and subordinate). To test these 
models, we used a secondary dataset based on Netflix’s movie-category membership, 
where we can identify the mapping between category labels (as tagged by Netflix) 
and the movie objects within each category. Although we can see the list of movies 
and the categories these movies belong to, we cannot see the full structure of the hier-
archy, (nor are we aware that one exists).   

Given any category within a domain (e.g., genre), the existing members of a cate-
gory (e.g., “Steamy Horror Movies”) will share similar attributes and parents, unless 
the selected category is itself the root of the ontology, which has no parent, as it is 
already the most abstract categorization. Within this problem space, Corter and 
Gluck’s work has been broadly applied to the problem of deriving ontologies. How-
ever, in our work, we found two major difficulties in applying these methods directly 
to our problem space.  

First, when given a set of category labels with no discernible root, where we situate 
ourselves in an ontology is of prime importance. Assume an ontology for “Musical 
Instruments.” What is the probability of occurrence for the “Brass Instruments” cate-
gory? What happens to the base rate probabilities if we then change the ontology to be 
rooted at the broader “Objects” category, which has the next order categorization of 
“Tangible Objects” and “Intangible Objects”?  The same problem exists whether we 
look at base rate probabilities of group memberships or of features of objects within 
an ontology. For this reason, the domain needs to be scoped for relevance.  

Second, we cannot assume that categories live within non-overlapping branches of 
an ontology tree. In fact, many categories belong to multiple parent categories, so 
there are effectively multi-rooted trees naturally occurring in our categorizations.  For 
example, consider Figure 1, which depicts the superordinate categories for the “TV 
Action & Adventure” category, which is a child of “Action,” “Adventure,” and “TV 
Shows.”  
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Figure 1. Example Subset of Genre Ontology 

Further, there is also the possibility that some categories serve to bridge these trees. 
For example, the members of the “Brass Instruments” category will include trumpets, 
trombones, and saxophones, among other instruments.  The memberships of these 
instruments will shed light on what categorizations are relevant, even if tangentially 
so.  For example, saxophones also belong to “Woodwind” instruments as they utilize 
a reed, which vibrates to produce the sound that is then amplified in the instrument.  
This raises an additional issue in determining which categories are relevant, given the 
objects’ traits under consideration.  This issue exists whether we look at object traits 
related to group memberships (i.e. belongs to “Woodwind” and “Brass”) or feature 
possession (i.e. an object within “Brass” contains a “reed” for resonance) within an 
ontology.  

Our broad intuition in developing this work is as follows: in order to determine the 
rate of occurrence for any categorization, especially when there are multiple roots, the 
objects’ memberships in the broader context need to be examined by considering in 
each category as a target and finding categories relevant to it, essentially filtering 
everything else out.  In this work, we have adapted the Category Utility metric to 
address our problem space, and we compare the resulting trees with a comparable 
trees produced using Information Gain.  

 
3.1 Adopting Category Utility for Our Proposed Method 

There has been much work in deriving relationships among concepts using the Pag-
eRank algorithm, such as AuthorRank, Y-factor, CiteRank, FutureRank, Eigenfactor, 
TextRank, and many others (see Yan et al. (2011)). Although this algorithm was orig-
inally considered for our purposes, we had to exclude this and other possibilities due 
to the need for directed relationships among elements. In order to iterate to an accu-
rate PageRank for your nodes, it requires sharing a previously calculated PageRank 
equally among all outlinks (all nodes that the source node points to).  Without know-
ing directionality, it becomes virtually impossible to converge to a meaningful Pag-
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eRank value. Although PageRank has been adapted to use in the text-mining space 
(Mihalcea et al. 2004), directionality is easily derived as there is a logical ordering of 
concepts embedded within the English grammar. The arrangement of words in a sen-
tence affords proximity and positioning metrics that can produce the necessary direc-
tionality among the constituent words or phrases.  However, in our case we are asso-
ciating entire categories without knowledge of the relationship’s direction, and pro-
ducing an undirected graph as a result.   

