
Proceedings of the
3nd International Workshop on

Scripting for the
Semantic Web
(SFSW 2007)

Co-located with 4rd European Semantic Web Conference

June 3-7, 2007, Innsbruck, Austria.

Workshop Co-Chairs’ Message
SFSW 2007 - Workshop on Scripting for the Semantic Web

Scripting languages such as PHP, JavaScript, Ruby, Python, Perl, JSP and
ActionScript are playing a central role in current development towards
flexible, lightweight web applications following the AJAX and REST
design paradigms. These languages are the tools of a generation of web
programmers who use them to quickly create server and client-side web
applications. Many deployed Semantic Web applications from the FOAF,
RSS/ATOM, blog and wiki communities, as well as many innovative
mashups from the Web 2.0 and Open Data movements are using scripting
languages and it is likely that the process of RDF-izing existing database-
backed websites, wikis, weblogs and CMS will largely rely on scripting
languages.

The workshop brings together developers of the RDF base infrastructure
for scripting languages with practitioners building applications using
these languages. Last years Scripting for the Semantic Web workshop in
Budva, Montenegro focused on giving an overview about the support for
Semantic Web technologies within scripting languages. The special focus
of this year’s workshop is the role of scripting languages in the process of
populating the Web with linked RDF data as well as to showcase
innovative scripting applications that consume RDF data from the Web.
The focus especially of the included Scripting Challenge is to show how
Web 2.0 applications and mashups can benefit from Semantic Web
technologies.

We would like to thank the organizers of ESWC conference for
supporting the workshop. We especially thank all members of the SFSW
program committee for providing their expertise and giving elaborate
feedback to the authors and T-Systems for providing the Scripting
Challenge prize. Last but not least, we hope that you will enjoy the
workshop and the whole conference.

Chris Bizer, Freie Universität Berlin, Germany
Sören Auer, University of Pennsylvania, USA

Gunnar Aastrand Grimnes, DFKI, Germany
Tom Heath, Open University, UK

SFSW 2007 Program Committee

• David Aumüller, Universität Leipzig, Germany

• Danny Ayers, Independent Author, Italy

• Dave Beckett, Yahoo!, USA

• Uldis Bojars, DERI, Ireland

• Dan Brickley, Semantic Web Vapourware, UK

• Richard Cyganiak, Freie Universität Berlin, Germany

• Stefan Decker, DERI, Ireland

• Stefan Dietze, KMi, The Open University, UK

• Leigh Dodds, Ingenta, UK

• Edd Dumbill, Useful Information Company, UK

• Frank Fuchs-Kittowski, Frauenhofer Gesellschaft - ISST, Germany

• Daniel Krech, University of Maryland, USA

• Peter Mika, Vrije Universiteit Amsterdam, The Netherlands

• Libby Miller, @Semantics, UK

• Claudia Müller, University of Potsdam, Germany

• Benjamin Nowack, appmosphere web applications, Germany

• Alberto Reggiori, @Semantics, Italy

• Sebastian Schaffert, salzburg research, Austria

• Vlad Tanasescu, KMi, The Open University, UK

• Elias Torres, IBM, USA

• Denny Vrandecic, AIFB, Universität Karlsruhe, Germany

• Gregory Williams, University of Maryland, USA

Table of Contents

The Web Mashup Scripting Language Profile
Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

A Performance and Scalability Metric for Virtual RDF Graphs
Michael Hausenblas, Wolfgang Slany, Danny Ayers

Explorative Debugging for Rapid Rule Base Development
Valentin Zacharias, Andreas Abecker

The RDF Book Mashup: From Web APIs to a Web of Data
Christian Bizer, Richard Cyganiak, Tobias Gauss

Rapid ontology-based Web application development with JSTL
Angel López-Cima, Oscar Corcho, Asunción Gómez-Pérez

Leveraging existing Web frameworks for a SIOC explorer to browse online
social communities
Benjamin Heitmann, Eyal Oren

Extensible SPARQL Functions with Embedded Javascript
Gregory Todd Williams

A lookup index for Semantic Web resources
Eyal Oren, Giovanni Tummarello

JAWS: A Javascript API for the Efficient Testing and Integration of
Semantic Web Services
David A. Ostrowski

Functional Programs as Linked Data
Joshua Shinavier

An Architecture to Discover and Query Decentralized RDF Data
Uldis Bojars, Alexandre Passant, Frederick Giasson, John Breslin

Empowering Moodle with Rules and Semantics
Sergey Lukichev, Mircea Diaconescu, Adrian Giurca

Semantic Scripting Challenge Submissions

Approved for Public Release, Case Number 07-0393. Copyright 2006-2007, The

MITRE Corporation. All Rights Reserved.

The Web Mashup Scripting Language Profile

Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

The MITRE Corporation

202 Burlington Rd.

Bedford, Massachusetts 01730

ms@mitre.org

Abstract. This paper provides an overview of the Web Mashup Scripting

Language (WMSL) and discusses the WMSL-Profile. It specifies the HTML

encoding that is used to import Web Service Description Language (WSDL)

files and metadata, in the form of mapping relations, into a WMSL web page.

Furthermore, the WMSL-Profile describes the conventions used to parse the

WMSL pages. It is envisioned that these WMSL pages scripted out by end-

users using an easy-to-use editor will allow mashups to be created quickly to

integrate Web services. The processing of these WMSL pages will be

accomplished automatically and transparently to generate aligned ontologies

sufficient for interoperability.

Key Words: Semantics, Scripting, Ontologies, Mapping Relations, Web

Services, Mashup

1 Introduction

The Web Mashup Scripting Language (WMSL) [1] enables an end-user (“you”)

working with a browser—not even needing any other infrastructure, to quickly write

mashups that integrate any Web services on the Web. The end-user accomplishes this

by writing a web page that combines HTML, metadata in the form of mapping

relations, and small piece of code, or script. The mapping relations enable not only

the discovery and retrieval of other WMSL web pages, but also affect a new

programming paradigm that abstracts many programming complexities from the

script writer. Furthermore, the WMSL web pages written by disparate end-users

(“you”) can be harvested by crawlers to automatically generate the concepts needed to

build aligned ontologies sufficient for interoperability [4].

Despite many advances in Semantic Web technologies, such as OWL [6] and RDF

[7], we have not observed widespread adoption of these technologies that was once

anticipated. In comparison, a number of lightweight technologies such as

Microformats [8], Ajax [9], RSS [10], and REST [11] enjoy substantial momentum

and support from Web communities. The apparent reason for the success of these

technologies is that they are effective in addressing needs and fairly simple to use.

We believe the adoption of Semantic Web technologies has been slow largely

because they involve heavyweight infrastructure and substantial complexities. Adding

to these issues are the multiple competing standards in Semantic Web Services [12],

2 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

e.g. OWL-S [13] and WMSO [14], and how they can be harmonized with existing

W3C standards. Therefore, one key issue to address is this: Can we adopt Semantic

Web technologies in a manner sufficient to our needs that is lightweight and much

less complex for Web communities to use? Our previous research has clearly

indicated that light semantics are sufficient in many applications, and can be used as a

transitional step to rich semantics. For example, we concluded in [3] that we can

achieve workflow automation from the pair-wise mappings of data models and from

their mapping to some shared context, regardless of whether OWL\RDF, XML

Schemas, or UML is used to describe the data models.

Another challenge to widespread adoption of rich semantics is the lack of social

processes for the design of ontologies as is in the case for Folksonomies or in the

social tagging case. Despite these difficulties, we cannot escape the fact that

semantics are absolutely needed to enable automated reasoning on the web, or to

enable information exchange in the enterprise. How can we promote Web user

participation in using semantics without requiring deep understanding of ontology?

We believe WMSL, when combined with existing schemas such as WSDL files,

offers sufficient semantics for many applications. That is, WMSL leverages all the

semantics that exist in XML schemas while offering the facilities to assert further

semantics that may be missing from XML Schemas. This positions WMSL as the

glue that takes in XML schemas and yields formal ontologies. Since WMSL is

HTML and scripting, it therefore has Web scale. Furthermore, WMSL is lightweight,

and can be run from a browser. Also, our solution enables a light SOA approach

where anyone can write a WMSL script to implement a mashup in support of

information sharing requirements. Finally, WMSL can automatically generate the

semantics needed to index and search structured data as is done with free text today.

In the next section, we provide an overview of WMSL. In section 3, we use an

example to describe the encoding conventions of WMSL followed by its parsing

conventions in section 4. In section 5, we relate this approach to the literature,

discuss its implications, and point out the next steps to conclude the paper.

2 WMSL Overview

The WMSL script is divided into four blocks to contain different types of statements:

1. Imports of Web Service Description Language (WSDL) files [2], schemas,

ontologies, and other WMSL scripts

2. Alignments of entities and concepts

3. Workflow statements

4. Mediation statements

Each of these blocks can be encoded either in HTML or a script. For the purpose

of this paper, we discuss the WMSL-Profile: the encoding of the import and

alignment blocks in the HTML of a WMSL web page. That is, we describe the

conventions of encoding and of parsing the WMSL-Profile. We also describe the

automatic generation of aligned ontologies from the WMSL-Profile. It is envisioned

The Web Mashup Scripting Language Profile 3

that WMSL pages are created by end-users with the help of an easy-to-use editor, and

the parsing of the WMSL pages, which yields the aligned ontologies, is accomplished

automatically and transparently.

Figure 1 shows a WMSL page for a use case presented in [3] and [4]. The use case

discusses the integration of two air flight systems: Air Mobility (AM), and Air

Operations (AO). The AM system is responsible for many different types of missions

including: mid-air refueling, the movement of vehicles, and the tasking of Air Force

One. The AO system is primarily concerned with offensive and defensive missions.

Each system was developed independently and built for the specific needs of the

users. In both systems, a mission is represented as a set of position reports for a

particular aircraft.

<html>
 <head profile="http://mitre.org/wmsl/profile">
 <title>WSML Use Case</title>
 <base href=" http://mitre.org/owl/1.1/"/>
 <link rel="schema.AM" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AM#"/>
 <link rel="schema.AO" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AO#"/>
 </head>
 <body>
 <dl class="owl-equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
 </dl>
 <dl class="owl-sameAs">
 <dt>AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>
 <dl class="mappings-match">
 <dt><a AM#AircraftType">AM#AircraftType</dt>
 <dd><a AO#AircraftType">AO#AircraftType</dd>
 </dl>
 <dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 </dl>
 <dl class="mappings-hasRelation">
 <dt></dt>
 <dd></dd>
 </dl>
 <dl class="rdfs-subclassOf">
 <dt></dt>
 <dd></dd>
 </dl>
 </body>
</html>

<html>
 <head profile="http://mitre.org/wmsl/profile">
 <title>WSML Use Case</title>
 <base href=" http://mitre.org/owl/1.1/"/>
 <link rel="schema.AM" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AM#"/>
 <link rel="schema.AO" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AO#"/>
 </head>
 <body>
 <dl class="owl-equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
 </dl>
 <dl class="owl-sameAs">
 <dt>AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>
 <dl class="mappings-match">
 <dt><a AM#AircraftType">AM#AircraftType</dt>
 <dd><a AO#AircraftType">AO#AircraftType</dd>
 </dl>
 <dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 </dl>
 <dl class="mappings-hasRelation">
 <dt></dt>
 <dd></dd>
 </dl>
 <dl class="rdfs-subclassOf">
 <dt></dt>
 <dd></dd>
 </dl>
 </body>
</html>

Fig. 1. A Sample WMSL Profile for the AM-AO Use Case

In this scenario these two systems will be integrated so that the AO system can be

kept apprised of all the AM missions. To accomplish this integration a WMSL page

will be created. As stated earlier we will be focusing only on the import and

alignment blocks. First, the WMSL imports the WSDL files of the AM and AO, and

the WSDL of shared context which is the GeoTrans translator service that translates

between geo-coordinate systems. These imports yield the aligned ontologies

necessary to reconcile syntactic, structural, and representational mismatches between

the AM and the AO schemas as was demonstrated in [3] and [4]. Moreover, these

imports also yield the ontological description of web services necessary for their

4 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

automatic invocation and for handling their response—that aspect will not be

addressed here but in a future paper.

Then, the WMSL uses six mapping relations to align entities between the AM and

AO schemas and for their mappings to the WSDL of Geotrans [5]. Our previous

work [3] and [4] provides us a basis and insight to identify a minimal set of mapping

relations for reconciling mismatches between data models in most cases if not all.

The mapping patterns which are discussed in greater detail in our previous work are

shown in Figure 2. The minimal set includes only these mapping relations:

owl:equivalentClass owl:sameAs rdfs:subclassOf

hasMatch hasContext hasRelation

AO-FLIGHT

EVENT

AIRCRAFT
CONFIG

AO-AIRCRAFT-
TYPE

HAS-
ACFTTYPE

F-16E

CALLSIGN
NAME

HAS-
CALLSIGN
NAME

AIR
FIELD

AO-COORD
(Geodetic)

A010A

IS-A

HAS-
AIRCRAFTCONFIG

HAS-
LOCATION

HAS-EVENT

HAS-COORD

AM-FLIGHT

AM
MISSION

AIRCRAFT

HAS-
MISSION-
AIRCRAFT

AM

AIRPLANE
TYPE

HAS-
ACFTYPE

AM
CALLSIGN

HAS-CALLSIGN

AM
SORTIE
EVENT

HAS-
LOCATION

AM
LOCATION

AM
COORD
(UTM)

HAS-
COORD

F-16

IS-A

A10A

IS-A

HAS-EVENT

EquivalentClass

HAS-MATCH

owl:sameAs

owl:sameAs

HAS-MATCH

Air Mobility Air Operations

IS-A

LATITUDE

LONGITUDE

LATLONHTCOORDINATE
_WGE

HAS-
LATITUDE

HAS-
LONGITUDE

HAS-

CONTEXT

COORD
ZONE

COORD
NORTHING

UTMCOORDINATE
_WGE

HAS-ZONE

HAS-

CONTEXT

COORD
EASTING

COORD
HEMI

HAS-
HEMI

HAS-
EASTING

HAS-
NORTHING

Pattern 1

Pattern 2

Pattern 3

Fig. 2. Aligned Ontologies for the AM-AO Use Case

The first three relations are used in accordance with the specifications that they

were taken from. The hasMatch, and hasContext relations are needed in order to

resolve structural, syntactic, and representational mismatches between the legacy

schemas. The hasRelation establishes a generic relationship between a subject and an

object. To conclude this section we highlight the fact that the imports of the WSDL

files and the existence of these mapping relations in the WMSL enable an open-

source/collaborative model of building aligned ontologies sufficient for

interoperability.

The Web Mashup Scripting Language Profile 5

3 WMSL-Profile Specifications

3.1 Encoding of the Schema Declarations Using the Header Block

We now specify the conventions used in encoding the WMSL-Profile. Other

encodings are certainly possible, and we would welcome help for defining better

encoding scheme. We have chosen HTML in which to define WMSL because of its

already widespread acceptance and familiarity to Web communities. And there is no

need to introduce new syntax and tags when the familiar standard HTML tags would

suffice for WMSL.

To direct the user agent to follow the WMSL conventions in parsing this

document, we use the standard HTML profile attribute of the head tag as shown in

Figure 3.

 <head profile= http://mitre.org/wmsl/profile > <head profile= http://mitre.org/wmsl/profile >

Fig. 3. Use of the Profile Attribute

To declare the WSDL files employed by the integration, we use a method

compliant with that used by the embedded RDF specification as well as the method

used by the Dublin Core to embed metadata in HTML using the link and meta tags.

Specifically, we use the rel, type and href attributes of the link tag. The general

pattern is shown in Figure 4 followed by examples in Figures 5 and 6.

 <link rel="schema.prefix" type=”MIME Content Type” href="uri" />
<link rel="schema.AM" type="text/xml“ href="http:// www.mitre.org/xsd/1.1/AM#"/>
<link rel="schema.AO" type="text/xml" href="http:// www.mitre.org/xsd/1.1/AO#"/>

 <link rel="schema.prefix" type=”MIME Content Type” href="uri" />
<link rel="schema.AM" type="text/xml“ href="http:// www.mitre.org/xsd/1.1/AM#"/>
<link rel="schema.AO" type="text/xml" href="http:// www.mitre.org/xsd/1.1/AO#"/>

Fig. 4. Import of the WSDL Files Using the Link Tag

The above statements also declare a schema prefix that can be used later in the

HTML. Next we declare the schema of the mapping relations. Notice that we adopt

the type value “application/rdf+xml” to indicate an ontology file.

 <link rel="schema.map" type="application/rdf+xml“
href="http://www.mitre.org/mappings/1.1/mappings#"/ >

 <link rel="schema.map" type="application/rdf+xml“
href="http://www.mitre.org/mappings/1.1/mappings#"/ >

Fig. 5. Use of the Type Attribute

Next, we specify the handles for using relations from the RDFS and OWL

specifications. In the next section we will show how these handles are used.

 <link rel="schema.owl" type="text/html" href="http: //www.w3.org/2002/07/owl#"/>
<link rel="schema.rdfs" type="text/html"

href="http://www.w3.org/2000/01/rdf-schema#"/>

 <link rel="schema.owl" type="text/html" href="http: //www.w3.org/2002/07/owl#"/>
<link rel="schema.rdfs" type="text/html"

href="http://www.w3.org/2000/01/rdf-schema#"/>

Fig. 6. Use of Schema Handles

6 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

3.2 Encoding of the Mapping Relations in the Body Tag

The technique used for alignment requires six mapping relations used in three design

patterns. As stated earlier the mapping relations are: owl:equivalentClass,

owl:sameAs, rdfs:subclassOf, hasMatch, hasContext, hasRelation. In this section we

define the encoding of the mapping patterns in HTML. For these relations the class

attribute of DL tag is used in combination with the anchor, DT and the DD tags. The

interpretation of the encoding is also addressed in the next section.

The encoding of the owl::equivalentClass relation between two entities is shown in

Figure 7. Note the use of the OWL prefix in the class attribute of the DL tag, this is

the same prefix that was declared in the rel attribute of the link tag of Figure 6.

 <dl class="owl - equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
</dl>

 <dl class="owl - equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
</dl>

Fig. 7. Encoding of the owl:equivalentClass

The encoding of the owl:sameAs relation between two entities is similar to that of

the owl:equivalentClass, and is shown in Figure 8.

 <dl class="owl - sameAs">
 <dt> AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>

 <dl class="owl - sameAs">
 <dt> AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>

Fig. 8. Encoding of the owl:sameAs

Next, we demonstrate the encoding of the hasMatch and hasContext relations. The

first example shown in Figure 9 specifies that the triple AM AircraftType hasMatch

the AO AircraftType. The second example shown in Figure 9 specifies the triples

AOCoord hasContext Coord-GEODETIC-WGE, and AMCoord hasContext Coord-

UTM-WGE.

 <dl class="mappings - hasMatch">
 <dt>AM#AircraftType</dt>
 <dd>AO#AircraftType</dd>
</dl>
<dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 <dt>AM#AMCoord</dt>
 <dd>

position#Coord-UTM-WGE</dd>
</dl>

 <dl class="mappings - hasMatch">
 <dt>AM#AircraftType</dt>
 <dd>AO#AircraftType</dd>
</dl>
<dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 <dt>AM#AMCoord</dt>
 <dd>

position#Coord-UTM-WGE</dd>
</dl>

Fig. 9. Encoding of the hasMatch and hasContext

The encoding of the rdfs:subclassOf relation to specify that the aircraft A10A is a

subclass of AircraftType is shown in Figure 10.

The Web Mashup Scripting Language Profile 7

 <dl class="rd fs - subclassOf">
 <dt> </dt>
 <dd></dd>
</dl>

 <dl class="rd fs - subclassOf">
 <dt> </dt>
 <dd></dd>
</dl>

Fig. 10. Encoding of the rdfs:subclassOf

Finally, the hasRelation mapping relation, shown in Figure 11, is encoded in

HTML to specify that that the entity Coord-UTM-WGE has two generic relations

with UTM, and WGE. A generic relation is a genetic property where the name is not

significant.

 <dl class="mappings - hasRelation">
 <dt></dt>
 <dd></dd>
 <dt></dt>
 <dd></dd>
</dl>

 <dl class="mappings - hasRelation">
 <dt></dt>
 <dd></dd>
 <dt></dt>
 <dd></dd>
</dl>

Fig. 11. Encoding of the hasRelation

4 Automatic Generation of the Aligned Ontologies When Parsing

the WMSL-Profile

In our previous work, we have demonstrated that given the aligned ontologies of

Figure 2, we can automatically translate an instance of the Air Mobility (AM) to an

instance of the Air Operations (AO). How can we obtain the aligned ontologies of

Figure 2? The WSDL files specified in the import block of the WMSL-Profile can be

converted into ontologies. However, the WSDL files may not contain all the entities

necessary to enable the information exchange; hence, we use the mappings in the

WMSL-Profile to specify, or create, the missing semantics. The end result is that the

parsing of the WMSL-Profile yields the aligned ontologies sufficient for integration.

(For now, we will ignore the case where the schema declared in the WMSL may

themselves be ontologies.) More details on generating aligned ontologies are

described in the next sections.

4.1 Generating Ontologies from WSDL Files

We start building the ontology by leveraging the semantics already existing in the

WSDL file. To do that, we create mapping patterns between XML schema primitives

and the OWL/RDF vocabulary; the complete set of patterns will be discussed in a

future paper. For example, class membership is derived from the XML schema

sequence (xs:sequence), and restrictions on properties from the

minOccurs/maxOccurs attributes of the xs:sequence tag. Figure 12 shows a snippet of

xml schema and Figure 13 shows the corresponding ontology of it. Since XML

schema does not contain property names, we use a generic relationship in the RDF

8 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

triple. From our previous work we found that the property name of the triple within

an ontology does not play a role in the reasoning necessary to reconcile syntactic,

structural, and representational mismatches between data models.

 <xs:complexType name="AircraftC onfigType">
 <xs:sequence>
 <xs:element name="AircraftType" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="CallSignName" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 </xs:sequence>

 <xs:complexType name="AircraftC onfigType">
 <xs:sequence>
 <xs:element name="AircraftType" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="CallSignName" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 </xs:sequence>

Fig. 12. Snippet of XML Schema

 <owl:Class rdf:ID="AIRCRAFTCONFIG">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-AIRCRAFTTYPE"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#AIRCRAFTTYPE"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-CALLSIGNNAME"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#CALLSIGNNAME"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

 <owl:Class rdf:ID="AIRCRAFTCONFIG">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-AIRCRAFTTYPE"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#AIRCRAFTTYPE"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-CALLSIGNNAME"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#CALLSIGNNAME"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Fig. 13. OWL Statements Corresponding to the XML Schemas of Figure 12

After the ontologies have been generated from the WSDL files, we proceed to

augment these ontologies with semantics from the mapping relations in the WMSL-

Profile.

4.2 Augmenting the Ontologies with Semantics Derived from Mapping Relations

This step is illustrated by generating the semantics from the mappings presented in the

previous sections. The owl:equivalentClass relation that was presented in Figure 7

yields the following OWL (Figure 14).

 <owl:Class rdf:ID="CALLSIGNNAME">
 <owl:equivalentClass rdf:resource="&AM;CALLSIGN"/>
</owl:Class >

 <owl:Class rdf:ID="CALLSIGNNAME">
 <owl:equivalentClass rdf:resource="&AM;CALLSIGN"/>
</owl:Class >

Fig. 14. OWL Statements Corresponding to the WMSL of Figure 7

The owl:sameAs and rdfs:subclassOf mapping relations, presented in Figure 8 and

Figure 10 respectively, yield the following OWL in the AM ontology and the AO

ontology (Figure 15).

The Web Mashup Scripting Language Profile 9

 <owl:Class rdf:ID="A10A">
 <rdfs:subClassOf>
 <owl:Class rdf:about="&AM;AIRCRAFTTYPE"/>
 </rdfs:subClassOf>
 <owl:sameAs rdf:resource="&AO;A010A" />
</owl:Class>

<owl:Class rdf:ID="A010A"/>

 <owl:Class rdf:ID="A10A">
 <rdfs:subClassOf>
 <owl:Class rdf:about="&AM;AIRCRAFTTYPE"/>
 </rdfs:subClassOf>
 <owl:sameAs rdf:resource="&AO;A010A" />
</owl:Class>

<owl:Class rdf:ID="A010A"/>

Fig. 15. OWL Statements Corresponding to the WMSL of Figure 8

The hasRelation mapping relation shown in Figure 11, yields the following OWL

(Figure 16).

<owl:Class rdf:ID="C oord - UTM- WGE">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;UTM" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;WGE" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="C oord - UTM- WGE">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;UTM" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;WGE" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Fig. 16. OWL Statements Corresponding to the WMSL of Figure 10

Note that the OWL above is inserted into a position ontology that was included in

the WMSL-Profile. In similar fashion, the remaining mapping relations yield OWL

definitions. When we finish the parsing of the WMSL-Profile, the aligned ontologies

are created as shown in the Figure 2 above.

5 Relation to the Literature and Future Work

The ideas presented in this paper draw on the proliferation of semantic matching

techniques found in Semantic Web Services [13] literature. We abstract one such

technique and formulate it in HTML. In the process, we demonstrated how WMSL is

used to leverage existing schemas to produce ontologies. This allows us to think of

WMSL as the glue between schemas and ontologies. WMSL can potentially enable

matching between schemas irrespective of their formalisms. Today, techniques to

embed semantics in HTML are emerging, but with a different purpose from that of

WMSL. For example, the hCard Microformat is used to embed contact information in

HTML pages. RDFa [15] serves to embed metadata such as those defined by the

Dublin Core, in HTML. In contrast to RDFa, WMSL is designed to embed mapping

relations in HTML. Another key distinction between the approach presented here and

the Microformats is that WMSL builds on schemas, and not text pages. Moreover, the

10 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

embedding of the mapping relations in HTML serves to promote crosswalks for the

purpose of building ontologies. This is a key differentiator from the tagging

phenomenon that is so relevant in Folksonomies or the annotation technique enabled

by SAWSDL. That is, crosswalks may prove to be as significant to the structured

data sources as tags are to resources. Furthermore, since anyone can publish WMSL

for existing WSDLs, we conclude that WMSL enables an open source model for

building ontologies.

In conclusion, this paper describes how metadata in the form of mapping relations

are embedded in HTML. We also described the parsing conventions of WMSL by a

user agent. Our next steps, which will be described in a separate paper, are to

demonstrate how the mapping relations abstract workflow composition and to make

available libraries for enabling the execution of WMSL web pages.

References

[1] Sabbouh, M., Higginson, J., Semy, S., Gagne, D. Web Mashup Scripting Language.

Available at : http://semanticweb.mitre.org/wmsl/wmsl.pdf
[2] Webservice Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-

20010315, June 2006

[3] Gagne D., Sabbouh M., Powers S., Bennett S. Using Data Semantics to Enable Automatic

Composition of Web Services. IEEE International Conference on Services Computing

(SCC 06), Chicago USA. (Please see the extended version at:http://tinyurl.com/28svgr)

[4] Sabbouh M. et al. Using Semantic Web Technologies to Enable Interoperability of

Disparate Information Systems, MTR:

http://www.mitre.org/work/tech_papers/tech_papers_05/05_1025/
[5] Schroeder, B., & Sabbouh, M. (2005). Geotrans WSDL,

http://www.openchannelfoundation.org/orders/index.php?group_id=348, The Open

Channel Foundation

[6] Web Ontology Language (OWL), World Wide Web Consortium,

http://www.w3.org/2004/OWL

[7] Resource Description Framework (RDF), World Wide Web Consortium,

http://www.w3.org/rdf/

[8] More information on Microformats available at: http://microformats.org/

[9] More information on Asynchronous Javascript and XML (AJAX) available at:

http://www.ajaxmatters.com/

[10] Really Simple Syndication (RSS) 2.0 specification, available at:

http://www.rssboard.org/rss-specification

[11] Fielding, R.T., Architectural Styles and the Design of Network-based Software

Architectures, PhD Dissertation in Information and Computer Science, 2000, available at:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[12] McIlraith S., &Son T.,Zeng H. (2001). Semantic Web services. In IEEE Intelligent

Systems (Special Issue on the Semantic Web)

[13] OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/,

November, 2004

[14] Web Service Modeling Ontology (WSMO), http://www.w3.org/Submission/WSMO/, June

2005

[15] RDFa Primer 1.0, available at: http://www.w3.org/TR/xhtml-rdfa-primer/

A Performance and Scalability Metric for
Virtual RDF Graphs

Michael Hausenblas1, Wolfgang Slany2, and Danny Ayers3

1 Institute of Information Systems and Information Management,
JOANNEUM RESEARCH, Steyrergasse 17, 8010 Graz, Austria

michael.hausenblas@joanneum.at
2 Institute for Software Technology,

Graz University of Technology, Inffeldgasse 16b, 8010 Graz, Austria
wsi@ist.tugraz.at

3 Independent Author, Italy
danny.ayers@gmail.com

Abstract. From a theoretical point of view, the Semantic Web is under-
stood in terms of a stack with RDF being one of its layers. A Semantic
Web application operates on the common data model expressed in RDF.
Reality is a bit different, though. As legacy data has to be processed
in order to realise the Semantic Web, a number of questions arise when
one is after processing RDF graphs on the Semantic Web. This work
addresses performance and scalability issues (PSI), viz. proposing a met-
ric for virtual RDF graphs on the Semantic Web—in contrast to a local
RDF repository, or distributed, but native RDF stores.

1 Motivation

The Semantic Web is—slowly—starting to take-off; as it seems, this is mainly
due to a certain pressure stemming from the Web 2.0 success stories. From a
theoretical point of view the Semantic Web is understood in terms of a stack.
The Resource Description Framework (RDF) [1] is one of the layers in this stack,
representing the common data model of the Semantic Web.

However, practice teaches that this is not the case, in general. In the per-
ception of the Semantic Web there exists a tremendous amount of legacy data.
This is, HTML pages with or without microformats4 in it, relational databases
(RDBMS), various XML applications as Scalable Vector Graphics (SVG)5, and
the like. These formats are now being absorbed into the Semantic Web by ap-
proaches as Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
[2], RDFa in HTML [3], etc.

Take Fig. 1 as an example for a real-world setup of a Semantic Web applica-
tion. There, a Semantic Web agent operates on an RDF graph with triples that
actually originate from a number of sources, non-RDF or ’native’ RDF alike.

4 http://microformats.org/
5 http://www.w3.org/Graphics/SVG/

Fig. 1. A real-world setup for a Semantic Web application.

The Semantic Web agent operates on its local RDF graph in terms of per-
forming for example a SPARQL Protocol And RDF Query Language [4] query to
accomplish a certain task. While from the point of view of the SPARQL engine
it might not be of interest where triples come from and how they found their
way into the local RDF graph, the Semantic Web agent—and finally the human
user who has instructed the agent to carry out a task—may well be interested
in how long a certain operation takes.

But how do the triples arrive in the local RDF graph? Further, how do the
following issues influence the performance and the scalability of the operations
on the local RDF graph:

– The number of sources that are in use;
– The types of sources, as RDF/XML, RDF in HTML, RDBMS, etc.;
– Characteristics of the sources: a fixed number of triples vs. dynamic, as

potentially in case of a SPARQL end point.

This paper attempts to answers these questions. We first give a short overview
of related and existing work, then we discuss and define virtual RDF graphs, their
types, and characteristics. How to RDF-ize the flickr Web API6, based on the
recently introduced machine tags7 feature, serves as a showcase for the proposed
metric. Finally we conclude on the current work and sketch directions for further
investigations.
6 http://www.flickr.com/services/api/
7 http://www.flickr.com/groups/api/discuss/72157594497877875/

2 Related and Existing Work

The term scalability is used differently in diverse domains—a generic definition is
not available. For selected domains, various views on scalability are available [5,
6]. Bondi [7] recently elaborated on scalability issues. He considers four types of
scalability: load scalability, space scalability, space-time scalability, and structural
scalability.

Practice-oriented research regarding RDF stores has been reported in the
SIMILE8 project [8], and in a joint W3C-EU project, Semantic Web Advanced
Development for Europe [9]. In the Advanced Knowledge Technologies (AKT)
project, 3store [10]—a scalable RDF store based on Redland9—was used. A
framework for testing graph search algorithms where there is a need for storage
that can execute fast graph search algorithms on big RDF data is described in
[11].

At W3C, RDF scalability and performance is an issue10, though the scope is
often limited to local RDF stores. There are also academic events that address
the scalability issue, such as the International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS)11 which took place the second time in
2006.

Some research already exists regarding distributed RDF stores. Though the
focus is on distributed RDF repositories, it is always assumed that one is dealing
with ’native’ RDF sources. An excellent example is the work of Stuckenschmidt
et. al. [12]. They present an architecture for optimizing querying in distributed
RDF repositories by extending an existing RDF store (Sesame). Cai and Frank
[13] report on a scalable distributed RDF repository based on a peer-to-peer
network—they propose RDFPeers that stores each triple at three places in a
multi-attribute addressable network by applying globally known hash functions.
From the Gnowsis project, a work has been reported that comes closest to ours:
Sauermann and Schwarz [14] propose an adapter framework that allows for in-
tegrating data sources as PDFs, RDBMS, and even Microsoft Outlook.

To the best of our knowledge no research exists that addresses the issue of
this paper, i.e. performance and scalability issues of virtual RDF graphs on the
Semantic Web. Regarding the distributed aspect, the authors of [12] listed two
strong arguments, namely i) the freshness, viz. in not using a local copy of a
remote source frees one from the need of managing changes, and ii) the gained
flexibility—keeping different sources separate from each other provides a greater
flexibility concerning the addition and removal of sources. We subscribe to this
view and add that there are a number of real-world use cases which can only
be addressed properly when taking distributed sources into account. These use
cases are to be found in the news domain, stock exchange information, etc.

8 http://simile.mit.edu
9 http://librdf.org/

10 http://esw.w3.org/topic/TripleStoreScalability, and
http://esw.w3.org/topic/LargeTripleStores

11 http://www.cs.vu.nl/~holger/ssws2006/

3 Virtual RDF Graphs

To establish a common understanding of the terms used in this paper, we first
give some basic definitions. We describe what a Semantic Web application in
our understanding is, and have a closer look at virtual RDF graphs. The nature
of virtual RDF graphs, and their intrinsic properties are discussed in detail.

Definition 1 (Semantic Web application). A Semantic Web application
is a software program that meets the following minimal requirements:

1. It is based on, i.e. utilises HTTP12 and URIs13;
2. For human agents, the primary presentation format is (X)HTML14, for soft-

ware agents, the primary interface formats are based on Web services15

and/or based on the REST approach [15];
3. The application operates on the Internet; the number of concurrent users is

undetermined.
4. The content used is machine readable and interpretable; the data model of

the application is RDF [1].
5. A set of formal vocabularies—potentially based on OWL [16]—is used to

capture the domain of discourse. At least one of the utilised vocabularies has
to be proven not to be under full control of the Semantic Web application
developer.

6. Non-mandatory, SPARQL [4] is in use for querying, and RIF [17] for
representing, respectively exchanging rules.

The restriction that a Semantic Web application is expected to operate on the
Internet is to ensure that Intranet applications that utilise Web technologies are
not understood as Semantic Web applications in the narrower sense. This is a
matter of who controls the data and the schemes rather than a question of the
sheer size of the application.

Definition 1 requires that a Semantic Web application operates on the RDF
data model, which leads us to the virtual RDF graph, defined as follows.

Definition 2 (Virtual RDF Graph). A virtual RDF graph (vRDF graph)
is an RDF graph local to a Semantic Web application that contains triples from
potentially differing, non-local sources. The primary function of the vRDF graph
is that of enabling CRUD16 operations on top of it. The following is trivially
true for a vRDF graph:

1. it comprises actual source RDF graphs (henceforth sources), with Nsrc being
the number of sources;

2. each source Si
src contributes a number of triples T i

src to a vRDF graph, with
0 < i ≤ Nsrc;

3. The vRDF graph contains
∑

T i
src triples.

12 http://www.w3.org/Protocols/rfc2616/rfc2616.html
13 http://www.ietf.org/rfc/rfc2396.txt
14 http://www.w3.org/html/wg/
15 http://www.w3.org/2002/ws/
16 create, read, update and delete—the four basic functions of persistent storage

3.1 Types Of Sources

Triples may stem from sources that utilise various representations. In Fig. 2 the
representational properties of the sources are depicted, ranging from the RDF
model17 to non model-compliant sources.

Fig. 2. The RDF representation pyramid.

The two middle layers of the pyramid denote representations that are RDF
model-compliant and have a serialisation, hence may be called native RDF. Rep-
resentations that do have a serialisation, but are not RDF model-compliant, may
be referred to as non-RDF sources. We therefore differentiate:

Standalone, RDF model-compliant Representations. These type of sources,
for example RDF/XML, can be stored, transmitted, and processed on their
own. For example an in-memory Document Object Model (DOM) represen-
tation of an RDF/XML document can be built by utilising a SAX parser.

Embedded, RDF model-compliant Representations. Sources of this type,
as RDFa in HTML [3] or eRDF18, need a host to exist; their representation
is only defined in the context of this host. Here, the triples are produced by
applying a transformation.

17 http://www.w3.org/TR/rdf-concepts/#section-data-model
18 http://research.talis.com/2005/erdf/wiki/Main/RdfInHtml

Representations non-compliant to the RDF model. The majority of the
data sources on the Web, standalone or embedded, is of this type:
– GRDDL [2] is utilised to ’uncover’ RDF in, e.g., HTML. The same applies

to microformats that can be RDF-ized using hGRDDL19;
– An RDBMS that provides for a SPARQL end point [4] can be used to

contribute triples20;
– Syndicated feeds (RSS 2.0, Atom21) are another source;
– From a HTML page without explicit metadata, triples may be gathered

through screen scrapers (as [18]).

In order to be processed, the serialisation is required to be “converted” from a
representation with a concrete syntax into an in-memory representation. This
conversion may occur through applying a transformation22, or by parsing the
specified syntax.

3.2 Characteristics Of Sources

Besides the type of the source, a further distinction w.r.t. the number of triples
from a source can be made. We distinguish between fixed sized sources and
undetermined—or dynamic—sized source.

Take for example a Wiki site that serves as a source for a vRDF graph.
Let us assume an HTML scraper is used to generate triples from selected Wiki
pages, for example based on a category. The number of resulting triples then
is in many cases stable and can be assessed in advanced. In contrast to this,
imagine an RDBMS that provides for a SPARQL end point—the D2R Server23

is a prominent example for this—as an example for a dynamic source. Based on
the query, the number of triples varies. A border case are social media sites, as
blogs. They are less dynamic than data provided by a SPARQL end point but
constantly changing and growing as more comments come in.

4 A Metric for virtual RDF Graphs

In this section we describe a performance and scalability metric that helps a
Semantic Web application developer to assess her/his vRDF graph. A showcase
for a non-native RDF source is then used to illustrate the application of the
metric.

The execution time of an operation on a vRDF graph is influenced by a
number of factors, including the number of sources in a vRDF graph Nsrc, the
overall number of triples

∑
T i

src, and the type of the operation. The metric
proposed in Definition 3 can be used to assess the performance and scalability
of an vRDF graph.
19 http://www.w3.org/2006/07/SWD/wiki/hGRDDL_Example
20 Though, this source may also be considered as being native in terms of the interface.
21 http://bblfish.net/work/atom-owl/2006-06-06/AtomOwl.html
22 see http://esw.w3.org/topic/ConverterToRdf, and also

http://esw.w3.org/topic/CustomRdfDialects
23 http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/

Definition 3 (Execution Metric). The overall execution time for performing
a CRUD function (as inserting a triple, performing a SPARQL ASK query, etc.)
is denoted as tP ; the time for converting a non-RDF source representation into
an RDF graph is referred to as t2RDF . The total time delays due to the net-
work (Internet) transfer are summed up as tD; the time for the actual operation
performed locally is denoted as tO. Obviously,

tP = tO + t2RDF + tD

The “conversion time vs. the overall execution time”-ratio is defined as

coR =
t2RDF

tP

To illustrate the above introduced metric, a showcase has been set up, which
is described in the following.

A Showcase For Non-Native RDF Sources: PSIMeter24. The showcase
demonstrates the application of the metric by RDF-izing the flickr API. Three
different methods have been implemented; the non-native RDF Source used in
the PSIMeter showcase is the information present in the machine tags. The goal
for each of the three methods is to allow a Semantic Web agent to perform a
SPARQL construct statement, as for example:

CONSTRUCT { ?photoURL dc:subject ?subject }
WHERE { ?photoURL dc:subject ?subject.

FILTER regex(?subject, "XXX", "i") }

The experiments to compare the three approaches were run on a testbed that
comprised up to 100 photos from a single user, along with annotations in the
form of machine tags, up to 60 in total. Machine tags were selected as the source
due to their straightforward mapping to the RDF model. The three methods for
constructing the vRDF graph work as follows:

1. Approach A uses the search functionality of the flickr API25 in a first step
to retrieve the IDs of photos tagged with certain machine tags. In a sec-
ond step the flickr API is used to retrieve the available metadata for each
photo. Finally the result of the two previous steps is converted into an RDF
representation, locally;

2. Approach B uses the flickr API to retrieve all public photos26 firstly. It then
uses a local XSL transformation to generate the RDF graph;

3. Approach C retrieves all public photos, as in Approach B. Then, for each
photo an external service27 is invoked to generate the RDF graph.

24 available at http://sw.joanneum.at:8080/psimeter/
25 http://www.flickr.com/services/api/flickr.photos.search.htm
26 http://www.flickr.com/services/api/flickr.people.getPublicPhotos.html
27 http://www.kanzaki.com/works/2005/imgdsc/flickr2rdf

Firstly, for a fixed query, dc:subject=marian, the overall execution time tP
has been measured depending on the number of photos (Fig. 3(a)). In Fig. 3(b),
the size of the vRDF graph in relation to the number of annotations, with a
fixed number of photos, is depicted.

(a) Overall execution time dependency
on number of photos.

(b) vRDF graph size dependency on
number of annotated photos.

Fig. 3. PSIMeter: Metric for a fixed query.

The second experiment focused on the impact of the query type on the overall
execution time.

Fig. 4. PSIMeter: Metric in dependency on Query Type.

The results of the second experiment are depicted in Fig. 4, with the accord-
ing queries listed in Table 1.

Reference Query

Q1 dc:subject=dummy

Q2 dc:title=NM2

Q3 dc:title=

Q4 geo:location=athens

Q5 dc:dummy=test (empty match)
Table 1. Query Types

Note, that more than 80% of the photos were tagged with dc:subject=dummy,
hence Q1 exhibits an exception.

Another finding of the experiment, was that in all evaluation runs, coR tended
towards 1 (ranging from 0.95 to 0.99), viz. most of the time the system was busy
converting the data to RDF, and only a small fraction was dedicated to the
actual operation of applying the SPARQL construct statement.