In order to adequately attribute relative “importance” of the concepts related in this 
undirected graph, as PageRank is able to, we were forced to look elsewhere.  Corter 
and Gluck (1992) posit that classes with the highest CU will also be most universal 
among all humans, since knowing and storing them provides the greatest value and 
therefore can be considered basic. The category utility function is calculated as fol-
lows: 

 
In this formula, a class c is defined by a set of objects o that belong in it. Each ob-

ject is characterized by a finite feature (attribute) set  which is cap-
tured in k. CU can be considered as the expected reduction of uncertainty due to 
communication of category information through some cue. The uncertainty is maxi-
mal when no category is present, and uncertainty is reduced the more “informative” 
the category becomes –but balanced by the frequency of the category. Although the 
CU provides us with a measure of usefulness for categories, there is also a probability 
distribution that can indicate how they should be connected. To illustrate, assume 
there are 100 “students”.  Of these, 80 are “undergraduate” students and 20 are “grad-
uate” students. In our student example, then, we have the following: 

• P(undergraduate | student): 0.80 
• P(graduate | student): 0.20 
• P(student | undergraduate): 1.0 
• P(student | graduate): 1.0 

Notice that the higher probabilities are for the children, given the parent. Children 
of a given category typically agree on the highest probability of group membership 
being attributed to the parents.  

Using our secondary data, we adapted Corter and Gluck to assign CU weights 
across all categories.  Although base-rate probabilities seem like straight-forward 
calculation, they are entirely dependent on scoping.  For example, the likelihood of 
any swan being a black swan is much higher than the likelihood of any bird being a 
black swan. The denominator in the calculation is directly affected by scoping choice.  
In our case, we have multiple nested ontologies and the set of class memberships of 
the objects within any category should provide an adequate proxy for what subset of 
the larger ontology is relevant for calculating these probabilities. The tree generation 
process using adapted CU would be as follows: 

1. Calculate the probability for each category in the domain as 𝑃𝑃(𝑐𝑐). 
2. Create key-value pairs for each category, where the key is the category label, 

and the value represents a counter with an initial value of 0. For each movie category, 
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get the movies that belong to that category. Then, for each member movie, increment 
the count of movies that have that category label.  

3. The key-value pairs are used to calculate the relative frequency for each of the k 
related categories, 𝑃𝑃(𝑐𝑐𝑘𝑘) for each category. This is simply a count of 𝑐𝑐𝑘𝑘 's members 
divided by the total memberships for all categories summed.   

4. 𝑃𝑃(𝑐𝑐𝑘𝑘) Situated at a category c (selected as our scoping root category), we then 
calculate the probabilities of all other k categories, given this category, 𝑃𝑃(𝑐𝑐𝑘𝑘  | 𝑐𝑐). 𝑐𝑐𝑘𝑘  
This is computed for all possible combinations, and recorded in a k * k matrix where 
the row is 𝑐𝑐 and the column is 𝑐𝑐𝑘𝑘. 

5. The category utility score is calculated for the selected category as Corter and 
Gluck’s algorithm above, substituting 𝑓𝑓𝑘𝑘 with 𝑐𝑐𝑘𝑘 where applicable. 

6. To represent these structures visually, nodes are added into the network analysis 
tool Gephi (Bastian et al. 2009) along with their CU score as a “weight” attribute.  
Also, all edges are added between the nodes with  𝑃𝑃(𝑐𝑐𝑘𝑘 | 𝑐𝑐) as a “weight” attribute to 
produce a tree. 

7. This process is repeated for all categories to derive the relevant portions of the 
entire ontology. 

 
3.2 Using Information Gain as a Comparison Method 

Alternatives are difficult to choose due to the undirected nature of relationships in our 
use case.  Following related work (Bouza et al. 2008; Zhang et al. 2002), we use in-
formation gain to find the most relevant “attributes” (i.e., categories) given a movie 
with a given category. Intuitively the information gain of higher order categories 
should approach 1. This is similar conceptually to inheritance, where a “student” ob-
ject (subordinate class) is also a “person” object (superordinate class). However, this 
stochastically selected category could itself be a parent to other categorizations. For 
example, using the previous student categorization it is clear that an “undergraduate” 
(subordinate class) is also a “student” (superordinate class). Information gain’s value 
for any subcategory, based on entropy, will depend on how many sibling categories 
there are at that level. Using our secondary data, the Tree generation process using 
Information Gain would be as follows: 

1. For each movie category, get the movies that belong to that category. 
2. For each category, create a key-value pair with the category label as the key and 

a counter as the value, assigned a default value of 0. Then, for each movie, increment 
the count value for every category label associated with the movie. 

3. For each category, consider the target variable to be the category itself and con-
sider all the categories retrieved from (2) as the features, once the target variable is 
removed. 

4. For each category, calculate the information gain and create a decision tree and a 
variable importance plot. We used the Sci-kit learn library for Python (Pedregosa et 
al. 2011) to calculate the entropy and generate the decision trees. 
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3.3 Experimental Dataset 

For this study, we selected Netflix data as a relevant secondary data to explore 
methods for deriving an ontology and identifying potential basic classes (i.e., classes 
with the highest category utility). The primary reasons for this are: (1) the complexity 
of the data, in that a category (genre) could belong to multiple other parent categories 
(i.e. “Slasher and Serial Killer Movies” could have the parent categories of “Thriller” 
and “Gore”), and (2) there may be multiple children within any given category, pro-
ducing a non-binary tree.  Although choosing this dataset provides the complexity in 
the structure we desire, it also presents a challenge in evaluation as, to the best of our 
knowledge, there is no pre-defined ontology that has been made publicly available for 
these data. 