5 Conclusion

When building Semantic Web applications, it is not only important to operate on
distributed RDF graphs by means of virtue, but also to question how the triples
in a vRDF graph where produced. We have looked at variables that influence
the performance and scalability of a Semantic Web application, and proposed
a metric for vRDF graphs. As all types of sources must be converted into an
in-memory representation in order to be processed, the selection of the type
of sources is crucial. The experiments highlight the importance to use existing
search infrastructure, as the flickr search API in our case, as far as possible,
hence converting only results to RDF.

Another generic hint is to avoid conversion cascades. As long as there exists
a direct way to create an in-memory representation, this issue does not play a
vital role. Though, regarding performance issues, this is of importance in case
an intermediate is used to create the in-memory representation, as with, e.g.,
the hGRDDL approach.

Finally, the incorporation of dynamic sized sources is a challenge one has to
carefully implement. This is a potential area for further research in this field.

6 Acknowledgements

The research reported in this paper was carried out in two projects: the “Knowl-
edge Space of semantic inference for automatic annotation and retrieval of multi-
media content” (K-Space) project28, partially funded under the 6th Framework
Programme of the European Commission, and the “Understanding Advertising”
(UAd) project29, funded by the Austrian FIT-IT Programme.
28 http://kspace.qmul.net/
29 http://www.sembase.at/index.php/UAd

References

1. G. Klyne, J. J. Carroll, and B. McBride. RDF/XML Syntax Specification (Re-
vised). http://www.w3.org/TR/rdf-concepts/, 2004.

2. D. Connolly. Gleaning Resource Descriptions from Dialects of Languages
(GRDDL). http://www.w3.org/TR/2007/WD-grddl-20070302/, 2007.

3. M. Hausenblas and B. Adida. RDFa in HTML Overview. http://www.w3.org/

2006/07/SWD/RDFa/, 2007.
4. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/, 2006.
5. M. D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):18–21,

1990.
6. P. Jogalekar and M. Woodside. Evaluating the Scalability of Distributed Systems.

IEEE Trans. Parallel Distrib. Syst., 11(6):589–603, 2000.
7. A. B. Bondi. Characteristics of scalability and their impact on performance. In

WOSP ’00: Proceedings of the 2nd International Workshop on Software and Per-
formance, pages 195–203, New York, NY, USA, 2000. ACM Press.

8. R. Lee. Scalability Report on Triple Store Applications. http://simile.mit.edu/
reports/stores/, 2004.

9. D. Beckett. Deliverable 10.1: Scalability and Storage: Survey of Free Soft-
ware/Open Source RDF storage systems. Technical report, Semantic Web Ad-
vanced Development for Europe (SWAD-Europe), IST-2001-34732, 2002.

10. S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In Proc. 1st Interna-
tional Workshop on Practical and Scalable Semantic Systems (PSSS’03), Sanibel
Island, pages 1–15, 2003.

11. M. Janik and K. Kochut. BRAHMS: A WorkBench RDF Store and High Perfor-
mance Memory System for Semantic Association Discovery. In Proc. 4th Inter-
national Semantic Web Conference, ISWC 2005, Galway, Ireland, pages 431–445,
2005.

12. H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, and J. Broekstra. Index Structures
and Algorithms for Querying Distributed RDF Repositories. In WWW ’04: Proc.
of the 13th International Conference on World Wide Web, pages 631–639, New
York, NY, USA, 2004. ACM Press.

13. M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based on
a structured peer-to-peer network. In WWW ’04: Proc. of the 13th International
Conference on World Wide Web, pages 650–657, New York, NY, USA, 2004. ACM
Press.

14. L. Sauermann and S. Schwarz. Gnowsis Adapter Framework: Treating Structured
Data Sources as Virtual RDF Graphs. In Proc. 4th International Semantic Web
Conference, ISWC 2005, Galway, Ireland, 2005.

15. R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

16. OWL. Web Ontology Language Reference. W3C Recommendation, 10 February
2004.

17. Rule Interchange Format (RIF). http://www.w3.org/2005/rules/, 2007.
18. R. Baumgartner, G. Gottlob, M. Herzog, and W. Slany. Annotating the Legacy

Web with Lixto. In Proc. 3rd International Semantic Web Conference, ISWC2004,
Hiroshima, Japan, 2004.

Explorative Debugging for Rapid Rule Base
Development

Valentin Zacharias and Andreas Abecker

FZI Research Center for Information Technologies, Haid-und-Neu Strasse 10-14,
Karlsruhe 76131, Germany
zacharias|abecker@fzi.de

Abstract. We present Explorative Debugging as a novel debugging
paradigm for rule based languages. Explorative Debugging allows truly
declarative debugging of rules and is well suited to support rapid, try-
and-error development of rules. We also present the Inference Explorer,
an open source explorative debugger for horn rules on top of RDF.

1 Debugging Semantic Web Rules

Semantic Web rule languages can be an important tool for the rapid development
of Semantic Web applications [7]. The large scale use of these languages is,
however, currently still hampered by missing tool support for their creation - in
particular missing debugging support.
Debugging support for Semantic Web rule bases must address two challenges:

– It is known that web developers have a particularly high percentage of end
user programmers [9, 6]; hence development tools for the Semantic Web have
to take special care to adjust to end user programmers. For debugging tools
this means in particular to support the try and error, rapid, incremental
development process often observed with end user programmers [10, 11].

– Rules are declarative programs that describe what is true but not how some-
thing is calculated. A debugger must take this into account.

This paper starts with a definition of rules and an introduction into the
rule syntax used throughout this paper. It then discusses existing debugging
approaches and their limitations. After these have been established, it proposes
Explorative Debugging as a better debugging paradigm. It describes the building
blocks of Explorative Debugging and shows how they are implemented in the
Inference Explorer application.

2 Terminology

To date there is no agreed upon definition or specification of rules for the Se-
mantic Web, also the ideas presented in this paper can be applied to a number
of different rule languages. However, in the interest of having a consistent ter-
minology throughout this paper, we define a simple rule language based on the

2

rules used by the well known Jena framework [3] that also forms the basis of the
implementation. In this paper only rules that work on data in the form of RDF
[1] triples are considered.

A rule base is a finite set of rules. The rules are of the form:

Rule_Example:
(?A,b,c) <- (?A,x,y) (?A,v,w)

The part to the left of the ← symbol is the goal or head of the rule, the part
to the right the body or subgoals. The head of the rule consists of one atom,
the body of a conjunction of atoms. An atom is a triple pattern, a triple of
terms1. A triple pattern is a RDF triple without anonymous nodes but with
named variables instead of some terms. A triple pattern is matched against an
RDF triple by replacing the variables with terms from the triple; the matching
succeeds when the variables can be replaced in a way that makes triple pattern
and triple identical. A rule is said to fire when all atoms in the body of a rule
match a triple, with all occurrences of one named variable replaced by the same
term.

Rule bases are declarative specifications - they describe what is true / can be
calculated, not how it should be done. A rule base can be evaluated in a number
of different ways (e.g. top-down evaluation, bottom-up evaluation, magic sets
algorithm) but the result does not depend on the kind of evaluation and rules
can be created and understood without knowing the actual evaluation strategy2.

3 Current Debugging Support For Rules

Existing debugging support for rule based systems can be divided into two
groups: procedural debugging and computer controlled debugging.

All deployed debugging tools for rule based programs known to the authors
are based on the procedural or imperative debugging paradigm. This debug-
ging paradigm is well known from the world of procedural and object oriented
programming and characterized by the concepts of breakpoints and stepping. A
procedural debugger offers a way to indicate a rule/rule part where the program
execution is to stop and has to wait for commands from the users. The user can
then look at the current state of the program and give commands to execute
a number of the successive instructions. Of course a rule base does not define
an order of execution - hence the order of debugging is based on the evaluation
strategy of the inference engine. The steps then, are things like: the inference
engine tries to prove a goal A or it tries to find more results for another goal
B. This kind of debuggers for rule based systems are available as purely textual

1 Jena also allows extended triple patterns containing functors and built-ins as atoms,
however they are not currently supported in the Inference Explorer; we postpone
their discussion until the future work section

2 Note that this is only partly true for Prolog that mixes procedural and declarative
aspects

3

tracers [12], with a simple graphical user interface [12] or integrated into graphi-
cal knowledge acquisition tools [8]. The most sophisticated of these systems was
probably the Transparent Prolog Machine [4].

Procedural debuggers break the declarative programming paradigm: they
force the user to learn about the working of the inference engine and encourage
her to think about the program in an imperative way; also procedural debugging
is very difficult to use for anything but simple top-down inference engines. This
kind of debugger was necessary for languages like Prolog that mix procedural and
declarative aspects; the rule languages proposed for the Semantic web, however,
are purely declarative and hence can be debugged in a declarative way.

In computer controlled debugging3 an algorithm directs the debugging pro-
cess, the user only needs to answer questions about the expected outcome. The
amount of research in this direction is too large to give an overview here; how-
ever, in general it can be said:

– These debuggers do not empower the programmer to learn more about the
program. Many approaches just propose a change without giving the pro-
grammer a chance to test and correct her expectations.

– These debuggers can utilize only information encoded in the program, not
the domain knowledge and intuition of the programmer.

– To our best knowledge none of these debuggers has ever proven to work good
enough to be used outside of research.

The conclusion then is that current debugging support is unsuited for the
rapid development of rules by end user programmers: It either works on the
level of the inference engine, becoming hard to use and breaking the declara-
tive programming paradigm. Or it takes control away from the programmer,
disempowering the user and becoming imprecise.

4 Explorative Debugging

We propose Explorative Debugging as a better debugging paradigm for rule-
based systems. Explorative Debugging works on the declarative semantics of the
program and lets the user navigate and explore the inference process. It enables
the user to use all her knowledge to quickly find the problem and to learn about
the program at the same time. An Explorative Debugger is not only a tool to
identify the cause of an identified problem but also a tool to try out a program
and learn about its working.

Explorative Debugging puts the focus on rules. It enables the user to check
which inferences a rule enables, how it interacts with other parts of the rule base
and what role the different rule parts play. Unlike in procedural debuggers the

3 The authors use computer controlled debugging as a broad term to refer to the areas
of Algorithmic Debugging, Declarative Debugging, Automatic Debugging, Why-Not
Explanation, Knowledge Refinement, Automatic Theory Revision and Abductive
Reasoning

4

debugging process is not determined by the procedural nature of the inference
engine but by the user who can use the logical/semantic relations between the
rules to navigate.

An explorative debugger is a rule browser that:

– Shows the inferences a rule enables.
– Visualizes the logical/semantic connections between rules and how rules work

together to arrive at a result. It supports the navigation along these connec-
tions.

– It allows to further explore the inference a rule enables by digging down into
the rule parts.

– Is integrated into the development environment and can be started quickly
to try out a rule as it is formulated.

5 Building Blocks Of Explorative Debugging

The main building blocks of Explorative Debugging for rules are: rules, rule fir-
ings, rule parts, depends-on-connections and prooftrees. These concepts describe
declarative properties of the rule base and take the place of the breakpoints and
different stepping commands of procedural debugging. The following sections
describe each of these concepts and its role in more detail.

5.1 Rules

The main element for an explorative debugger for rule bases is rules. The de-
bugger is always focused on one rule and can be opened for any rule. Navigation
elements allow navigating between rules. Centering a debugger for rule bases
around rules sounds self evident, but is not realized in most existing debug-
gers for rule based systems (these debuggers use the goal the inference engine
currently tries to prove as main element).

5.2 Rule Firings

Rule firings are the inferences a rule currently enables. Consider the following
rule:

Rule_Father:
(?A,rdf:type,:father) <- (?A,rdf:type,:male) (?A,:parent,?B)

and data4:

:Abraham rdf:type :male;
:parent :John.

4 We use the Turtle [2] syntax to represent RDF data, for briefness we omit the prefix
declarations

5

:Johanna rdf:type :female;
:parent :John.

:George :parent :Michele.

In this example there is one rule firing: variable A bound to Abraham and B
bound to John; with the current data the rule enables to infer that Abraham
is of type father. More formally a rule firing is a set of variable bindings that
satisfies the rule body.

The rule firings are the most basic form of checking whether a rule performs
according to the expectations of the user. In this example the user probably
expected the rule to also infer that George is a father, but sees that this is not
the case. Other concepts described below will support the user in investigating
this further. Rule firings should be available to the user all the time while creating
rules to give quick feedback.

The current data - the triples used to calculate the variable bindings - can
come from a default data store or from a test setup. For many simple cases the
user will have just one example of the data she wants to process with the rules
and use this for tests. In such cases this is the default data that can be used
to automatically calculate the variable bindings without further ado. In more
complex cases a programming environment must support a way to create test
cases that contain the appropriate test data that can be used. The rule firings
are then displayed with respect to this test data.

5.3 Rule Parts (Firings)

The natural way to examine the unexpected behavior of a rule is to look at
the rule parts and to calculate the rule firings for a rule only consisting of a
subset of the parts. When, like in the example above, the rule isn’t firing for an
expected value the user can investigate which rule atom/triple pattern is causing
the problem. In this example the user may look at the variable bindings that
satisfy the triple pattern (?A,rdf:type,:male), seeing that the expected George
isn’t included in the list of matching triples; in this way she has narrowed the
problem down further.

Rule part firings allow the user to select only a part of the rule body and to
look at the variable bindings that satisfy the selected triple patterns.

5.4 Depend-On Connections

The concepts described above only consider a rule and its result as an isolated
entity, without the connections to other rules. Depends-on connections are links
between rules that indicate that two rules seem to be able to work together,
built on top of each other. Consider the following rule base:

Rule_Father:
(?A,rdf:type,:father) <- (?A,rdf:type,:male) (?A,:parent,?B)

6

Rule_Parent:
(?X,:parent,?Y) <- (?Y,:chilt,?X)

Rule_Employer:
(?X,rdf:type,employer) <- (?X, :owns, ?C) (?A,:employed_at,?C)

It can be seen that, with the right data, the rule Father could work on the result
of the rule Parent: rule Parent could deduce that A is a parent of B from a
child relation and the Father rule could then deduce that A is of type father.
In such a case we say that rule Father depends-on rule Parent. The depends-on
connections are calculated on the rules without consideration for the actual data
that is available: a depends-on connection exists independently of the test data.
The rule Employer in the example rule base has no depends-on connection to
any of the other rules - there exists no set of RDF triples such that the rule
Employer could directly work on triples inferred by one of the other two rules.

Formally a depends-on connection exists from rule A to rule B when rule A
has a body atom that can be unified with the head atom of B; when rule A has
a triple pattern in the body that matches the triple pattern in the head of rule
B. Depends-on connections can also be calculated between rule parts and rules:
a rule part is a subset of body atoms of a rule. A rule part then depends-on a
rule and when one of its atoms is unifiable with the head of the rule.

The depends-on connections calculated this way are heuristic approximations
to the rule interactions intended by the user. It is not possible to perfectly
identify only those rule interactions that happen with real world data: there can
be depends-on connections between rules that never interact in real life.

The importance of the depends-on connection lies in their ability to aid the
user in tracking down an error across multiple rules, even if the error prevents
any actual interaction between the rules from happening. The following example
should illustrate this:

:Abraham rdf:type :male.
:John :child :Abraham.

With the rule base above and these two RDF triples the user expects that
rule Father fires for Abraham and John. Opening the debugger for rule Father,
however, she sees that the rule doesn’t fire. Selecting rule parts she can identify
that the pattern (?A,:parent,?B) is causing the problem. This, however, is not
the root problem and the depends-on connection supports the user in finding
the root cause. Even though there is no actual interaction between the rules a
system can show that this rule part depends on rule Parent. The user can use
this connection to navigate to the other rule and to discover the root cause:
the typo chilt in the body of rule Parent. The depends-on links may look like
a minor navigation tweak in such a small rule base but becomes an important
navigation instrument for large rule bases where the user may not even know
about all rules that could be relevant for the current triple pattern.

7

Obviously there are also errors that impact the depends-on connection: had
rule Parent had a typo in the head, there would be no depends-on connection.
But the absence of a depends-on link is also an important clue for debugging: a
user knowing that a part should depend-on a particular rule has already narrowed
down the problem to a mismatch between the current rule part and the head of
the other rule. A user expecting a depends-on connection to some rule may be
supported by the system in finding rules that almost match.

The importance of depend-on connections cannot easily be overstated for the
debugging of rule based systems. Each rule in itself is usually good to understand
and a lot of research went into good visualizations for single rules. On the other
hand rule interactions and the overall structure of a rule program are usually not
readily visible and are often not displayed at all. The depends-on connections
and the prooftrees described in the next section will often be the only way to
view this structure.

5.5 Prooftrees

Prooftrees represent the actual interactions between rule and RDF facts that
lead to results / rule firings. Prooftrees are a tool to quickly identify the reason
for unexpected variable firings; for too many results. An example should further
clarify this:

Rule_Father:
(?A,rdf:type,:father) <- (?A,rdf:type,:male) (?A,:parent,?B)

Rule_Parent:
(?X,:parent,?Y) <- (?Y,:child,?X)

Rule_ChildFromRaises:
(?X,:child,?Y) <- (?Y,:raises,?X)

:JohnsUncle rdf:type :male;
:raises :John.

Checking the rule firings for the rule ”Father” the user is surprised to find
that JohnsUncle is inferred to be of type father. A prooftree (or derivation tree)
is a representation of the inference process that lead to a particular result and
that can aid the user in such a case to find the part of the reasoning chain that
acted in an unexpected way. A graphical representation of the actual prooftree
for the conclusion (JohnsUncle, rdf:type, father) is shown in Figure 1. It shows
that the rule Father concluded this triple and that it depended on the fact
that JohnsUncle is of type male and the result of rule Parent, this in turn on
another rule and on the triple (JohnsUncle, raises, John). The prooftree allows
the user to quickly understand the whole inference process and to pinpoint the
rule ChildFromRaises as the root cause of the problem.

The prooftree represents the logical/semantic relationships between rules/
facts and is independent of the actual evaluation algorithm of the inference

8

Fig. 1. Prooftree for the triple (JohnsUncle, rdf:type, father).

engine. When a rule instantiation in the prooftree is listed as dependent on a
fact it says that this fact is necessary for this prooftree to exist. The current
result will not be concluded, unless this fact is present5 The inference engine
algorithm can be said to search for and discover the prooftrees, but the prooftrees
themselves are defined on the semantics of rules.

6 The Inference Explorer

The Inference Explorer is a debugger for RDF rules that implements the explo-
rative debugging paradigm and that integrates all the building blocks for truly
declarative debugging described in the section before.

Fig. 2. User interface of the Inference Explorer

5 Unless, of course, there are multiple prooftrees for one result

9

The user interface of the Inference Explorer (see Figure 2) consists of three
main areas: the rule details in the top, the result view bottom left and the
details view in the bottom right. Both the result view and the details view
change depending on what the user has selected.

The rule details view shows a textual description of the currently selected
rule. The user can select parts of the rules to get more information about these
and the rule parts are shown in different colors to highlight unsatisfiable triple
patterns.

The result view to the bottom left of the debugger shows the rule firings, the
values that satisfy the rule body. When the user selects a rule part in the rule
details view the result view changes to display the variable bindings that satisfy
this rule part.

The details view to the bottom left changes greatly in response to the cur-
rently selected element in the debugger.

– When nothing or a rule part is selected, the details view shows the depends-
on connections between the current rule/rule part and other rules in the rule
base. The user can click on any rule listed there to open it in the debugger.

– When a result line is selected in the result view, the details views shows
the prooftree for this result. This configuration is shown in the screenshot
in Figure 2. The user can click on any rule in the prooftree to open the
debugger for it.

On the top of the debugger are navigation elements to navigate to arbitrary
rules based on their names and elements to move back and forward, akin to
similar buttons in browsers. Other buttons allow to hide URI’s before the hash
symbol and to reload all data and rules from the (possible changed) files. A
second view allows to select the RDF and rules files used.

The InferenceExplorer is currently implemented as a stand-alone Eclipse-
RCP [5] program. For RDF storage and rule parsing it uses the Jena Framework.
For inferences it uses or own Try!6 inference engine - a simple backward chaining
inference engine specifically created to support the debugging of rules. It forfeits
speed and memory footprint in order to be easy to understand and to have
internal data structures that can be translated to give a human understandable
representation of the inference engine’s state. Its is created to also support more
complex debugging applications beyond the Inference Explorer presented here.

The InferenceExplorer and the Try! inference engine are available as open
source and can be downloaded from http://code.google.com/p/trie-rules/.

7 Programming Embedded Debugging - Future Work

Traditionally, programming and debugging are seen as clearly separate activities:
some part of the program is written, a test is created, run and finally the running
test may be debugged. The concepts of Explorative Debugging, however, allow

6 The complete name is TRIE - the Transparent RDF Inference Engine

10

to naturally integrate some part of the debugging activity into programming and
can thereby facilitate faster feedback cycles.

The prerequisite for programming embedded debugging is the definition of
default data. Default data is some set of RDF triples that is used to evaluate
the rules against. This does not exclude the possibility to have other sets of test
data, but there needs to be a default set.

With default data it is possible to automatically open the debugger for a rule
while it is created by the user. As soon as the user creates a syntactically correct
rule the debugger can evaluate this rule in the background and display to the
user what this rule infers, given the other rules and the default data. Giving the
user an immediate feedback on her rule as it is created.

Fig. 3. Mock-up of the integration of depends-on connections into a rule editor.

Another concept of Explorative Debugging that can be utilized during pro-
gramming are the depends-on connections. A sophisticated rule editor could
immediately display the rules a triple pattern could depend-on as it is created.
The mock-up in figure 3 shows how that may look like for a text based rule
editor. While the user creates a body atom the one rule she is alerted to a
matching head pattern in a different rule. Such integration of the depends-on
connections allow the user to quickly get feedback on her assumptions about
likely interactions between the rules she is creating.