The opportunity to analyze multi-rooted trees in the Netflix data is not unique to 
the video streaming context.  As technology improves, the boundaries between classes 
become blurry. Going back to the Microsoft Surface example from the introduction, 
although the Surface shares much in common with: (1) a “laptop” as it has substantial 
memory and other computing resources; (2) a “tablet” as it is designed with extreme 
portability as a key competency, and without the need for a keyboard (although offer-
ing a keyboard as peripheral in this market segment has become quite popular); and 
(3) a “notebook pc” as it has significant computing power, but is very light-
weight. An iPhone has valid argumentation for, and against, each of these categories 
as well. For example, even the category of a “smart phone,” which arguably has cellu-
lar service as a distinction, is no longer distinct to it as portable computing devices are 
now available with built-in 4G, LTE capabilities.  

The dataset was collected from Netflix by programmatically iterating through all of 
Netflix’s existing movie offerings organized by category (e.g., 
http://www.netflix.com/browse/genre/genreid, where genreID is the id code of the 
genre/category). For example, the URL for Action & Adventure (ID: 1365) is 
https://www.netflix.com/browse/genre/1365/?so=az, where the “az” denotes that the 
list will be sorted in alphabetical order. The anatomy of the Netflix Movie Recom-
mendation System was retrieved from: https://www.whats-on-netflix.com/news/the-
netflix-id-bible-every-category-on-netflix/. It is important to note that it seems that 
Netflix categorization is constantly in change, which is discussed in the limitations 
section of the manuscript. 

The data collected was stored in a NoSQL document-oriented database. MongoDB 
was selected for its schema-on-write capabilities, which allows flexibility in storing 
data. This flexibility is important because a given video can exist in any number of 
categories. For example, Stranger Things (ID: 80057281) belongs to 75 of our identi-
fied categories, and House of Cards (ID: 70178217) belongs to 26. All of the genre 
memberships for the videos were stored as an array, resulting in a large videoID x 
genreID matrix of dummy coded values (1 if member, 0 otherwise). The final dataset 
consisted of 5,729 videos (e.g., movies, TV series, documentaries) and 24,610 distinct 
categories. 

http://www.netflix.com/browse/genre/genreid
https://www.netflix.com/browse/genre/1365/?so=az
https://www.whats-on-netflix.com/news/the-netflix-id-bible-every-category-on-netflix/
https://www.whats-on-netflix.com/news/the-netflix-id-bible-every-category-on-netflix/
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4. Preliminary Results 

In this section we give a brief example that illustrates the derived hierarchical struc-
ture through our approach and the tree generated using the Information Gain method. 
In the interest of space, we focus on a single category, Spanish Dramas.  

Information gain gives an idea of the overlap that exists between categories, gener-
ating an implicit ontology—similar, although computationally different, to CU in 
Corter and Gluck (1992). The algorithm was able to detect the importance of Dramas, 
Comedies, and other similarly related categories in the domain of Spanish Dramas. 
However, notice that it was not very useful in providing an accurate ontology that 
would reflect what one would expect to see for Spanish Dramas. For instance, from 
all categories displayed, possible candidates for roots would be Dramas and Spanish 
Movies, as they are logically the most generic. However, even if we ignore direction-
ality, the closest categories to Dramas are Spanish Comedies, Cynical Spanish-
Language Comedies, Spanish Movies, and Witty Spanish-Language Comedies (see 
Figure 2). These categories are logically not immediate children of Dramas.  

In our domain, membership of a category to a super-ordinate category is not mutu-
ally exclusive to other super-ordinates at the same level (i.e., any given genre can 
belong to multiple immediate parents) as illustrated in the logical extension of these 
movies belonging under Comedies as well as Dramas (see variable importance Figure 
3). Although information gain is useful for determining if a given category is a parent 
(low entropy) or a subordinate (higher entropy) categorization, it will not indicate to 
us at what level the perceived parent is within the ontology. Although it may detect 
the parent, it does not necessarily place them appropriately at the right level (see Fig-
ure 2 and 3). 