8 Conclusions and Future Work

The concepts of rules, rule parts, rule firings, depends-on connections and proof-
trees allow the debugging of rules purely on the declarative level. The novel
debugging paradigm Explorative Debugging brings them together to allow de-
bugging that truly takes into account the declarative nature of rules. Explorative
Debugging is well suited to support short feedback loops and to support iterative
development.

Our implementation of the Explorative Debugging ideas, The Inference Ex-
plorer, is the most advanced debugger for RDF rules available.

For the future we plan to extend the Try! inference engine and to integrate the
debugger with editors for RDF and rules. Currently the Try! inference engine is

11

very limited in that it does not support functors, built-ins and anonymous node -
we plan to add support for these in the coming weeks. Another problem are rule
cycles that can lead the inference engine to run infinitely - we will add algorithms
to detect and explain them to the user. After that the further development will
be based on feedback from users of the debugger.

References

1. D. Beckett. RDF/XML syntax specification. W3C recommendation, RDF Core
Working Group, World Wide Web Consortium, 2004.

2. D. Beckett. Turtle - terse RDF triple language.
http://www.dajobe.org/2004/01/turtle/, 2004. (accessed 2007-03-30).

3. J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: Implementing the semantic web recommendations. Technical report, Hewlett
Packard, 2003.

4. M. Eisenstadt, M. Brayshaw, and J. Paine. The Transparent Prolog Machine:
visualizing logic programs. Intellect Books, 1991.

5. Eclipse Foundation. Rich client platoform.
http://wiki.eclipse.org/index.php/Rich Client Platform, 2007. (accessed 2007-03-
21).

6. W. Harrison. The dangers of end-user programming. IEEE Software,
July/August:5–7, 2004.

7. M. Kifer, J. de Bruijn, H. Boley, and D. Fensel. A realistic architecture for the
semantic web. In RuleML, pages 17–29, 2005.

8. ObjectConnections. Common knowledge. http://www.objectconnections.com/,
2007. (accessed 2007-02-13).

9. M. B. Rosson, J. Balling, and H. Nash. Everyday programming: Challenges and
opportunities for informal web development. In Proceedings of the 2004 IEEE
Symposium on Visual Languages and Human Centric Computing, 2004.

10. J. Ruthruff and M. Burnett. Six challenges in supporting end-user debugging.
In 1st Workshop on End-User Software Engineering (WEUSE 2005) at ICSE 05,
2005.

11. J. Ruthruff, A. Phalgune, L. Beckwith, and M. Burnett. Rewarding good behavior:
End-user debugging and rewards. In VL/HCC’04: IEEE Symposium on Visual
Languages and Human-Centric Computing, 2004.

12. J. Wielemaker. An overview of the SWI-Prolog programming environment. Tech-
nical report, University of Amsterdam, The Netherlands, 2003.

The RDF Book Mashup: From Web APIs to a
Web of Data

Christian Bizer, Richard Cyganiak, and Tobias Gauß

Freie Universität Berlin
chris@bizer.de, richard@cyganiak.de, tobias.gauss@web.de

Abstract. The RDF Book Mashup demonstrates how Web 2.0 data
sources like Amazon, Google and Yahoo can be integrated into the Se-
mantic Web. Following the principles of linked data, the RDF Book
Mashup makes information about books, their authors, reviews, and on-
line bookstores available on the Semantic Web. This information can be
used by RDF browsers and crawlers, and other publishers of Semantic
Web data can set links to it.

1 Introduction

Major web data sources like Google, Yahoo, Amazon and eBay have started
to make their data accessible to third parties through web APIs. This has in-
spired many interesting “mashups” which combine data from multiple sources
and present it through new user interfaces. Web APIs usually consist of REST
or SOAP web services that deliver XML or JSON. Scripting languages play an
important role in mashup development as they often serve as the “glue” that
connects data sources and UI components.

The goal of the RDF Book Mashup is to show how data from web APIs can
be integrated into the Semantic Web. This has two benefits. First, it adds useful
data to the Semantic Web. Second, it addresses several limitations of traditional
web APIs:

– They do not work with clients that have not been designed with the specific
API in mind.

– Their content cannot be accessed by search engines and other generic web
agents.

– Each mashup only allows access to data from a limited number of sources
chosen by the developer.

In contrast, information on the Semantic Web can be used by generic clients,
including RDF browsers, RDF search engines, and web query agents.

2 Linked Data

Based on Tim Berners-Lee’s Linked Data prinicples [1, 4], we identify a lowest
common denominator for Semantic Web interoperability:

1. All items of interest, such as information resources, real-world objects, and
vocabulary terms are identified by URI references [3].

2. URI references are dereferenceable; an application can look up a URI over
the HTTP protocol and retrieve an RDF description of the identified item.

3. Descriptions are provided using the RDF/XML syntax.
4. Every RDF triple is conceived as a hyperlink that links to related information

from the same or a different source and can be followed by Semantic Web
agents.

These principles are sufficient to create a Web of Data in which anyone
can publish information, link to existing information, follow links to related
information, and consume and aggregate information without necessarily having
to fully understand its schema nor to learn how to use a proprietary Web API.

3 How to Wrap Web APIs

The RDF Book Mashup applies these principles to web APIs that supply data
about books. It assigns URIs to books, authors, reviews, online bookstores and
purchase offers. When a URI is dereferenced, the mashup queries the Amazon
API1 for information about the book, and the Google Base data API2 for pur-
chase offers from different bookstores. An RDF description is assembled from
the query results and returned to the client in RDF/XML syntax. The descrip-
tion uses a mix of RDFS vocabularies, including Dublin Core3 and FOAF4. We
introduced new vocabulary terms where we could not reuse existing terms from
well-established vacabularies. Figure 1 gives an overview about the architecture
of the RDF Book Mashup.

Figure 2 shows the description of the book identified by this URI:

<http://www4.wiwiss.fu-berlin.de/bookmashup/books/006251587X>

Figure 3 shows the description of its author, who is identified by

<http://www4.wiwiss.fu-berlin.de/bookmashup/persons/Tim+Berners-Lee>

Both URIs are linked to each other by a dc:creator triple. The descriptions
contain links to further URIs for reviews and purchase offers, which in turn can
be dereferenced to yield RDF descriptions.
1 http://aws.amazon.com/
2 http://code.google.com/apis/base/
3 http://dublincore.org/documents/dces/
4 http://xmlns.com/foaf/0.1/

Fig. 1. Architecture of the RDF Book Mashup

4 Implementation

The RDF Book Mashup is implemented in about 300 lines of PHP code. When-
ever the script gets a lookup call for a URI, it decodes the ISBN number or author
name from the URI and uses them to query the origin data sources. The result-
ing XML responses are parsed using PHP’s SimpleXML functions and turned
into an RDF model which is serialized to RDF/XML using the RDF API for
PHP (RAP)5.

The services use different formats for queries and responses: The Amazon
Web Service is a REST-based API that encodes requests in a URL string and
answers simple XML. The Google Base data API uses a proprietary query lan-
guage and delivers search results as Atom feeds. Both have in common that
requests are encoded into a simple URL string, and responses are delivered as
XML, which means that processing can be done easily with built-in PHP func-
tions.

To comply with web architecture6, the mashup uses HTTP 303 redirects to
point clients from the URI for a book or person (e.g. <books/006251587X>) to
an RDF document describing the item (e.g. <doc/books/006251587X>).

The generated RDF contains metadata about the document itself, including
links to the license terms under which the data is published.

5 RDF Links to and from other Data Sources

RDF is the obvious technology to interlink data from various data sources. In
the following, we describe how the RDF Book Mashup is interlinked with various
other Semantic Web data sources.

5 http://sites.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/
6 http://norman.walsh.name/2005/06/19/httpRange-14

<scom:Book rdf:about="/bookmashup/books/006251587X">

<dc:title>Weaving the Web</dc:title>

<dc:creator rdf:resource="/bookmashup/persons/Tim+Berners-Lee"/>

<dc:date>2000-11-01</dc:date>

<dc:format>Paperback</dc:format>

<dc:identifier rdf:resource="urn:ISBN:006251587X"/>

<dc:publisher>Collins</dc:publisher>

<foaf:thumbnail rdf:resource=

"http://ec2.images-amazon.com/images/P/006251587X.jpg"/>

<rev:hasReview rdf:resource=

"/bookmashup/reviews/006251587X_EditorialReview1"/>

<rev:hasReview rdf:resource=

"/bookmashup/reviews/006251587X_EditorialReview2"/>

<scom:hasOffer rdf:resource=

"/bookmashup/offers/006251587XamazonOffer"/>

<scom:hasOffer rdf:resource=

"/bookmashup/offers/006251587XgoogleOffer10871997653977"/>

</scom:Book>

<rdf:Description rdf:about="/bookmashup/doc/books/006251587X">

<dc:license rdf:resource="http://www.amazon.com/AWS-License"/>

<dc:license rdf:resource="http://www.google.com/terms_of_service.html"/>

</rdf:Description>

Fig. 2. RDF description of a book (edited)

5.1 Outgoing RDF Links

Another publicly available source of bibliographic data is the DBLP database7.
It contains journal articles and conference papers. In a previous project, we
have published this database8 on the Semantic Web using D2R Server [2]. The
RDF Book Mashup automatically generates outgoing owl:sameAs links from
book authors to paper authors in the DBLP database. An RDF crawler that
aggregates RDF statements from both sources can conclude that both URIs
refer to the same person and thus allow queries over merged data from both
sources.

The links are generated by asking the DBLP SPARQL endpoint for URIs
identifying book authors. If the query for a foaf:Person with a specific name
returns exactly one result, we assume (sometimes incorrectly) that they are the
same person, and add the owl:sameAs link. An example can be seen in Figure 3.

5.2 Incoming RDF Links

To integrate the book data into the Semantic Web, we also need incoming links
that enable Semantic Web clients to discover the data.
7 http://dblp.uni-trier.de/
8 http://www4.wiwiss.fu-berlin.de/dblp/

<foaf:Person rdf:about="/bookmashup/persons/Tim+Berners-Lee">

<owl:sameAs rdf:resource=

"http://www4.wiwiss.fu-berlin.de/dblp/resource/person/100007"/>

<foaf:name>Tim Berners-Lee</foaf:name>

</foaf:Person>

<scom:Book rdf:about="/bookmashup/books/006251587X">

<dc:creator rdf:resource="/bookmashup/persons/Tim+Berners-Lee"/>

<rdfs:label>Weaving the Web</rdfs:label>

</scom:Book>

<scom:Book rdf:about="/bookmashup/books/8432310409">

<dc:creator rdf:resource="/bookmashup/persons/Tim+Berners-Lee"/>

<rdfs:label>

Tejiendo La Red - El Inventor del WWW Nos Descubre

</rdfs:label>

</scom:Book>

Fig. 3. RDF description of an author (edited)

Another Semantic Web data source that contains information about books is
DBpedia9, a project that publishes RDF data extracted from Wikipedia. DBpe-
dia uses the ISBN numbers that are found in Wikipedia articles to auto-generate
links to the RDF Book Mashup. The DBpedia dataset currently contains about
9000 owl:sameAs links pointing at RDF Book Mashup URIs.

A second Semantic Web data source that auto-generates RDF links to the
RDF Book Mashup is the D2R server that publishes the DBLP bibliography.
The server includes a link to the RDF Book Mashup into the RDF description
of each bibliography item that has a ISBN number.

The RDF Book Mashup can also be used to augment webpages. An example
of a webpage that uses Book Mashup data is the Semantic Web book list 10

within the W3C ESW Wiki. The list contains about 40 manually-set links to
RDF Book Mashup data about books.

A further source of incoming links are the FOAF profiles of book authors.
Tim Berners-Lee and Ivan Herman are among the people who have such links
in their profiles 11. The RDF Book Mashup’s website provides instructions that
tell book authors how to set dc:creator links from their FOAF profile to their
books.

6 Client Applications

Linked data can be consumed by different kinds of clients on behalf of a user.
Some usage scenarios are:
9 http://dbpedia.org/

10 http://esw.w3.org/topic/SwBooks
11 http://www.w3.org/People/Berners-Lee/card and http://www.ivan-herman.

net/foaf.rdf

Browsing: Semantic Web browsers like Tabulator [4], Disco12, and the Open-
Link RDF Browser13 can be used to explore and visualize Book Mashup
data, and to surf into and out of the dataset.

Searching and querying: RDF crawlers can harvest the data for search en-
gines such as SWSE14 and Swoogle15. Query agents like the Semantic Web
Client Library16 can crawl the data on-the-fly to answer queries.

Augmenting web pages: Web page authors can add <link rel="alternate">
tags17 to web pages about books. This allows web surfers to use browsers
like Piggy Bank18 to collect book descriptions from the Web.

7 Conclusion

We have shown how to integrate information from web APIs with the Semantic
Web, making them part of the Web of Data, and making them accessible to
generic Semantic Web clients like RDF browsers, RDF crawlers and query agents.
This has been done by wrapping several APIs into an interface that applies the
Linked Data principles. The wrapper is implemented as a fairly simple PHP
script. We hope that this work will inspire others to integrate further interesting
data sources into the growing Semantic Web.

The source code of the RDF Book Mashup is available under GPL license.
More information about the project is found at http://sites.wiwiss.fu-berlin.
de/suhl/bizer/bookmashup/.

References

1. Tim Berners-Lee. Linked data, 2006. http://www.w3.org/DesignIssues/

LinkedData.html.
2. Christian Bizer and Richard Cyganiak. D2r server - publishing releational databases

on the semantic web. In Poster at the 5th International Semantic Web Conference,
2006.

3. Leo Sauermann, Richard Cyganiak, and Max Völkel. Cool URIs for the Semantic
Web. Technical report, 2006.

4. Tim Berners-Lee et al. Tabulator: Exploring and analyzing linked data on the se-
mantic web. In Proceedings of the 3rd International Semantic Web User Interaction
Workshop, 2006. http://swui.semanticweb.org/swui06/papers/Berners-Lee/

Berners-Lee.pdf.

12 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
13 http://demo.openlinksw.com/DAV/JS/rdfbrowser/index.html
14 http://swse.deri.org/
15 http://swoogle.umbc.edu/
16 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/semwebclient/
17 http://www.w3.org/TR/rdf-syntax-grammar/\#section-rdf-in-HTML
18 http://simile.mit.edu/piggy-bank/

Rapid ontology-based Web application development with JSTL

Angel López-Cima1, Oscar Corcho2, Asunción Gómez-Pérez1

1OEG - Facultad de Informática. Universidad Politécnica de Madrid (UPM) Campus de Montegancedo, s/n. 28660
Boadilla del Monte. Madrid. Spain

{alopez, asun}@fi.upm.es
2University of Manchester. School of Computer Science. Oxford Road, Manchester, United Kingdom

Oscar.Corcho@manchester.ac.uk

Abstract. This paper presents the approach followed by the ODESeW framework for the
development of ontology-based Web applications. ODESeW eases the creation of this type of
applications by allowing the use of the expression language JSTL over ontology components, using a
data model that reflects the knowledge representation of common ontology languages and that is
implemented with Java Beans. This framework has been used for the development of a number of
portals focused on the dissemination and management of R&D collaborative projects.

Introduction

Current Web applications can be designed and implemented with a wide variety of programming
languages and underlying frameworks, techniques and technologies (.NET, AJAX, Java, PHP, ASP, JSP,
JSTL, JDO, COM, J2EE, etc.). These technologies are widely accepted, what eases their reuse in
application development, from code snippets to large applications. Besides, most of them are supported
by Web authoring tools (e.g., Macromedia, FrontPage), making it easier for non-experts to create Web
applications.

In the context of the Semantic Web there is already a large diversity of tools for editing and managing
ontologies, annotating resources, querying and reasoning with them, etc. These tools constitute the basic
building blocks of the underlying infrastructure for ontology-based application development [8]. In the
past few years there have been also many efforts focused on the provision of technology for the rapid
development of ontology-based Web applications. [3] describes the most relevant technologies according
to a set of characteristics like their model storage, API paradigm, supported serialization formats, query
languages, etc. Most of these efforts are oriented towards the easy management of RDF resources,
statements and models, with a lack of approaches for the management of the most usual ontology
components (classes, properties, hierarchies, and individuals). This is classified as the ontology-centric
view in [3], and it is only supported by some of the most common Java APIs (Sesame, Jena, Protégé-
OWL, etc.), which operate at a lower infrastructure level, and two other more user and Web oriented
APIs, such as Spiral1 and RAP [16], integrated with .NET and PHP respectively.

On another dimension, authoring tools are also being created for non-experts. Some of the most recent
work on this side has been focused on the development of semantic wikis (e.g., [10], [14]), which allow
non-experts to include ontology-based annotations (and in some cases even ontology term definitions) of
the Web pages that they edit, and on the development of semantic desktops (e.g., [4], [11], [6], [1]).

In this paper we present how the ODESeW framework [10] combines both types of approaches,
scripting languages for developers that want to create ontology-based Web applications and ontology-
based Web authoring tools for non-experts, in a common framework. On the first aspect, ODESeW
proposes the use of Java Beans for the management of ontology components and ontology-based
annotations, and JSTL default and extended tags for the visualisation of ontology-based annotations.
These technologies can be easily combined with other standard visualisation and navigation ones, hence
improving reuse and maintainability. On the second aspect, ODESeW provides forms that are
automatically generated from the underlying ontologies and allow a more structured edition of
annotations.

The structure of this paper is organized as follows. Section 2 describes the ODESeW architecture.
Sections 3, 4 and 5 focus on the most relevant components of this architecture together with some
examples from the Person and Organization ontologies in R&D collaborative project. Section 6 provides
some conclusions and future work.

1 http://www.semanticplanet.com/library/Spiral/HomePage?from=RdfLib

The ODESeW Architecture

The ODESeW architecture, shown in Fig. 1, is based on the Model-View-Controller design pattern [7],
which is currently widely used for developing Web applications. This pattern is useful to develop
applications where the same information may have several visualisations. It divides functionality among
three types of objects: the model, the view and the controller.
• The model represents business data, and the business logic that governs its access and modification. In

ODESeW, business data is represented with three models, coordinated by the Data Model Manager:
• The Data Model, which contains domain information, represented by means of ontologies.
• The User Model, which stores user profiles.
• The External Information Gateway (EIG), which accesses external resources and annotates them

with domain information.
• Views render the contents of models. They access data from the model and specify how that data

should be presented. They also update data presentation when their corresponding model changes, and
forward user inputs to the controller.

• The controller defines the application behaviour. It dispatches user requests (button clicks, menu
selections, form input texts, etc.), also known as user gestures or actions, interpreting and mapping
them into actions to be performed by the model. These actions can perform navigation of the user from
one view to another and also execute business logic of the application.

Messenger
Service

 Fig. 1. ODESeW Architecture

The ODESeW architecture also includes other services, such a the Messenger Service, in charge of
communicating ODESeW applications with external applications. For instance, the controller may send a
message to external applications when an instance is created, updated or removed, or receive a message
when an external information source changes. Another important component is the permission manager,
which filters user requests and responses according to the user that is accessing the application. The
description of how these components work is out of scope of this paper, and can be found in [12].

Data Model

The ODESeW data model uses a frame-based ontology representation model, based on the WebODE [2]
knowledge representation ontology, which is the underlying ontology repository used by ODESeW. Fig.
2 shows the components in this model (concepts, attributes, relations, instances, etc.) and the relations
between them, and Fig. 2 shows all the attributes and relations of each component of the model. This
model has been implemented with Java Beans [9], what enables the use of a large amount of third party
Web application development technologies.

The Data Model Manager manages connections to the ontology repositories that store the domain
application and the user models. This includes starting up connections, managing their lifetime, and
identifying the relevant ontologies to be used. Since the current implementation connects to WebODE,
ontologies implemented in a range of languages (including RDF Schema and OWL) can be imported in
the system and used.

Controller

MODEL

View

Messenger
Service

Navigation
&

Composition
Model

Data Model

Permission Manager

User
Model Domain Model

External
Information
Gateway

Communicators

Mappers

Data Model Manager

Controller

MODEL

View
Navigation

&
Composition

Model

Data Model

Permission Manager

User
Model Domain Model

External
Information
Gateway

Communicators

Mappers

External
Information
Gateway

CommunicatorsCommunicators

MappersMappers

Data Model ManagerData Model Manager

Fig. 2. ODESeW Data Model diagram

View

ODESeW views are implemented with XHTML, for static pages, and with JSP [15], for dynamic pages.
The JSP pages use a combination of standard JSTL tags with the Expresion Language [15], and of custom
tags to access information from the data model, as illustrated in Fig. 3 and Fig. 5.

The code included in Fig. 3 is included in the page instance.jsp, and uses JSTL to execute a set of
commands that display the information about a person. The commands are executed are the following: 1)
get the instance “Angel López-Cima” from the ontology “Person Ontology”; 2) print the instance name,
3) iterate for all pairs <Attribute, Value[]> of instance values; 4) set the attributes attribute and values
from the pair <Attribute, Value[]>; 5) store in the attribute multivalue if the instance has more than one
value for the attribute att, and in that case create an enumeration list with the following instructions; 6)
print the attribute name of the pair <Attribute, Value[]>; 7) iterate for all values in the pair <Attribute,
Value[]>; 8) and print a value. Fig. 4 is the page that results from the execution of the code inside this
page. To display any other instance, no matter which ontology it comes from or which concept it belongs
to, the web developer only needs to change the values in step 1) in Fig. 3.

Fig. 3. Instance.jsp, a simple view of an instance.

Fig. 4. Simple visualization of an instance of the
concept Person.

<sew:ontology var=“persOntology" name="Person Ontology">
<sew:instance var="instance" name="Angel López-Cima"/>

</sew:ontology>

<h1>${instance.name}</h1>
<table>
<c:forEach var=“pairAttVals" items="${instance.values}">
<c:set var=“attribute” value=“${pairAttVals.key}”/>
<c:set var=“values” value=“${pairAttVal.value}”>
<c:set var="multivalue" value="${fn:length(values)>1}"/>

<tr>
<th align="left" valign="top">${attribute}:</th>
<td align="left">
<c:if test="${multivalue}"></c:if>
<c:forEach var="value" items="${values}">
<c:if test="${multivalue}"></c:if>
${value}
<c:if test="${multivalue}"></c:if>

</c:forEach>
<c:if test="${multivalue}"></c:if>
</td>

</tr>
</c:forEach>
</table>

1

2

3
4
5

7

8

6

<sew:ontology var=“persOntology" name="Person Ontology">
<sew:instance var="instance" name="Angel López-Cima"/>

</sew:ontology>

<h1>${instance.name}</h1>
<table>
<c:forEach var=“pairAttVals" items="${instance.values}">
<c:set var=“attribute” value=“${pairAttVals.key}”/>
<c:set var=“values” value=“${pairAttVal.value}”>
<c:set var="multivalue" value="${fn:length(values)>1}"/>

<tr>
<th align="left" valign="top">${attribute}:</th>
<td align="left">
<c:if test="${multivalue}"></c:if>
<c:forEach var="value" items="${values}">
<c:if test="${multivalue}"></c:if>
${value}
<c:if test="${multivalue}"></c:if>

</c:forEach>
<c:if test="${multivalue}"></c:if>
</td>

</tr>
</c:forEach>
</table>

1

2

3
4
5

7

8

6

The code included in Fig. 5 executes the following commands: 1) get the concept “Person” from the
ontology “Ontology Person”; 2) print the name of the concept; 3) iterate for all direct and indirect
instances of the concept; 4) print the name of an instance. Fig. 6 is the page that results from its execution.
To display any other concept, the web developer only needs to change the value in 1) in Fig. 5.

Fig. 5. Concept.jsp, a simple view of a concept

Fig. 6. Simple visualization of the list of
instances of the concept Person.

<sew:ontology var="persOnto" name="Person Ontology">
<sew:concept var="concept" name="Person"/>

</sew:ontology>
<h1><c:out value="${concept}"/></h1>

<c:forEach var="instance" items="${concept.allInstances}">
${instance.name}

</c:forEach>

1

2
3
4

<sew:ontology var="persOnto" name="Person Ontology">
<sew:concept var="concept" name="Person"/>

</sew:ontology>
<h1><c:out value="${concept}"/></h1>

<c:forEach var="instance" items="${concept.allInstances}">
${instance.name}

</c:forEach>

1

2
3
4

Controller

The ODESeW Controller receives user requests, which contain the actions to be performed, and
completes or checks requests with the information model in the Data Model (including both the domain
and the user models). Then it reads and executes the navigation and composition model, described below,
and returns the next view that should be rendered for the user.

We will describe first the ODESeW Navigation and Composition Model, and then the steps followed
by the Controller to execute actions.

The Navigation and Composition Models

The navigation model represents the navigation of a user through the application. This model is
explicitly separated from the design of views so that changes in the navigation do not affect the
implementation of views. Besides, it allows representing declaratively the navigation of a user, enabling
in this way an easy study of the behaviours of the user of an application.

The navigation model is a directed named graph in which nodes represent views and edges represent
navigation actions from one view to another.
• Nodes have 2 attributes: “precondition” and “view URL”. The first one specifies preconditions to allow

the execution of a view and the second one specifies the location of the view. If the precondition is
empty, it is considered to be true. If the viewURL attribute is empty this means that the view is abstract.
That is, it is a view that cannot be rendered directly and has to be specialised by other views so as to be
used by the Controller.

• Edges identify actions that can be performed from a view. Besides redirecting users from a view to
another, edges are attached to a task execution: instance edition, instance removal, message sending,
etc. An edge may not have an origin node, that is, the action represented by this edge can be executed
from all pages, represented or not in the navigation model. Besides, edges can be concatenated to
perform different tasks in a navigation step.
The navigation model also allows describing specialisation/generalisation relations between two views

(defined with the subclass-of relationship). A view is a specialisation of another if it visualises the same
content as its parent view but providing more specific visualisation items. For instance, a default view
may be used to render any instance and for other more specific instances, such as instances of persons,
instances of publications, etc., other more specific views can be created.

Fig. 7 shows an example of a navigation model with 9 views defined and several types of actions and
specialisation/generalisation relations defined between them.

The composition model is similar to the navigation model, though its rationale is different: it allows
including a set of views inside another and is normally used when complex sets of information have to be
presented at once.

One common example of the use of the composition model is for displaying a default view that render
attribute values and for other more specific types of values, such as e-mail addresses, URLs, image files,
sound files, video files, etc., other more specific views can be created.

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

Fig. 11. Example of a navigation model

The elements used in the composition model are the same as those for the navigation model: views are
represented as nodes, with the attributes “precondition” and “view URL”; views can be specialized with
other views; and actions are represented as edges. The only constraint is the type of actions that can be
represented in this model, which only consists in the action of inclusion of a view inside another.

Controller Execution

Actions received by the Controller contain two elements: task and control flow operation. The task is the
specific operation to be performed, while the control flow operation specifies what to do after the
execution of the task.

Developers can use any of the default tasks provided by ODESeW or create new ones, either from
scratch or by reusing and extending any of the default ones. The following default tasks are available:
sewView. It renders the view specified in the user request by redirecting users to it; sewRemove. It deletes
the set of concept and relation instances specified in the user request; sewEdit. It updates or creates the set
of concept and relation instances specified in the user request; sewSearch. It searches for a set of concept
and relation instances that satisfy the query; sewRouter. It is used to execute another action from a list
specified in the user request. These actions have a guard condition, and the sewRouter task selects the
first one whose guard condition is satisfied; sewLogin. It authenticates a user and loads his/her profile in
the user session.

With respect to control flow operations, there are four available: Forward: the user request is
concatenated to another action or view; Redirect: the user request ends and a new user request starts. This
new request consists in showing another view or performing another action; Include: the execution of a
new action or view is included in the original view or action, so that it will be performed later; Empty: the
execution ends without any more control flow actions. In fact, a view is actually defined as a rendering
action, optionally followed by other additional include actions, and which has an empty control flow at
the end.

When a user requests an action from a view, the Controller executes the navigation model, following
these steps:
1. Identify the view from which the user request is originated, and find it in the navigation model.
2. Find the requested action in the source view. The action can be defined explicitly in the source view or

in any of its ancestor views.
3. Select the target view for the requested action. In the navigation model, an action applied to a specific

view may have several target views, and at least one of them has to be selected. To perform this
selection, the Controller verifies whether the precondition of any of the target views specified in the

action is satisfied given the request parameters. If no precondition is satisfied, an exception raises and
the error is reported to the portal administrator.

4. Find whether any of the specialisations of the selected target view is also valid. Once the controller
found a valid candidate view, it will try to find another one among its specialisations. To do this, the
Controller checks the preconditions of the view specialisations. If any of them is satisfied, that view is
a new valid candidate view and the Controller repeats this step with its children views, until a valid
view does not have more specialisations or none of the preconditions of its specialisations are satisfied.
The last valid candidate view is the final target view.
Let us see an example based on the navigation model presented in Fig. 11. Let us assume that the user

requests the action a from the view View3, and that the parameters of the request satisfy the
preconditions Precondition4, Precondition8 and Precondition9 and do not satisfy the preconditions
Precondition5 and Precondition7.

First, the Controller finds the source view (View3). Taking into account that the user wants to perform
action a, the possible candidate views are the View4 and View8.

The first candidate to be checked is View4. However, View4 is abstract, so the Controller has to check
the preconditions of its specialisations (View5 and View7). Neither of them satisfies the preconditions, so
View4 nor its specialisations are valid target views. Hence, View4 is discarded by the Controller and the
next candidate view (View8) is analysed. The Precondition8 is satisfied, hence the View8 is a valid
candidate view. Then, the Controller starts looking for its specialisations (View9). The precondition of
View9 is also satisfied and, since View9 does not have specialisations, the final target view for the
execution of action from View3 is the View9 (see Fig. 12).
Both models, the navigation and composition, can be included and executed under the technologies
Struts2 or JSF [5].

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

1

2

1.1
1.2

1.3

2.1

2.2

Fig. 12. Example of a navigation model execution.

Examples of composition and navigation

Now we show how we can improve the visualisation of the examples presented in Fig. 3 and in Fig. 5 by
including specialised visualisations for images, emails and relations to other instances, using the
composition and navigation models described above.

Using the Composition Model, we include a hierarchy of visualization of values where each node of
the hierarchy is a type of attribute and a visualization of instances inside the visualization of a concept
that lists all instances in a concept Fig. 15 shows a Navigation Model for visualizing values in an instance
and instances in the list of instances from a concept and Fig. 16 it shows the JSP code that visualized each
type of attributes and the instance.

Executing the page presented in the Fig. 3, but substituting the line marked with number 8) with the
following line:

<sew:out action=“includeView” value=“${value}” attribute=“${att}”/>
and Fig. 5, but substituting the line marked with number 4) with the following line:
<sew:out action=“includeView” value=“${instance}”/>
the portal displays to the user the visualization presented in Fig. 17 in the left side.

2 http://struts.apache.org/index.html

When the web server executes the page instance.jsp and finds the tag <sew:out>, the ODESeW
controller looks for the best visualization that matches the original view instance.jsp, executing the action
includeView with the parameters depending on the attribute of the value and the actual value to be
displayed. And when the web server executes the page concept.jsp and finds the tag <sew:out>, the
ODESeW controller includes refInstance.jsp inside the page concept.jsp.

In this way, web developers delegate to the Composition Model how to visualize each type of
information, saving a lot of time that would be needed to create a large set of if-then-else or switch-case
commands in all dynamic pages that are used to visualize, in a specific format, attribute values. In the last
example, if we remove the lines marked by 1) in Fig. 3 and in Fig. 5 , the view is fully reusable for
displaying any instance and concept, and if the user click on any destination instance, ODESeW executes
the same instance.jsp but displaying another instance, as shown in Fig. 17.

instance.name

email.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp

${value}

instance_attribute.jsp

${value}

url.jsp

image.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp

instance.name

email.jsp
instance.name

email.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp
<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp

${value}

instance_attribute.jsp
${value}

instance_attribute.jsp

${value}

url.jsp
${value}

url.jsp

image.jsp

image.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp
<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp

Instance
URL

Instance.jsp
PRECONDITION
!empty instance

Instance
URL

Instance.jsp
PRECONDITION
!empty instance

Attribute
URL

PRECONDITION
!empty attribute

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

relation.jsp
PRECONDITION
attribute.relation

Relation
URL

relation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

instance_attribute.jsp
PRECONDITION

attribute.instanceAttribute

InstanceAttribute
URL

instance_attribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

url.jsp
PRECONDITION

attribute.type==‘URL’

URL
URL

url.jsp
PRECONDITION

attribute.type==‘URL’

String
URL

PRECONDITION
attribute.type==‘String’

String
URL

PRECONDITION
attribute.type==‘String’

Image
URL

image.jsp
PRECONDITION

util:isImage(value)

Image
URL

image.jsp
PRECONDITION

util:isImage(value)

EMail
URL

email.jsp
PRECONDITION

attribute.name==‘e-mail’

EMail
URL

email.jsp
PRECONDITION

attribute.name==‘e-mail’

includeView

concept
URL

concept.jsp
PRECONDITION
!empty concept

concept
URL

concept.jsp
PRECONDITION
!empty concept

instanceRef
URL

refInstance.jsp
PRECONDITION
!empty instance

instanceRef
URL

refInstance.jsp
PRECONDITION
!empty instance

includeView

Fig. 16. Value visualizations Fig. 15. Composition Model for value visualizations

Now, the instance.jsp and concept.jsp pages can be used to create generic views for displaying any
instance and concept in the Data Model. However, in most of the cases, the generic view is not what the
web developer wants to display in all cases. ODESeW allows web designers to create specific
visualizations for different types of information in the Data Model in the same way as it is done with the
Composition Model, but using the Navigation Model instead.

In the Knowledge Web portal, we set a navigation model with specific views for displaying persons
involved in the project, organization partners in the project, instances of persons and instances of
organizations. The resulting navigation and visualization is presented in Fig. 18 and the result of their
execution is shown in Fig. 19.

Fig. 17. Visualization of different instances with the same instance.jsp and concept.jsp

To execute the navi , we substitute the value of
the attribute value of ce.jsp shown in Fig. 16
from the value in <sew:out var=”link”
value=”/sew/viewTerm”>… receives a request for executing the
action viewTerm, and , then it shows the page
/concept/organization.j , then it shows the page
/concept/person.jsp the generic concept
visualisation page zation, Person, etc.

eate specific forms for editing
 of custom JSTL tags provided by

ng form objects, as shown in Table 2.
nstances, all the ODESeW tags of the

 (here the web designer specifies which instance is
instance attribute is being edited); and

by the user will be appended to the
des, in this case, the attribute

bm

gation through the global navigation action viewTerm
 the tag <sew:out> of the files relation.jsp and refInstan
stance.jsp to the value /sew/viewTerm (e.g.

). In this way, when the portal
the parameters contain a class or subclass of Organization
sp. If the parameters contain a class or subclass of Person

. If the parameters contain any other class, then it shows
concept.jsp. Similarly this will happen with instances of Organi

Fig. 18. Navigation Model

Fig. 19. Visualization of different objects
in the Data Model.

Instance edition

ODESeW also provides a set of tags that help to cr instances, together with
actions to store those modifications inside the Data Model. The set
ODESeW are extensions of the well-known HTML tags for creati

In the case that the form is editing an instance or a group of i
HTML form object have 3 new attributes: instance
being edited); attribute (here the web designer specifies which
mode (here the web designer specifies whether the value input
existing values or will replace the old values stored in the ontology). Besi
value is used to specify a destination instance of a relation.

Table 2. ODESeW tag for HTML forms

Specification of a form and how information will be su itted. <sew:form>
name, action, enctype, method, target, all event
triggers

Standard attributes from the <form> tag

Object form: text input, checkbox, option, button, text area, a combo list and a multivalue list
accept, accesskey, align, alt, border, checked, cols,
datafld, datasrc, disabled, id, ismap, maxlength, name,
readonly, rows, size, src, style, tabindex, type, usmap,

l event triggers

Standard attributes from the <input>,
<textarea>, <button> and <select> tag.

al
value Standard attribute, but it can contain any

term of the Data Model.
instance Sets the instance that is being edited
attribute Sets the instance attribute being edited

<sew:input>
<sew:textarea>
<sew:button>
<sew:select>

mode Sets whether the value in this tag will be
appended [append] in the instance or
will be used to replace the old values
[update].

Option in a combo box
disabled, label, selected Standard attributes from <option> tag

<sew:option>

value Standard attribute, but it can contain any
 of the Data Model. term

Term /concept/organization.jsp

/concept/person.jsp

/instance/organization.jsp

/instance/person.jsp

viewTerm

viewTerm

mviewTer

URL

PRECONDITION

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

viewTerm

orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

Term

personConcept
URL

/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

URL

PRECONDITION

Term
URL

PRECONDITION

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

viewTerm

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

personConcept orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

URL
/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

personConcept
URL

/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

In the case t ,
concept, attribu tance), the attribute value can contain one of these terms, which is passed as a

 the

 u s
e f ise behaviour in the generated HTML

and allow web d heir own javascript functions a
Fig. 22 shows t tion model for editing instances, and F

specified very si o how they are done in the normal visuali they
can generate a generic form for any instance.

instance” of
the form as a new
the ng for the name of
the instance represente e concept of the
instance; 4) te; 6) prints the
minimum an action specifying the

 that instance.
The command i attributes of the

Fig. 25. Visualization of editInstance.jsp

hat the form is requesting an attribute that contains
te or ins

 a term of the Data Model (ontology

parameter to action of the form.
These tags include a set of javascript functions that are in charg

sed in an editing instance action from ODESeW
orm. These javascript functions do not generate no

rs to include t

e of generating hidden controls in the
to collect the values of the instanceform that are

entered in th
esigne

he composi
s usual.
ig. 24 and Fig. 25 show that forms are

milarly t zation shown in Fig. 19, and that

EditInstance

Fig. 22. Composition Model for editing instances

The code include in the Fig. 24 executes the following commands: 1) sets the parameter “
variable of the form with the name “instance” and this new instance is an instance of

concept represented by the variable “concept”; 2) prints a text field in the form aski
d in the variable “instance”; 3) iterates among all attributes of th

 prints the name of the attribute; 5) prints the name of the type of the attribu
d the maximum cardinality of the attribute; 7) calls the includeView

instance and the attribute to include an HTML object form to edit values for that attribute in
n 7) calls the composition model shown in Fig. 22 iteratively among all

concept of the instance and presents as a result the visualization shown in Fig. 25.

Fig. 24. editInstance.jsp for editing instances.

URL
editInstance.jsp

PRECONDITION
!empty instance

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

Boolean
URL

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

includeView

EditInstance

Date
URL

editDate.jsp
PRECONDITION

attribute.type==‘URL’

URL
editInstance.jsp

PRECONDITION
!empty instance

EditInstance
AttributeURL

editInstance.jsp
PRECONDITION
!empty instance

URL

PRECONDITION
!empty attribute

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

Boolean
URL

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

includeView

Boolean
URL

Date

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

URL
editDate.jsp

PRECONDITION
attribute.type==‘URL’

Date
URL

editDate.jsp
PRECONDITION

attribute.type==‘URL’

<sew:form name="form" action="/sew/sewEdit" debug="false">
<sew:instance name="instance" var="instance" instanceOf="${concept}"/>

<table border=1>
<tr>
<td>Instance Name:</td>
<td colspan="3">
<sew:input type="text" name="instanceName" size="80"

instance="${instance}" attribute="name"/>
</td>

</tr>
<tr>
<th>Attribute</th>
<th>Range</th>
<th>Cardinality</th>
<th>Value</th>

</tr>

var
<c:forEach var="att" items="${concept.allAttributes}"
Status="status">
<c:set var="att" value="${att.key}"/>

<tr>
<td>${att.name}</td>
<td>${att.type.name}</td>
<td>(${att.minCardinality}-${att.maxCardinality})</td>
<td>
<sew:out value="${instance}" type="${att}"/>

</td>
</tr>
</c:forEach>

</table>
<input type="submit">
</sew:form>

1

2

3

4
5

7

6

<sew:form name="form" action="/sew/sewEdit" debug="false">
<sew:instance name="instance" var="instance" instanceOf="${concept}"/>

<table border=1>
<tr>
<td>Instance Name:</td>
<td colspan="3">
<sew:input type="text" name="instanceName" size="80"

instance="${instance}" attribute="name"/>
</td>

</tr>
<tr>
<th>Attribute</th>
<th>Range</th>
<th>Cardinality</th>
<th>Value</th>

</tr>

var

1

2

<c:forEach var="att" items="${concept.allAttributes}"
Status="status">
<c:set var="att" value="${att.key}"/>

<tr>
<td>${att.name}</td>
<td>${att.type.name}</td>
<td>(${att.minCardinality}-${att.maxCardinality})</td>
<td>
<sew:out value="${instance}" type="${att}"/>

</td>
</tr>
</c:forEach>

</table>
<input type="submit">
</sew:form>

3

4
5

7

6

Conclusions and future work

In this paper we have presented how the ODESeW framework allows the rapid development of ontology-
echnologies, such as Java Beans, custom JSTL

opers that are familiar with those technologies to
ons easily. The main advantages

ng instances), on the advanced navigation and
andard HTML form edition technologies.

 Semantic Web portals: Knowledge Web (EU
icweb.org; OntoGrid (EU project portal) at

portal) at http://droz.dia.fi.upm.es/neon; Ontology
ttp://www.oeg-upm.net; and Red Temática en Web

 devoted to the development of the External
s external resources, annotates them with the

 model and gives access to these annotated resources as if they

based Web applications using standard Web development t
tags and the Expression Language. This allows devel
access ontology-based information to generate ontology-based applicati
are on the visualisation of ontology components (includi
composition models, and on the edition of instances using st

This framework has been used to generate several
Network of Excellence) at http://knowledgeweb.semant
http://www.ontogrid.eu; NeOn (EU project
Engineering Group (research group portal) at h
Semántica (Spanish Network) at http://www.redwebsemantica.es.

Most of the future work on this framework will be
Information Gateway (EIG). This component accesse
domain ontologies in the ODESeW data
were p The specification and design of this component are
already finished, and the implementation is currently in progres

Acknowledgements

U IST Network of Excellence Knowledge Web (FP6-507482).

ine
24

ache, R. Palma, J. Euzenat, F.
nn, S. Dasiopoulou.

http://java.sun.com/products/javabeans/
. Rendle, M. Stritt, L. Schmidt-Thieme. “Ideas and Improvements for Semantic Wikis”.

3rd European Semantic Web Conference (ESWC 2006), Budva, Montenegro.
05

[12] A. López-Cima, O. Corcho, A. Gómez-Pérez.. “A platform for the development of Semantic Web portals”. In:
Proceedings of the 6th International Conference on Web Engi-neering (ICWE2006). Stanford, July 2006.

ima, O. Corcho, MC. Suárez-Figueroa, A. Gómez-Pérez. “The ODESeW platform as a tool for
managing EU projects: the KnowledgeWeb case study”. In: Proceedings of the 15th International Conference on

art of the internal ODESeW data model.
s.