  
Fig 2. Decision Tree for the category “Spanish Dramas” 
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Fig 3. Variable importance for the category “Critically-acclaimed 20th Century Period Pieces” 

Consider the same categories as rendered by our approach in Figures 4 and 5. Fig-
ure 4 is a zoomed-out view of the navigable structure produced by this method, while 
Figure 5 zooms in to demonstrate the similarities and differences, compared to the 
information-gain-based case. In this structure, the weights of edges are represented by 
color graduation from light green to dark green, and the weights of nodes are illustrat-
ed in the relative sizes of the label font and node circle. In this example, the closest 
and most meaningful categories detected were Dramas, followed by International 
Dramas, Thrillers, International Comedies, Comedies, and Critically-acclaimed Mov-
ies. This makes sense given the scope of the domain (i.e., Spanish Dramas). Aligned 
to the results from the Information Gain method, comedies are relevant to this catego-
ry, although from a tangentially related tree (Comedies tree). Therefore, the closest 
and most relevant category from our generated ontology from the Comedies portion 
of the ontology is International Comedies, as these are Spanish films, which is fol-
lowed by Comedies as important but slightly less relevant.  

Notice also that our approach was also able to detect the tangentially related Thrill-
ers category. Examples of movies in the Spanish Dramas category overlapping with 
Thrillers are the critically-acclaimed Toro, Black Snow, Smoke & Mirrors, Orbiter 9, 
and others. The Thrillers portion of the ontology that is relevant for this categorization 
was ignored in the Information Gain result. The same could be said for Critically-
Acclaimed Movies (Toro as an example) and International Movies (they arguably all 
are tangentially related to this category as well). Our tree is arguably much more 
complete and representative of the target category’s ontology than the Information 
Gain approach was able to provide. 
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Figure 4. Scoped Ontology – Spanish Dramas 

 

 
Figure 5. Zoomed in Scoped Ontology from Figure 4 – Spanish Dramas 

Interestingly, the adapted Corter & Gluck method provides a serendipitous result 
(e.g., shows dramas and thrillers in the ontology) compared to the information gain 
method, which is less accurate as there may not be enough objects (e.g., movies) with 
certain characteristics within the sampled data. The algorithm uses membership (fea-
ture presence) to calculate its category utility—a proxy for relatedness in terms of 
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utility of a category within a structure. It is assumed that categories are created to the 
extent that they are useful (fulfill a functional role) and their ability to predict features 
of a member of this category. Basic level categories typically have higher category 
utility than both a superordinate and a subordinate category as there is an increase in 
predictive power from knowing that the object belongs to a category of which more 
inferences can be made (Tanaka and Taylor 1991). Corter and Gluck (1992) verified 
that category utility correctly predicts basic level categories. 

4. Discussion 

Classification theory in psychology provides evidence for the existence of classes that 
maximize agreement among people with diverse backgrounds, education, and func-
tional needs. In this study, we used two probability-driven methods to derive an on-
tology from object membership and identify categories at different levels of abstrac-
tion (superordinate, basic, and subordinate). These categories vary as a result of the 
multi-rooted and non-binary nature of object categorization. 

We explored ways that would help an analyst derive conceptual models and ulti-
mately be able to present information at different levels of abstraction with the inten-
tion of providing users with information from the structure personalized to their 
needs, whether they need more detailed and specific, basic level information, or less 
detailed and less specific. Our method allows for hybrid categories which bridge on-
tologies together, as can occur in real data sets.  

We believe our method contributes to the area of systems analysis and design (e.g., 
conceptual modeling) and has practical implications in that it would help analysts: (1) 
alleviate the diversity of the user base in open systems—by showing classes that are 
relevant to both experts and novice users, preventing users with low level of expertise 
to disengage from using the system (similar to the findings of Lukyanenko et al. 
(2014)); (2) deal with physical constraints (i.e., leverage basic level categories as 
candidate classes in a conceptual modes), and cold-start problem (i.e., use basic clas-
ses as anchors when we do not have enough information about the user).  

We demonstrate our prototype method and derived a relevant ontology (from Net-
flix), as a proof of concept, anchored on a given category (“Spanish Dramas”), which 
is part of a broader unknown ontology.  

The paper is not without limitations. Movie categorization may change over time 
(i.e., additional categories are added to movies). These variations could be a reflection 
of inconsistent or evolving tagging methods. Although we were able to show small 
sections (“pruned”) from the ontology, a method of piecing together all these ontolo-
gies should be explored.  Although our focus is on the member-of relationship in or-
der to generate a hierarchical relationship among data points, there are various meta-
structures that could also be analyzed in future work. Future work will incorporate an 
evaluation method (that involves human judgment) to further support and validate the 
utility of the method beyond our proof-of-concept. 
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