This work has been supported by the E

References

[1] A. Cheyer, J. Park, R. Giuli. “IRIS: Integrate. Relate. Infer. Share”. ISWC Workshop on Semantic Desktop.
2005.
[2] JC. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-Pérez. “WebODE in a nutshell”. AI Magaz

(3):37-48. Fall 2003
[3] C. Bizer, D. Westphal. “Developers Guide to Semantic Web Toolkits for different Programming Languages”.
http://sites.wiwiss.fu-berlin.de/suhl/bizer/toolkits/. Last updated: January 2007.
[4] D. Karger, K. Bakshi, D. Huynh, D. Quan, V. Sinha. “Haystack: A General Purpose Information Management
Tool for End Users of Semistructured Data”. CIDR 2005
[5] E. Burns, R. Kitain. “JavaServer Faces”. JSR-000252. http://jcp.org/en/jsr/detail?id=252
[6] G. Tummarello, C. Morbidoni, M. Nucci, “Enabling Semantic Web communities with DBin: an overview”,
Proceedings of the Fifth International Semantic Web Conference ISWC 2006, November 2006, Athens, GA, USA
[7] E. Gamma, R. Helm, J. Vlissides, R. Jhonson. “Design Patterns: Elements of Reusable Object-Oriented
Software”. Boston: Addison-Wesley, 1995.
[8] R. García-Castro, MC Suárez-Figueroa, A. Gómez-Pérez, D. Maynard, S. Cost
Lécué, A. Léger, T. Vitvar, M. Zaremba, D. Zyskowski, M. Kaczmarek, M. Dzbor, J. Hartma
“D1.2.4 Architecture of the Semantic Web Framework”. Knowledge Web technical report, December 2006.
[9] G. Hamilton. “JavaBeans v1.01”. 1997
[10] J. Fischer, Z. Gantner, S

[11] L. Sauermann. “The Gnowsis Semantic Desktop for Information Integration”. IOA Workshop of the WM20
Conference. 2005

[13] A. López-C

Knowledge Engineering and Knowledge Management Managing Knowledge in a World of Networks (EKAW2006).
Podebrady, October 2006.
[14] M. Krötzsch, D. Vrandečić, M. Völkel. “Wikipedia and the Semantic Web - The Missing Links”. Proceedings of
the WikiMania2005.
[15] P. Delisle, J. Luehe, M. Roth. “JavaServer Pages”. JSR-000245. http://jcp.org/en/jsr/detail?id=245
[16] R. Oldakowski, C. Bizer, D. Westphal. „RAP: RDF API for PHP”. ESWC2005 workshop on Scripting for the
Semantic Web (SFSW2005). Heraklion, Crete, May 2005.

Leveraging existing Web frameworks for a SIOC
explorer to browse online social communities

Benjamin Heitmann and Eyal Oren

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. Since online Semantic Web applications are based on existing
Web infrastructure, developing these applications could leverage experi-
ences with and infrastructure of existing frameworks. These frameworks
need to be extended to deal with the different nature of Semantic Web
data. We introduce several extensions to the Ruby on Rails Web devel-
opment framework to support Semantic Web application development,
and demonstrate them by developing a SIOC explorer. This online appli-
cation integrates information from heterogeneous communities, allowing
users to explore this information and find relevant posts and topics across
these sites without the need to manually visit the different sites.

1 Introduction

Today’s World Wide Web is undergoing a transition towards tomorrow’s Seman-
tic Web. Applications on the Semantic Web can provide benefits to their users
by integrating data from many different sources. One challenge that developers
encounter is the lack of support for developing such Semantic Web applications,
compared to the many frameworks that exist for creating “ordinary” Web ap-
plications.

One option for developers, is to implement the Semantic Web elements of
their application manually and to use an existing Web application framework
for creating the Web interface. But as we will explain, this option is not optimal
given the fundamental differences between Semantic Web data and traditional
relational data, restricting the parts of the framework that can be reused.

Instead, this paper reports on the extension and modification of an existing
Web development framework with components for consuming and processing
Semantic Web data. This approach leverages the existing Web development in-
frastructure while also catering for the requirements of the Semantic Web.

We demonstrate this framework through the development of a browser for
online social communities using the SIOC vocabulary. The browser allows the
end-user to explore integrated information from various community sites (fo-
rums, mailing lists, weblogs) which would otherwise need to be visited separately.
The aggregated view can be filtered using the rich post meta-data and allows
users to discover people’s contributions or active topics across sites.

1.1 Contribution

Our framework consists of several components that extend the Ruby on Rails
Web application framework. Rails is a mature framework for developing Web
applications, with many focused libraries and plugins and a large and lively de-
veloper’s community. The first component is our ActiveRDF library, a high-level
RDF API, that uses Ruby’s dynamic meta-programming features to overcome
several fundamental mismatches between object-oriented data and the Semantic
Web (1). The second component is our BrowseRDF library for faceted navigation
of large datasets. The third component is a SIOC crawler which integrates several
command-line tools to form a “Semantic Web enabled processing pipeline” for
fetching SIOC data. We combine these three components into our SIOC explorer
prototype.

1.2 Outline

The rest of the paper is structured as follows: Section 2 introduces our motivating
scenario: integrating data from various online communities. Section 3 discusses
the relation between developing “traditional” Web applications and Semantic
Web applications, and describes how to leverage existing development infras-
tructure. Section 4 then introduces our approach to Semantic Web development,
consisting of three extensions to the Ruby on Rails framework, and demonstrates
this approach in our SIOC browser prototype.

2 Scenario: integrating online social communities

As an example, we consider the development of an application for collecting
information from online social communities. “Online communities” is a generic
term for community sites such as forums, weblogs, mailing lists or IRC channels.
Some of these channels (such as forums or bulletin boards) are more centralised,
others (weblogs, IRC channels) are more decentralised and disparate. But from
an abstract perspective all such communities are relatively similar: they allow
users to group themselves online and exchange and discuss about their particular
topics of interest.

Often, discussions range over several of these communication channels. For
example, to solve an installation problem of a wireless card in the Ubuntu Linux
distribution, a user should search the Ubuntu community forums for some helpful
advice but also look on weblogs and the ubuntu-users mailing list. Currently,
users have to browse these communication channels manually and repeat their
query in various different systems: the forum software, the mailing list online
archives, a weblog search engine, etc. For the end-user, it would be convenient
if all these community sites were aggregated in a single place, allowing him to
search for solutions to his problem in only one system.

Integrating such data currently involves: (i) collecting the heterogeneous
data, i.e. crawling or“screen-scraping” and then parsing various formats and

websites such as RSS, Atom, (X)HTML websites, e-mail archives, IRC chatlogs;
(ii) integrating these sources into a unified structure and format; (iii) consolida-
tion of resources and concepts such as users and topics mentioned on different
sites but with different identifiers (e.g. usernames or email addresses).

3 Application development from the Web to the
Semantic Web

The World Wide Web is described by (2), as a combination of Hypertext and
the Internet. Documents can link to other documents or parts of them, indepen-
dent of the document location. This enabled the creation of interlinked webs of
documents without central control or a central repository.

The quick adoption rate of this new paradigm of information sharing resulted
in a demand for making dynamic content available. New systems were created,
which could generate documents on behalf of user interaction and which could
constantly incorporate new information into the created documents.

Tim Berners-Lee(2) not only envisioned the World Wide Web, he also out-
lined the vision of the Semantic Web. The Semantic Web was intended as a
combination of knowledge representation using semantic networks and the In-
ternet. Instead of having isolated repositories of knowledge, each with their own
concepts and semantics, on the Semantic Web common concepts and their se-
mantics could be shared and linked. This would allow knowledge repositories to
link to each other, forming an interlinked web of data without central control or
a central repository.

As standards emerge for such a Semantic Web, static but linked knowledge
repositories are now possible. But, similarly to the situation on the “ordinary”
web, a demand will arise for combining and processing data based on user interac-
tion and for dynamically incorporating new data into the knowledge repositories
to reflect changes. The resulting knowledge repositories will be of a dynamic na-
ture, continuously integrating new data from various heterogeneous data sources.

3.1 The relationship between Web and Semantic Web applications

Web applications are part of the World Wide Web if they can be accessed over
the Web: (i) they expose their functionality through URLs which provide access
to the web application, (ii) these URLs can be used to access the human usable
interface, and (iii) these URLs can also be used to access the machine processable
interface, allowing integration between web applications.

Semantic Web applications are part of the Semantic Web if they can (i)
consume, (ii) process, and (iii) optionally publish semantic web data. Accessed
data can be the output from another Semantic Web application. Published data
can in turn be used as input for another Semantic Web application.

Semantic Web applications can, additionally, be part of the World Wide
Web, if they expose themselves on the Web. This class of Semantic Web applica-
tions build on existing Web infrastructure. Developing these class of applications

therefore can leverage the existing frameworks for developing Web applications,
as long as we can make the necessary adjustments to overcome the differences be-
tween traditional, centralised, relational data and the upcoming, decentralised,
graph-based Semantic Web data.

3.2 Decentralised data on the Semantic Web

The SIOC1 initiative aims to ease the integration of online social community
information (3). SIOC provides on the one hand a unified ontology to describe
such online communities, and secondly, several exporters which translate com-
munity information from weblogs, forums, and mailing lists into RDF using the
SIOC vocabulary.

Semantic Web data is expressed using RDF2, a graph-based representation
language. Statements in RDF are triples consisting of a subject, a predicate and
an object which assert that the subject has a property with some value. RDF
Schema3 is the schema language for the Semantic Web, allowing the description
of vocabularies in terms of classes and properties.

While the Semantic Web is data-oriented and the World Wide Web is docu-
ment-oriented, both are fundamentally decentralised, heterogeneous, and open:
anyone can make any statement at any location, using any vocabulary or struc-
ture. In contrast, as shown in Table 1, traditional database-driven Web appli-
cations are typically centralised, with a fixed schema, a fixed vocabulary and a
single data source.

Web applications Semantic Web

centralised decentralised
one fixed schema semi-structured
one fixed vocabulary arbitrary vocabulary
centralised publishing publish anywhere
one datasource many distributed datasources
closed world open world

Table 1. Traditional and Semantic Web data

The conceptual and physical decentralisation of the Semantic Web can lead
to (i) naming differences, since one person might describe the “author” of a book,
a second the “writer”, and a third the “creator”; to (ii) differences in data struc-
tures, since one person might describe his language skills in his personal profile,
another person his pets, and a third his favourite colours; and to (iii) federated
storage, since statements can simply be published to any Web location without
central registration. In contrast to typical relational database applications, the

1 http://sioc-project.org
2 http://w3.org/RDF/
3 http://www.w3.org/TR/rdf-schema/

Semantic Web has no central data repository, no central agreement on meaning,
no central policy on terminology, and no necessary agreement on structure.

3.3 Extending existing Web application frameworks

Frameworks for building Web applications, such as Struts4, Ruby on Rails5 and
Django6 are a popular way to develop Web applications such as our example on-
line communities application. These frameworks overcome the traditional prob-
lem of Web scripting languages, the intermixing of business logic, presentation
templates markup and database operations, by using the model–view–controller
(MVC) pattern (4).

The MVC pattern separates an application into three parts: the application
model manages data representation and business logic, the views present the data
and manage user interaction, and the controller handles control flow. The Web
application frameworks provide, for each part of the MVC pattern, middleware
libraries that support application development. Given the different nature of
the Semantic Web, some of these libraries can be reused directly but additional
provisions must also be made:

Models: from relational data to Semantic Web graphs Existing frame-
works rely mostly on a direct object-relational mapping to automatically con-
struct the models in the MVC pattern from the relational schema (5). But Se-
mantic Web data does not follow one fixed schema and some data might not
be described by any schema. For example, when integrating data from online
communities we will encounter descriptions outside of the SIOC schema, such
as concept hierarchies using SKOS7, user profiles using FOAF8, or project de-
scriptions using DOAP9. The use of such additional information is explicitly
advocated by SIOC, since SIOC itself only describes basic relations between
online communities. SIOC exporters are encouraged to use additional terms to
express further information about their users or their discussion topics.

Views: navigating large and arbitrary datasets In existing frameworks ap-
plication developers construct the navigation interface manually, although aided
by more abstract HTML template languages. Such navigation interfaces are al-
most always limited to the application’s domain model and restricted to data
that the developers initially anticipated. But on the Semantic Web we can en-
counter arbitrary data outside of our initially expected schema, so additional
provisions are necessary to allow navigation based on that data. For example,

4 http://struts.apache.org
5 http://rubyonrails.org
6 http://www.djangoproject.com/
7 http://www.w3.org/2004/02/skos/
8 http://foaf-project.org/
9 http://usefulinc.com/doap/

we would like to browse our integrated community information chronologically
(by time of posting) and by the author of the post. Such properties are part of
SIOC and we can thus manually create a navigation interface for them. But if we
encounter richer author profiles including the workplace of authors, their coun-
try of origin, or their field of expertise (none of which are in the SIOC schema)
we would like to filter the posts based on these properties as well.

4 Developing the SIOC browser prototype

To develop an integrated solution for the online communities scenario described
in Sect. 2, we extended the Ruby on Rails framework with components for con-
suming and processing Semantic Web data. One such component is ActiveRDF
(1), which addresses the “model” mismatch and maps RDF data onto objects.
The second component is BrowseRDF (6), a faceted browsing engine that en-
ables navigation of large Semantic Web datasets without domain-specific naviga-
tion knowledge. The third component is a SIOC crawler which crawls, extracts,
normalises, and integrates SIOC data from various community sites (which use
different methods of exposing and linking to their SIOC data).

4.1 Augmenting Ruby on Rails

Ruby on Rails is an MVC-based rapid application development framework (7).
Developers can generate models, views, and controllers matching their data, and
can customise these to implement their business and domain logic. The model
is typically provided by an automatic mapping from an existing database, the
controller describes the control-flow in Ruby and the view is specified through
HTML templates with embedded Ruby code.

Ruby on Rails has two main strengths: on the one hand it provides default
application logic for the generic parts of web applications and several helper
methods for data manipulation and JavaScript effects, alleviating developers
from these tasks. On the other hand, since Ruby on Rails is targeted towards
web applications that operate on relational databases, it integrates the business
logic with the domain data using an object-relational mapping: database tables
serve as domain models and database tuples become Ruby instances.

Each of our extension components is designed to augment and integrate with
Ruby on Rails. ActiveRDF can serve as a data layer in Ruby on Rails, replac-
ing or augmenting the default ActiveRecord layer. The BrowseRDF navigation
algorithms are implemented as a library that provides generic navigation on top
of ActiveRDF; the library also includes helpers that generate the appropriate
HTML navigation code in any Ruby on Rails application.

The SIOC crawler uses several libraries and command-line tools; cURL10 and
Hpricot11 to extract links to the SIOC RDF data from the community sites; the

10 http://curl.haxx.se/
11 http://code.whytheluckystiff.net/hpricot/

Redland (8) “rapper” utility to fetch the actual SIOC RDF and to normalise it
into ntriples; the Linux “cron” daemon to schedule periodic updates of the data;
and Berkeley DB12 as a persistent hashtable of visited sites.

4.2 SIOC explorer

Our prototype “SIOC explorer” aggregates data from various online commu-
nity sites and allows users to browse and explore all disparate information in
an integrated manner. The prototype, online at http://activerdf.org/sioc,
source code at http://launchpad.net/sioc-ex, can be used as a feed reader to
explore and subscribe to SIOC-enabled community sites such as weblogs, mail-
ing lists, forums and IRC chats. The SIOC-enabled sites export SIOC data in
a similar manner as RSS feeds. When prompted by the user, our application
“subscribes” to such a feed and regularly polls these sites for updated content.

Fig. 1. Overview page of the SIOC explorer

All SIOC content is integrated into a local RDF store and then displayed in
various ways. Figure 1 shows the overview page of the current prototype, with a
list of several weblogs and forums. Users can decide to browse a particular forum,
or see all posts aggregated from all sites. Not only posts from weblogs are shown,
but also posts from from online community forums, IRC chats, mailing lists, etc.
which are all described using the same SIOC RDF vocabulary.

After selecting a particular forum, the user is presented with the list of posts
in that forum in the reverse chronological order, as shown in Fig. 2. As usual
in feed readers, each post is summarised and can be expanded to read the full
content. Also, “lateral” browsing is supported: clicking on the creator of a post
shows all posts (including replies) written by this person, across all forums;
clicking on a topic shows all posts tagged with this topic, again across all forums.
In contrast to ordinary readers, our lateral browsing works across all types of
12 http://www.oracle.com/database/berkeley-db.html

community forums: clicking on the user “Cloud” will not only show all his weblog
posts, but also his emails from him and his contributions to IRC. The SIOC
ontology enables this integrated browsing by providing the conceptual framework
for unifying the content from the various community sites.

Fig. 2. Reading posts in the SIOC explorer

Finally, a generic faceted navigation interface is offered on the left-hand side,
displaying relevant facets that are not part of the default interface. For example,
since browsing posts by creation date, user, or topic is already supported through
the “lateral” browsing discussed previously, those facets are not available on the
navigation bar. But if the imported SIOC data (in this particular screenshot)
has some unexpected facets, we can browse the posts based on e.g. creator,
modification date, detailed user profiles (more than a simple username) and
topic description (more than a simple topic tag).

Some facets (like the year) contain only “simple” values while others, such
as maker or topic, can be further expanded to see subsequent subfacets. Fig. 3
shows the values for the subfacets of the facet “maker” for two different persons
with posts about the topic “semantic web” in the database.

Application developers can customise the facet navigation to their needs and
for example choose to exclude or include certain facets, or choose to exclude
certain advanced operators such as the inverse join or the existential join.

Fig. 3. Faceted browsing in the SIOC explorer

4.3 Development effort

Using ActiveRDF and our other extensions, the integration of Rails with RDF
data was straightforward and the development effort was quite low. The models
itself are automatically provided as virtual models, the controller (with all ap-
plication logic) contains around 95 lines of code and the views contain around
100 lines of abstract HTML. The SIOC crawler consists of around 150 lines of
code. Most control-flow handling (such as routing HTTP requests) and interface
code (such as Javascript generation) is provided by the Rails libraries.

5 Conclusion

Since online Semantic Web applications are based on existing Web infrastruc-
ture, developing these applications could leverage experiences with and infras-
tructure of existing frameworks. Using existing frameworks abstracts typical
implementation patterns and shifts implementation effort from the developer to
the framework.

As we have discussed, existing frameworks, many of which are based on
the model–view–controller paradigm, cannot be reused completely for Semantic
Web applications without resolving additional requirements. On the “model”
part, the impedance mismatch between Semantic Web data and object-oriented
programming needs to be resolved. On the “view” part, next to the domain-
specific navigation, an automatic domain-independent navigation interface is
needed that is not restricted to a specific schema.

We have introduced our extensions to the Ruby on Rails framework and dis-
cussed how they cater for these requirements. As a practical scenario, we have
shown how this extended frameworks supports developing a SIOC browser. This
SIOC browser integrates information from heterogeneous communities, allowing
users to explore this information and find relevant posts and topics across these
sites without the need to manually visit the different sites. The application con-
sists of around 350 lines of (manually written) code, apart from the generated
Rails code, which could be considered quite little for its functionality.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

[1] Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-
oriented semantic web programming. In: Proceedings of the International
World-Wide Web Conference. (2007)

[2] Berners-Lee, T.: Weaving the Web. Collins (2000)
[3] Breslin, J., Harth, A., Bojars, U., Decker, S.: Towards semantically-

interlinked online communities. In: Proceedings of the 2nd European Se-
mantic Web Conference. (2005)

[4] Reenskaug, T.: Thing-Model-View-Editor, an example from a planning-
system. Technical report, Xerox PARC (1979)

[5] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley
(2002)

[6] Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data.
In: Proceedings of the International Semantic Web Conference. (2006)

[7] Thomas, D., Hansson, D.H.: Agile Web Development with Rails. 2nd edn.
Pragmatic Programmers (2007)

[8] Beckett, D.: The design and implementation of the Redland RDF application
framework. Computer Networks 39(5) (2002) 577–588

Extensible SPARQL Functions With Embedded

Javascript

Gregory Todd Williams

University of Maryland, College Park, MD, USA
gtw@cs.umd.edu

Abstract. The SPARQL Query Language allows filtering of query re-
sults through arbitrary predicate expressions. Such expressions may in-
voke custom functions identified with IRIs, but the SPARQL imple-
mentation used must support the identified function. We present an ex-
tensible approach to allowing arbitrary function implementations using
functions identified with URLs. We provide an example using Javascript
functions, show how such a system can be implemented in the Perl based
RDF::Query SPARQL implementation and discuss security concerns.

1 Introduction

The SPARQL query language[7] has provided a powerful, standardized way to
query RDF models. Many query engine implementations exist that support
SPARQL[4], and they allow consistent querying regardless of implementation
language or platform. One of the most exciting features of SPARQL is its sup-
port for extension functions. These functions, identified by IRI, allow SPARQL
queries to rely on domain-specific approaches to filtering query results.

Extension functions provide a means of extending the SPARQL language,
but support for such functions remains sparse. Furthermore, to allow SPARQL
query engines to share support for specific extension functions, implementations
of the functions must be provided in each of the programming languages used.

We present a system in which extension functions are implemented in an
agreed upon programming language and implementations may be shared among
query engines by using an embedded interpreter for the language. Functions are
identified by URLs (a subset of IRIs) and the source code may be retrieved at
run time by dereferencing the URL. Such a system reduces duplicated effort
in implementing extension functions, and allows reference implementations to
define the semantics of functions.

2 Background

To make use of SPARQL extension functions, SPARQL query engines must
implement functionality to allow users (or administrators) to register functions
with the query engine, mapping an IRI to a function. Unfortunately, many query
engines don’t yet support this feature.

2

One popular query engine that does support this feature is ARQ[8] which
allows querying of Jena[6] models. Functions may be registered with ARQ by
installing a mapping between a URI and and a Java factory class. As a con-
venience shortcut to avoid the registering process, ARQ allows functions to be
automatically loaded by using a URI with the ”java:” IRI scheme. For exam-
ple, using functions in the java:com.hp.hpl.jena.query.function.library.

namespace will automatically make use of functions in the
com.hp.hpl.jena.query.function.library package. Figure 1 shows an ex-
ample SPARQL query with an extension function using the ”java:” IRI scheme.
Under ARQ, this example would dynamically load and execute the
com.ldodds.sparql.Distance function, filtering any potential results whose
corresponding return value was not less than a constant value.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX ldodds: <java:com.ldodds.sparql.>

SELECT ?image ?placename

WHERE {

?image a foaf:Image .

?image dcterms:spatial ?point .

?point foaf:name ?placename .

?point geo:lat ?lat ; geo:long ?long .

FILTER(

ldodds:Distance(?lat, ?long, 38.9937, -76.933) < 10

) .

}

Fig. 1. An example ARQ SPARQL query finding all images taken within 10 kilometers
of a known point using the com.ldoddds.sparql.Distance extension function.

Another query engine that supports extension functions is the Perl-based
RDF::Query[10] package. In RDF::Query, IRIs may be mapped to user functions
using the add function object or class method to register the function either
per query or globally for all queries, respectively.

Extension functions may be used in several different ways. Some exten-
sion functions are used as shorthand for accessing complex RDF structures.
jena:listMember is used to test for membership in an rdf:Seq sequence[6].
Other extension functions are used to transform scalar values; jena:sha1sum is
used to return the SHA-1 cryptographic hash of a value. A third type of func-
tion generates a new value from sets of values. ldodds:Distance can be used
to compute the distance in kilometers between two sets of latitude/longitude
values[5].

Despite having broad usefulness, these functions and many others are only
available on one or a few query engine implementations, restricting their use.

3

In some situations, the need to use such a function may be addressed by us-
ing a specific query engine. However, in situations where a (potentially large)
database is hidden behind a SPARQL query engine ”endpoint” (where an exist-
ing SPARQL engine is the only point of access to the underlying data), the user
may be forced to use the query engine that is provided.

What is needed is an approach to extension functions that allows functions
to be implemented once, and shared between query engines without a priori

knowledge of any particular function.

3 Methodology

Our system extends the RDF::Query query engine with the ability to retrieve
Javascript extension function implementations via URL, run the extension func-
tions in an embedded Javascript interpreter, and return the resulting value to
the RDF::Query engine as a native Perl object. Javascript was chosen for its wide
use on the internet, existing RDF APIs for Javascript, and the availability of
several high quality, free implementations suitable for embedding [1, 9]. However,
our approach is general, and could work with any embeddable language.

Our system makes use of an RDF schema to describe SPARQL extensions, a
SPARQL extension function API for Javascript, and optional cryptographic sig-
natures to distinguish ”trusted” implementations. We discuss these components
below, together with notes on the actual implementation in RDF::Query.

3.1 Extension Function Schema

The extension function namespace is:

http://www.mindswap.org/2007/owl/sparql#

The RDF document describing functions is used as a central location for
information about the implementation of the functions. It should contain data
relating to the location of implementation files and any cryptographic signatures,
a description of the referenced functions, a name for each function (to be used
as an entry point into the code and that will return the function value), and any
other information relevant to the implementation.

An example RDF document describing two of the jena functions using the
extension function schema is shown below in the Turtle[2] syntax:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://www.mindswap.org/2007/owl/sparql#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

<java:com.hp.hpl.jena.query.function.library.>

a ex:Namespace;

ex:hasFunction

<java:com.hp.hpl.jena.query.function.library.sha1sum>,

4

<java:com.hp.hpl.jena.query.function.library.now> .

<java:com.hp.hpl.jena.query.function.library.sha1sum>

a ex:Function;

dc:description "SHA-1 Hash";

ex:source <http://example.com/sha1.js>;

ex:signature <http://example.com/sha1.js.asc>;

ex:function "sha1" .

<java:com.hp.hpl.jena.query.function.library.now>

a ex:Function;

dc:description "Start time of query execution";

ex:source <http://example.com/now.js>;

ex:signature <http://example.com/now.js.asc>;

ex:function "now" .

The important statements of this RDF description for purposes of implemen-
tation are those using the following predicates:

– ex:source declares the location of the implementation source code.
– ex:function defines the function name in the source code that should be

called to execute the function.
– Optionally, ex:signature declares the location of any cryptographic sig-

natures that can be used by query engines in order to run only trusted
functions. This is discussed in more detail in sections 3.3 and 4.1.

3.2 Extension Function API

The implementation of extension functions must take as input RDF nodes passed
as function arguments and output an RDF node value. Therefore, a simple API
for interacting with RDF nodes is needed in the implementation language. We
use the AJAR[3] Javascript API, providing the classes RDFLiteral, RDFBlankNode,
and RDFSymbol, the common property termType, the common method toString,
and the node-creating function makeTerm. For a more detailed description of the
API, refer to the AJAR documentation.

Figures 2 and 3 show corresponding RDF description and Javascript im-
plementation of a distance function using the Javascript API. This function is
similar to ldodds:Distance, taking two latitude/longitude pairs, and return-
ing the distance between them in kilometers as computed using the great circle
distance algorithm.

3.3 Cryptographic Signatures

For security and performance reasons, it may be desirable for query engine in-
stances to only allow running extension functions that have been identified as
trusted. This can be accomplished by designating known third-parties as trusted,

5

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://www.mindswap.org/2007/owl/sparql#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

<http://example.com/functions/>

a ex:Namespace;

ex:hasFunction <http://example.com/functions/distance> .

<http://example.com/functions/distance>

a ex:Function;

dc:description "Geographic (great circle) distance in kilometers";

ex:source <http://example.com/distance.js>;

ex:function "gcdistance" .

Fig. 2. RDF description of a distance extension function.

function gcdistance(lat1, lon1, lat2, lon2) {

lat1 = deg2rad(makeTerm(lat1).toString());

lat2 = deg2rad(makeTerm(lat2).toString());

lon1 = deg2rad(makeTerm(lon1).toString());

lon2 = deg2rad(makeTerm(lon2).toString());

var londiff = Math.abs(lon1 - lon2);

var s1 = square(Math.sin((lat2 - lat1) / 2));

var s2 = square(Math.sin(londiff / 2));

var sq = Math.sqrt(

s1

+ Math.cos(lat1)

* Math.cos(lat2)

* s2

);

var adist = 2 * Math.asin(sq);

var r = 6372.795;

return r * adist;

}

function square (x) { return x * x; }

function deg2rad(d) { return Math.PI*d/180 }

Fig. 3. Javascript implementation of a distance extension function.

6

and trusting any implementation that has a valid cryptographic signature from
the trusted third-party.

If configured to allow only trusted functions, our implementation takes a list
of trusted GPG public key fingerprints, attempts to verify all available signatures
of a requested implementation, and only proceeds if there exists a signature
created with a trusted key.

The need for a possibly growing list of arbitrary signatures in the RDF
description is the primary reason why function metadata and implementation
source code must reside at distinct URLs. As new signatures are generated, meta-
data describing the signatures must be added to the RDF description. However,
this addition must not invalidate existing signatures. Therefore, signatures must
be made against the implementation source code and referenced in the seperate
function metadata RDF document.

3.4 Extending RDF::Query

We implemented this system in the Perl-based RDF::Query query engine using
an embedded Javascript interpreter. During query execution, an extension func-
tion is retrieved as a code reference via a lookup method. This method first looks
for a native implementation of the extension function. If no implementation is
found, and the function is identified with a URL, the URL is dereferenced and
the resulting content is interpreted as an RDF document describing the func-
tion implementation. Using this RDF data, the implementation source code is
retrieved, compiled, and verified against any signature files. If this process is
successful, a code reference is returned that will behave just as a native imple-
mentation would.

Figure 4 shows example code for constructing an RDF::Query query engine,
enabling the use of URL-based extension functions, and restricting their use to
only those signed by a known key. In this example, a Javascript implementation
of the SHA-1 hashing function is used to find all people with an email address
that hashes to a known value.

In the construction of the query engine object, two new constructor fields are
introduced to support the URL-based extension functions:

– net filters is passed with a true value to enable URL-based extension
functions.

– trusted keys is passed with an array reference containing a list of the
trusted signing keys’ cryptographic fingerprints. This field is optional.

After the first use of an extension function, the source code and signatures are
cached to prevent unnecessary repeated downloads. Using features of HTTP/1.1,
the content of the source and signatures need only be downloaded again if these
documents change. On repeated requests where the documents have not changed,
a response with only a small header is transfered. This approach saves bandwidth
while ensuring that changes to the source code and signatures are not ignored
due to arbitrarily long caching – an important feature for long running query

7

my $sparql = <<"END";

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX func: <http://example.com/functions.rdf#>

SELECT ?person

WHERE {

?person a foaf:Person ;

foaf:mbox ?mbox .

FILTER(

func:sha1(?mbox) = "f80a0f19d2a0897b89f48647b2fb5ca1f0bc1cb8"

) .

}

END

my $query = RDF::Query->new($sparql, undef, undef, ’sparql’,

net_filters => 1,

trusted_keys => [’1150 BE14 FF91 269F 398B 0F4E 0253 5AF9 A2B9 659F’],

);

Fig. 4. Setting up an RDF::Query query engine with support for network-based exten-
sion functions only when signed by a known key.

engines. Furthermore, if the source code was verified against a signature, the
verified status of the code may be cached when using the same trusted key and
source code to avoid unnecessary repeat verifications.

4 Results and Analysis

The implementation of URL-based extension functions in RDF::Query was rel-
atively straightforward. Just sixteen lines of existing code were modified, and
three new methods were added to the main query engine class to initialize an
embedded Javascript interpreter and to compile and call the extension func-
tion. There are several issues of concern with such an implementation relating
to potential security and performance degredation. These issues are discussed
below.

4.1 Security and Performance Concerns

With many SPARQL endpoints being made publicly available for use by the
public, thought must be given to the potential to abuse these systems. Relat-
ing to URL-based extension functions, such abuse could affect overall system
performance, or even cause a denial of service attack against external machines.

Query engines that may run unknown code loaded as an extension function
must be aware of the potential problems doing so may cause. A denial of service
attack may be initiated against a foreign server by using an extension function
URL pointing to a very large resource (in which case available local bandwidth

8

may be a concern) or a resource that is computationally intensive to return
(where the total system load of the remote server may be a concern). Similar
attacks may be initiated if the embedded Javascript environment allows the
creation of network connections.

Another potential problem of running arbitrary code is local system load. If
an extension function runs for an unexpectedly long time, it may prevent the
server from answering other requests or may overrun a time limit on the request
(as might be likely if the request was made using HTTP). Even if the running
time of a function is bounded, system load may still be of concern if the overhead
of switching contexts between the query engine and the embedded language is
high. If the potential result set before filtering is large, and many calls to the
extension function are necessary, the context switching overhead may overwhelm
the total running time of the query.

Public endpoints may prevent many potential problems by allowing only
extension functions signed by trusted keys. By relying on a trusted third party
to sign a function, the signature may be used to indicate the correctness of the
function (by a lack of syntactic and semantic errors) as well as the absence of
malicious code. This approach may work well for domain-specific functions where
a central organization or interest group could provide the trusted signatures.

To address denial of service attempts and performance concerns, a query
engine may also define configurable maximums for source code size and run time.
In situations where a maximum run time isn’t acceptable (where query results
must be provided despite run time), total run time and the overhead of context
switching may be addressed by providing a native implementation of commonly
used extension functions. Native implementations may also be important for
functions where a native implementation can provide much better performance
(due to more efficient data structures, access to hardware acceleration, etc.).

5 Conclusion and Future Work

We believe this approach to allowing arbitrary extension functions can provide
commonly used functions to many query engines with comparatively little work.
However, to realize this potential and to be generally useful, our approach would
need implementation in more than just one query engine.

Future work is needed to implement parts of the Javascript API to allow
extension functions to access the underlying RDF model, allowing implementa-
tion of model-dependant functions such as jena:listMember. Future work may
also include extending the RDF schema to allow for alternate programming lan-
guage and cryptographic signature types. A language designed specifically for
embedding (such as Lua) may prove more desirable for the implementation of
functions, while allowing other signature types (x.509 certificates, for example)
could allow leveraging existing key infrastructures. Finally, we hope to follow
this work with a deeper investigating of the real-world applications and benefits
of such a system.

9

This work was supported by grants from Fujitsu, Lockheed Martin, NTT
Corp., Kevric Corp., SAIC, the National Science Foundation, the National Geospa-
tial - Intelligence Agency, DARPA, US Army Research Laboratory, and NIST.

References

1. Webkit. http://developer.apple.com/opensource/internet/webkit.html.
2. Dave Beckett. Turtle - Terse RDF Triple Language.

http://www.dajobe.org/2004/01/turtle/.
3. Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,

James Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and an-
alyzing linked data on the semantic web. In 3rd International Semantic Web User
Interaction Workshop, November 2006.

4. Christian Bizer and Daniel Westphal. Update on semantic web toolkits for scripting
languages. In 2nd Workshop on Scripting for the Semantic Web (SFSW2006), June
2006.

5. Leigh Dodds. Sparql geo extensions. http://xmlarmyknife.org/blog/archives/000281.html.
6. Brian McBride. An introduction to rdf and the jena rdf api.

http://jena.sourceforge.net/tutorial/RDF API/.
7. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF

(Working Draft). http://www.w3.org/TR/rdf-sparql-query/.
8. Andy Seaborne. ARQ - A SPARQL Processor for Jena.

http://jena.hpl.hp.com/ afs/ARQ/.
9. Jens Thiele. Embedding spidermonkey - best practice.

http://egachine.berlios.de/embedding-sm-best-practice/embedding-sm-best-
practice.pdf.

10. Gregory Todd Williams. RDF::Query. http://search.cpan.org/dist/RDF-Query/.

A lookup index for Semantic Web resources

Eyal Oren and Giovanni Tummarello

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. Developers of Semantic Web applications face a challenge
with respect to the decentralised publication model: where to find state-
ments about encountered resources. The “linked data” approach, which
mandates that resource URIs should be de-referenced and yield meta-
data about the resource, helps but is only a partial solution and not
followed widely. We present a simple lookup index that crawls and in-
dexes resources on the Semantic Web. Our index allows applications to
automatically retrieve sources with information about a certain resource.
In contrast to more feature-rich Semantic Web search engines, our index
is limited in scope and functionality and is therefore simple, small, and
scalable.

1 Introduction

The Semantic Web can be seen as a large knowledge-base of statements about
resources. These statements form an interconnected graph since statements may
mention the same resources as other statements. A fundamental feature of the
Semantic Web, as opposed to older forms of semantic networks, is that the graphs
are decentralised: there is not one single knowledge-base that contains the graph
of statements but instead anyone can contribute statements on his “personal”
web-space. The complete graph is only visible after crawling and integrating the
fragments mentioned on these personal subspaces.

This decentralised nature of the Semantic Web is well-known and, similarly
to the decentralised nature of the ordinary Web, actually one of its benefits:
anyone can make any statement about anything without the need for centralised
control or authorisation. But for developers of Semantic Web applications, which
operate on Semantic Web data, the decentralisation poses a challenge: how and
where to find statements about certain resources?

This paper introduces Sindice, a simple lookup index that helps application
developers answer exactly this question. The index crawls the Semantic Web
and indexes the resources encountered in each source. A simple HTTP API
returns sources containing statements about a given resource, ranked in order
of relevance. In contrast to full-blown “Semantic Web search engines” we have
a purposely limited scope: we only index RDF documents and we only index
occurrences of resources; as a result, our code is simple and our index is relatively
small.

2 Sindice architecture

Our Sindice index maintains a list of resources and the sources in which these
resources appear (either as subject or as object of a statement). The basic func-
tionality of the index is to return such a list of sources for any given URI, so as to
allow the requesting application to visit these sources and fetch more information
about the resource in question.

The service is provided for usage in Semantic Web applications, to imple-
ment for example a “find more information” button which would find additional
sources of information through Sindice. Our lookup service augments the “linked
data model” which mandates that information about an RDF resource should
be available on the URI identifying the resource. Sindice promotes this approach
(in its ranking algorithm) but also supports URIs that are not URLs and cannot
be dereferenced (such as telephone numbers, isbn numbers or general concepts);
most importantly, Sindice helps locating statements made outside the “authori-
tive” source for a resource.

2.1 Design requirements

The architecture for our Sindice index consists of three components for indexing,
lookup, and ranking of resources. These three components provide the three
methods in the Sindice API:

– lookup(uri) => url[]: lookup of a URI returns a ranked list of URLs in
which the given URI has been mentioned,

– index(url) => nil: parses and indexes document at given URL,
– refresh() => nil: refreshes the index by re-visiting and updating all known

sources.

We have two design requirements: first, we want to minimise the index size, so
as to allow indexing of the whole Semantic Web without requiring complex disk
solutions such as networked storage, disk-arrays or clustered machines; secondly,
we want to minimise lookup times, so as to allow applications to use Sindice by
default to lookup more information for any encountered resource.

To fulfil these requirements, we focus on simplicity: we only index occurrences
of resources but not the actual statements in which they occur; we only allow
lookups from resources to sources but not in the other direction (i.e. one cannot
ask which resources are mentioned by a particular source); we use a simple rank-
ing algorithm that produce useful results without requiring much computation
time or background knowledge.

2.2 Index design

We aim for storing at least 300 million resources, mentioned on maybe 3 million
sources. These numbers serve only as an indication of our scalability target and

are informed by earlier crawling results from SWSE1 and Swoogle2 @@ding/finin
“characterising semantic web on the web”. In designing the index, we optimise
for disk space and lookup times. Since the only required access pattern is from
resource to mentioning sources, a hashtable-like index seems natural. The key to
such a hashtable would be the URI of the resource and the value of the hashtable
would be the list (array) of mentioning sources.

In Listing 1.1 we describe the basic indexing algorithm, while abstracting for
a moment from the exact implementation of the hashtable-like occurrence index.
As shown in the listing, when indexing a new source, we extract each mentioned
URI in that source and add it to the “occurrence” index to indicate that the
indexed source mentions the found URI.

Listing 1.1. Indexing algorithm pseudo-code� �
def index(source)

resources = subject and objects in(source)
for resource in resources

occurrence[resource] += source
end

end� �
With such a hashtable-like index, lookups are implemented by simple lookups

in the hashtable and ranking of the results, as shown in Listing 1.2. Since the
hashtable-like index uses the resource URI as key and the mentioning sources as
values, average lookup complexity is O(1). Worse-case lookups of frequently men-
tioned resources, especially frequent classes such as foaf:Person or sioc:Forum,
would cause a higher runtime simply to read and return the large set of men-
tioning sources, but we do not envision these to be requested often.

Listing 1.2. Lookup algorithm pseudo-code� �
def lookup(resource)

sources = occurrence[resource]
return rank(sources)

end� �
2.3 Index implementation

In abstract sense our index design is clear, but we have several choices for con-
crete implementation of such a hashtable-like index. We have experimented with
the following options:

Database: using a database table with the resource URIs as primary keys.
The advantage is simplicity of implementation, the disadvantages are: that
databases typically incur a slight overhead in query processing which we
would not use since we have only simple key lookups, that many databases
have upper limits on the amounts of rows which we could possibly reach,
and most importantly, that databases typically need to have the complete

1 http://swse.deri.org
2 http://swoogle.ubmc.edu

list of primary keys in memory to ensure fast access to the data; in our case
300 million primary keys (resources that are each maybe 128 bytes to 500
bytes long) would imply main memory requirements of 38GB-150GB which
is rather more than our standard available hardware offers.

Filesystem: implementing our own hashtable using the filesystem with one file
for each resource containing the list of mentioning sources. The advantage of
this solution is scalability: storing only a list of sources and compressing the
contents of each file, each resource-file would occupy between 50 bytes to 300
bytes, resulting in an index size (disk-space) of 30GB which is well inside
the range of current typical hardware. The disadvantage however, is that
filesystems typically have a minimal block-size (configured at formatting
time) which is an lower limit on occupied disk-space for each file. On for
example the ext3 filesystem, typical block-size is 2K, so even if our files
are only 50 bytes long, they would each occupy 2KB in diskspace; in the
future we will experiment with filesystems without such limitations, such as
Reiser43.

Persistent hashtable: using an existing library for persistent hashtables such
as Berkeley DB. This solution is very similar to the second (persisting the
hash-table directly onto the filesystem) except that Berkeley DB allows us
to configure various parameters of the hash-table (bucket size, overflow rate,
hash-function, etc.) and that Berkeley DB manages all the necessary inter-
nals to allow transaction management, concurrent access, locking etc.

After experimenting with these options and considering their characteristics,
we implemented Sindice using the Berkeley DB persistent hashtable. We are still
in the process of tuning it for best concurrent performance and disk space usage
(e.g. bucket size and fill factor).

2.4 Source metadata

Additionally to the resource occurrence hashtable, we maintain a small hashtable
with metadata for each visited source. This hashtable is used for managing the
crawling and fetching process, and for the ranking (explained in the next section).
To prevent over-requesting metadata sources and to follow the Robot (crawling)
guidelines4, we store visiting times and content hash for each source. We only
revisit sources after a threshold waiting time and we only reparse the source’s
response if the content hash has changed. We do not yet use E-Tags and HTTP
“last-modified” headers but consider doing so in the future.

2.5 Ranking phase

Since for popular resources our index could easily return many hundreds or
thousands sources, a good ranking algorithm is crucial. But on the other hand,

3 http://www.namesys.com/v4/v4.html
4 http://www.robotstxt.org/wc/guidelines.html

we want to keep the index small, and thus amount of metadata minimal, we
want to rank resources fast.

We have designed a ranking function that requires only little metadata for
each source and is relatively fast to compute; in contrast to more optimal ranking
functions such as HITS (Kleinberg, 1999), PageRank (Brin and Page, 1998), or
ReconRank (Hogan et al., 2006), it does not construct a global ranking of all
sources but ranks sources based on their own metadata and external ranking
services. We currently use the following metadata in ranking:

Hostname: we prefer sources whose hostname is the same as the resource’s
hostname. For example, we consider that more information on the resource
http://eyaloren.org/foaf.rdf#me can be found at the source http://
eyaloren.org/foaf.rdf than at an arbitrary “outside” source, such as
http://g1o.net/g1ofoaf.rdf. We thus reuse the Internet’s own authority
mechanism and favour the notion of linked Semantic Web data, as advo-
cated by e.g. Sauermann et al. (2007), in which resources use URIs that are
resolvable and return valuable information.

Relevant statements we prefer sources that mention this resource more often
than sources that mention this resource less times (considering that both
sources mention the resource at all).

Source size: we prefer sources with more information than sources with little
information.

External rank: we prefer sources hosted on sites with a high ranking in exist-
ing ranking services (such as Google’s PageRank). We thus use techniques
@@cite to estimate a ranking for each source at index time and assume
that highly-ranked websites also produce valuable RDF data. For exam-
ple, using an external rank the source http://www.deri.ie/fileadmin/
scripts/foaf.php?id=95 would rank higher than the source http://g1o.
net/g1ofoaf.rdf for the same example resource http://eyaloren.org/
foaf.rdf#me, because http://deri.ie has a higher estimated PageRank
than http://g1o.net.

3 Current implementation

The current implementation is online at http://sindice.com/, the source code
is available5 under LGPL license.

To fetch and transform all RDF to canonical ntriples format, we use the
Redland (Beckett, 2002) “rapper” utility: although we do not need to parse the
RDF but only extract the resources mentioned, such extractions are difficult
in XML since URIs can be mentioned without being true resources (e.g. as
namespace declarations). For this reason, we employ rapper to parse all RDF
into ntriples, and use a simple regular expression to extract all resource subjects
and objects.

5 https://launchpad.net/sindice/

To update our index, we use the pinging service http://pingthesemanticweb.
com: we ask it periodically (currently every hour) for recently updated RDF doc-
uments and index each of these sources if they have changed since the last time
we saw them. We also offer a Web interface and an HTTP API where people
can submit their own RDF documents for indexing, but we prefer to reuse the
http://pingthesemanticweb.com service since it already receives many pings
from updated RDF documents.

Fig. 1. Overview page of Sindice

Figure 1 shows the human-readable Web interface for Sindice. It shows some
index statistics and access to the two API functions: lookup of a resource and
parsing or updated source. The third API function, refreshing all sources, is
not accessible over the Web interface to prevent denial-of-service attacks. Apart
from the Web interface Sindice offers an HTTP API interface that returns XML,
JSON, or plain text results, through which developers can lookup sources from
within their programs.

Figure 2 shows the resulting lookup of a sample resource, in this case http://
www.w3.org/People/Berners-Lee/card#i. As can be seen in the shown results,
ranking was not yet taken into account at the time of the screenshot. Lookups on
the current prototype take around @@@0.025s in average (variance probably due
to disk cache, network lag, processor load and the amount of sources returned).

Fig. 2. Lookup of example resource

4 Related Work

We are aware of two Semantic Web search engines that index the Semantic
Web by crawling RDF documents and then offer a search interface over these
documents.

SWSE6 crawls not only RDF documents but also “normal” HTML Web
documents and RSS feeds and converts these to RDF (Harth et al., 2007; Hogan
et al., 2007). SWSE stores the complete RDF found in the crawling phase and
offers rich queries (expressiveness comparable to SPARQL) over this RDF data.
Since SWSE also stores the provenance of all statements, it can also provide the
source lookup functionality that we provide but with a cost: lookups are slower
than in Sindice and the index is larger.

Similar to SWSE, Swoogle (Finin et al., 2005) crawls and indexes the Se-
mantic Web data found online. Again, the same differences apply: Swoogle offers
richer functionality than we do but at a cost of index size and lookup times.

Finally, we compare our index to http://pingthesemanticweb.com. They
maintain a list of recently updated documents, and are currently indexing over
seven million RDF documents, but in contrast to our service, they do not index
the statements or resources mentioned in these sources. Still, the service is very
useful as companion to ours and indeed we use it to find recently updated RDF
sources.

5 Conclusion

We have presented a simple lookup index for Semantic Web resources. Our index
is small and scalable and allows for fast lookups. In contrast to other approaches,
6 http://swse.deri.org/

our scope is purposely limited to keep the index simple and small. Future work
and discussion in the workshop will be focused on improving performance and
concurrency and evaluating and discussing the ranking approach.

Acknowledgements This material is based upon works supported by the Science
Foundation Ireland under Grants No. SFI/02/CE1/I131 and SFI/04/BR/CS0694.

References

D. Beckett. The design and implementation of the Redland RDF application
framework. Computer Networks, 39(5):577–588, 2002.

S. Brin and L. Page. Anatomy of a large-scale hypertextual web search engine.
In Proceedings of the International World-Wide Web Conference. 1998.

T. W. Finin, L. Ding, R. Pan, A. Joshi, et al. Swoogle: Searching for knowledge
on the semantic web. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). 2005.

A. Harth, J. Umbrich, and S. Decker. Multicrawler: A pipelined architecture for
crawling and indexing semantic web data. In Proceedings of the International
Semantic Web Conference (ISWC). 2007.

A. Hogan, A. Harth, and S. Decker. Reconrank: A scalable ranking method
for semantic web data with context. In Second International Workshop on
Scalable Semantic Web Knowledge Base Systems. 2006.

A. Hogan, A. Harth, J. Umbrich, and S. Decker. Towards a scalable search and
query engine for the web. In Proceedings of the International World-Wide
Web Conference. 2007. Poster presentation.

Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46, 1999.

L. Sauermann, R. Cyganiak, and M. Völkel. Cool URIs for the semantic web.
Tech. Rep. TM-07-01, DFKI, 2007.

JAWS: A Javascript API for the Efficient Testing and
Integration of Semantic Web Services

David A. Ostrowski

System Analytics and Environmental Science

Research and Advanced Engineering
Ford Motor Company
dostrows@ford.com

Abstract. Semantic Web Services (SWS) hold a lot of potential to the future of the
Semantic Web. In this area, a number of tools have been developed to facilitate their
definition and deployment. Our goal is to support an efficient means of testing and
integration within a browser-based solution. For this purpose we propose JAWS
(Javascript, AJAX, Web Service) : A Javascript API to facilitate the testing and
integration of SWS. This software decouples the process of SWS integration and
development through facilitation of the AJAX/REST paradigm. By leveraging meta-
programming and deep integration techniques we support Web 2.0 inspired
applications in the context of complete browser-based development.

Keywords: Semantic Web Service, Javascript, AJAX, REST

1 Introduction
General applications of web services support enterprise development as a means to
reduce costs and complexity of integration.[1] This is accomplished through machine-
independent protocols and utilization of internet-based technologies for
communication. These advantages and characteristics provide a strong motivation for
integrating this technology with the Semantic Web, most commonly regarded as the
next generation of the Web.[2] This work intends to support this goal by leveraging
existing toolkits through an API to enable the automatic and semi-automatic
utilization of SWS. [3][4][5] Specifically, we are interested in the rapid facilitation of
activities linked to SWS including matchmaking, input/output types comparison and
analysis of effects. [6][7] Through the combination of Javascript, AJAX and Web
Services we intend to satisfy a number of goals:

• Web 2.0 We are interested in providing a higher level of accessibility to
web services – supporting work collaboration and data sharing among
second generation web applications.

• Integration Given the ubiquitous nature of Javascript, developers can
readily incorporate a Javascript API within any web-based frameworks.

• Deployment (Compatibility) All software functionality is developed
without browser-specific capability.

• Protection Methods of access to corporate (secure) data stores are
controlled through the application of complete Javascript APIs. This
approach to controlled data sharing has been popularized by such companies
as Amazon and Google .[8][9]

• Simplicity Applications can be developed solely in Javascript requiring
knowledge of only one language. Complexity of software integration (data
server, external software) can be handled separately from a client side
developer.

In section Two, we present an overview of our SWS environment including an
introduction to the API functionality. Section Three discusses the major constructs of
our API. Chapter Four demonstrates its usage in a short example along with a use-
case scenario. Chapter Five concludes with a summary including several issues
highlighted for future expansion within our API.

2 SWS Environment

The design for our SWS environment relies on two separate knowledge bases.(Figure
1) The first OWL-based KB supports the description of the application domain,
defining concepts and terms used for web services description. The second maintains
semantic based-definition of web services through the employment of OWL-S
[10][11].
Our API supports interaction with these two data sources as well as invocation of the
established web services. The first activity supports development of AJAX-based
requests to support discovery of SWS within an OWL-based taxonomy. This task
ranges from simple keyword matching within a class taxonomy to interaction with
server-side tools to provide advanced query capabilities and reasoning.
[12][13][14][15] Here, the JAWS API relies upon REST-based services providing
efficient support to clients. The second major support step is to utilize AJAX-based
requests to identify and retrieve OWL-S files in order to dynamically generate
Javascript objects for their representation. By referencing the predefined format of the
OWL-S files, users are able to generate applications for the purpose of comparison,
integration and testing. The last step is the utilization of the Javascript constructs to
invoke our REST-based web services. Here, the services will be defined in an array of
Javascript objects referenced by the web services name. Javascript methods as named
in OWL-S representations will be used to reference the REST-defined web services.

2.1 Software Layers

The theme of the JAWS architecture is to provide a browser-based environment that
separates the activity of SWS testing and maintenance. With this goal the top layer is
presented as the application layer in which a complete SWS application is developed
either completely in Javascript or in cooperation with another framework. In this layer
the user interface is HTML (also supporting 3D markup via embedded object such as
in our case study) controlled via Javascript. In the second layer, we have the actual
API that exists as a Javascript library. The third layer is considered the mapping layer
in which specific OWL and OWL-S data are mapped to Javascript objects and
methods on-the-fly. This development relies heavily on the leveraging of XHR alone
to reference data stores residing as OWL and OWL-S files as well as integrating with

REST-based web services. OWL-defined data stores are read by adapters as REST
web services enabling the client to perform activities related to SWS discovery. Due
to minimal size, OWL-S documents are completely referenced by XHR requests.
Finally, the web service invocation is presented as Javascript objects and methods
allowing the client programmer to access the data. Web service implementations not
conforming to the REST approach or outside of the current domain are handled by a
process designed to make secondary web service calls to bridge them to our SWS
environment.

CLIENT

Application (generate HTML, JS, embedded object)

HTML / VRML / X3D

JAWS-API

user

OWL-based
Ontology

OWL-APIs/
Reasoners

SERVER
OWL-S
KB

WS-
REST WS-Bridge

External
Editor
(Protégé)

External
WS

Figure 1 SWS Environment

2.2 Advantages of Javascript

Scripting languages (Ruby, Python, PHP) have gained traction in their application to
map RDF-based resources to more programmer-friendly representations. [16][17][18]
While reflection is supported in Java and attributes related to dynamic prototyping
(interfaces) are supported in languages such as C++, they do not allow for the same
level of flexibility in implementation. Maintaining the dynamic run-time capabilities
of scripting languages, Javascript maintains similar advantages to Python or Ruby.
Recently, with the utilization of the XMLHTTPRequest (XHR) object library,
Javascript has demonstrated increased potential by matching capabilities held by
traditional server-side scripting languages.[19][20] In utilization of the XHR request
model, Javascript can supply a unique approach to the development of semantic web

applications due to its support of asynchronous activity. While any web service
implementation can fit into our architecture it is the REST design philosophy that
demonstrates highest efficiency. Through the employment of the basic HTTP
constructs, the REST approach supports a low-level means of web service
implementation. Through avoidance of higher level constructs, REST calls are easily
employed within XHR requests thus avoiding extra software for browser-based
invocation. Both paradigms together support an approach that brings the highest
compromise between efficiency and (browser) compatibility.

2.3 Challenges in Implementation

As noted in earlier software projects mapping RDF based stores, a number of
differences between RDF and Object Orientated design have been noted. [21] Among
the problems identified include differences between class-based representation,
structural inheritance and object conformance. In the first activity, we do not support
a complete mapping but present a strictly controlled OWL-based representation
generated in Protégé that allows for basic taxonomy definition and categorization with
properties of the associate classes pointing to the data stores. Through maintenance of
a data store closely conforming to O-O representation, we reduce potential problems
with data mapping.
A second challenge is concerning the support of large data stores. In the case of
referencing our OWL-based data store, client-heavy implementations can create
scenarios involving very large data stores being constrained by memory limitations of
the browser. To provide necessary error handling a method is provided to obtain the
size of the data store (or subset) imported to the browser.
An additional issue is support of web services residing outside of the domain of the
established server as well as applications that are not yet designed as REST-based
services. These additional services are integrated through application of a CGI-based
process. This implementation has been chosen over higher level security controls
including use of automatic proxy generation which can add to complexities in
implementation.

3 API

Our API is defined within three major categories in order to support the integration
with the OWL data store, direct mapping of the selected OWL-S data stores and
eventual invocation of the REST based web services.

3.1 Applied to the OWL Taxonomy

Javascript objects are allocated to support access to OWL-based data. setRes() allows
the user to establish an OWL defined resource. This function returns an object
providing methods to support the loading and subsequent discovery of SWS
resources. The two main input arguments are the adapter and host. The assignment of
individual objects provide support for multiple data sources.

var currentRes = setRes(adapter, host)

With currentRes assigned to a specified resource type, the data store access is loaded
and enabled for SWS discovery activities including keyword match, query and
reasoning statements.

currentRes.getRes(Resourcename)

The size method defines the memory requirements of the data store to provide a
means of error handing when loading very large data stores.

currentRes.size()

The find method provides keyword or basic expressions to be searched through the
OWL class hierarchy.

currentRes.find(keyword_or_expression)

The query method allows for a data point format to be defined (such as SPARQL)
and a query string to be applied.

currentRes.query(format, queryString)

Reasoning statements are performed by defining the format followed by a reasoning
expression.

currentRes.reasoning(format, expression)

3.2 OWL-S Data Stores

Complete mapping of all four OWL-S based class definitions are performed. The
function setOWLS accepts a URI for the services description class file and returns a
Javascript object representing the data. The object , referenced by hashing in one of
the class names (service, profile, process, grounding) allows for access to the defined
data types.

var s = setOWLS(“uri")

3.3 Web Service Invocation

Using appropriate information from the OWL-S based definitions, web services are
accessed from the WS object array by using the service name provided by an OWL-S
description as a hash reference.

WS(“SWS_name”).refMethods()

Asynchronous callback functionality is provided in the context of the Javascript
implementation through the means of the required naming conventions assumed by
the wrapper. The naming convention requires that every callback method is defined as
the method name followed directly by "_CB" as in example code below. In situations
where HTML and 3D markup is shared via embedded object on the browser widows,
asynchronous activity can be implemented without callbacks. In this case, efficiencies
are provided by the use of return values from the REST WS calls thus eliminating
unnecessary overhead.

WS(“SWS_name”).refMethods_CB()

3.4 Case Study

We demonstrate use of some of the functionality of the JAWS API through the
development of an application to support numerical matchmaking of mathematical
based services. This application involves the discovery, dynamic testing and
invocation of mathematically based web services. [22][23] For this application we
utilize a proprietary algorithm for the find method in which keyword searches are
performed against an OWL-defined taxonomy of algorithms. In the first sequence of
code we instantiate our object defining an OWL-based algorithm taxonomy.

var r =
setres(“adapter”,http://srl1xpm9q7h41.srl.ford.com)
r.getRes(“mathOnto.owl”)
r.size()
var arr = r.find(“optimization”)

The next segment of code presents the results of the find allowing for variables to be
referenced from the OWL-S data stores to invoke a possible web service

for(I = 0;I = arr.length();i++){

document.write(arr[i].className ,arr[i].childName,
arr[i].URIproperty)

}

When a class is identified of interest, then its properties can be located via a method
call (note the usage of 0 as subscript is arbitrary).

var s = setOWLs(arr[0].URIproperty)

Now call the web service by means of referencing the Javascript object with WS as
the established naming convention for the data structure to contain references to the
OWL-S defined web services. In our specific example there are two structures passed
to the services.

WS[“className”].optimization(obj_function, var_string)

Callback functionality is implemented by a user defining the callback function
according to the set naming standard so it can be referenced by the JAWS API.

WS["className"].optimization_CB()

3.5 Use Case Scenario

A use case scenario demonstrating a subset of the functionality is illustrated in figure
2. In this case we utilize our API in a manufacturing simulation application.[24] This
software allows for the design of workstation layouts in a manufacturing (assembly
line) setting. The operator paths are dynamically generated via the definition of
vehicle and operator velocities along with estimated task times, container location,
zone location and associated synchronization activities. In this application we are
interested in the incorporation of a web service based means of optimization to
generate a suggested optimal design.
In this simulation software we incorporated our API to support a semi-automatic
process of SWS discovery and integration. The controls of this portion of our
integrated application are implemented via a pop-up window as shown in the lower
right portion of figure 2. The first step in this application is to enter a keyword to be
applied to the ontology search. This activity will in turn allow for a drop down menu
to be populated with possible web service alternatives to be explored. Once a web
service is selected, a user can display the input/output definition. Test data scenarios
can also be executed to allow the user to examine the input/output requirements in
order to trouble-shoot any integration issues.

Figure 2 Manufacturing Simulation / Optimization incorporating JAWS API.

4 Conclusion

To support leveraging existing WS technologies, we have presented JAWS, a
Javascript API for the purpose of SWS application development. This project breaks
down the task of SWS development by creating a means to integrate existing open
source implementations, mapping resultant data to Javascript objects thus decoupling
integration from the rest of the processes in SWS. A prototype has been implemented
allowing for keyword matching and application of SPARQL queries against an OWL
ontology, mapping against OWL-S data stores and invocation of REST-based web
services. A use-case scenario is presented in which a user is allowed to perform a
semi-automatic process of switching in and out web services as necessary. Future
work includes addition of the API to support multiple query languages and reasoners
thus allowing server functionality to be further configured from a browser-based
application.

Acknowledgements

Dr. Anton Eliens, Vrije Univeriteit, Amsterdam, The Netherlands for insight provided
in developing this work.

References

1 Deitel, Harvey M., Deitel, Paul J., DuWaldt B., Trees L.K., Web Services: A Technical
Introduction, Prentice Hall, 2002

2 Geromenko, Vladimir, Chen , Chaomei, Visualizing the Semantic Web: XML-based Internet
and Information Visualization, Springer, 2005

3 J.Scicluna, C.Abela, M.Montebello,Visual Modelling of OWL-S Services, submitted at the
IADIS International Conference WWW/Internet, Madrid Spain, October 2004

4 http://www.daml.org/services/owl-s/1.1B/owl-s.pdf
5 http://protege.stanford.edu
6. Chaiyakul, Sukasom, Limapichat, Kati, Dixit, Avani, Nantajeewarawat, Ekawit, "A

Framework for Semantic Web Service Discovery and Planning, IEEE 2006
7 Srinvasan, Naveen, Paolucci, Massimo, Sycara, Katia, CODE: A Development Environment

for OWL-S Web Services, 3rd International Semantic Web Conference ISWC2004
8 http://aws.amazon.com
9 http://code.google.com
10 http://www.daml.org/services/owl-s/1.1B/owl-s.pdf
11 Chase, Nicholas, "The Ultimate Mashup: Web Services and the Semantic Web",

http://www-128.ibm.com/developerworks/edu/x-dw-x-ultimashup1.html
12. Zhou, Jiehan, Koivisto, Juha-Pekka, Niemela, Eila, A Survey on Semantic Web Services

and a Case Study, IEEE Proceedings of the 10th International Coniference on Computer
Supported Cooperative Work in Design, 2006

13. Dodds Leighh, "Introducing SPARQL: Querying the Semantic
Web",http://www.xml.com/pub/a/2005/11/16/introducing-sparql-querying-semantic-web-

14. Carroll, Jeremy J., Reynolds, Dave, Dickinson, Ian, Seaborne, Andy, Dollin, Chris,
Wilkinson, Keven, Jena:Implemetning the Semantic Web Recommendations, The 13th
International World Wide Web Conference, 2004

15.Evren, Sirin, Bijan,Parsia, Bernardo,Cuenca Grau,Aditya, Kalyanpur and Yarden Katz,
Pellet: A Practical OWL-DL resoner, Journal of Web Semantics, 2006

16..Babik, Marian, Hlucky, Ladislav, Deep Integration of Python with the Web Ontology
Language, Scripting for the Semantic Web 2006

17 Oren, Eyal, Delbru, Renaud, Gerke, Sebastian, Haller, Armin, Decker, Stefan, "ActiveRDF:
Object-Orientated Semantic Web Programming", WWW 2007, May-8-12, Banoff, Alberta
Canada

18 D. Vrandecic, Deep Integration of the Scripting language and Semantic Web Technologies,
Scripting for the Semantic Web 2005

19. Gross, Christian, "Ajax and REST Recipies, Apress 2006
20. Gehtland Justin, Galbraith Ben, Almaer, Dion, "Pragmatic Ajax: A Web 2.0 Primer",

Pragmatic Bookshelf, 2006
21. Oren, Eyal, Delbru, ActiveRDF: object-orientated RDF in Ruby. Scripting for the Semantic

Web, 2006
22. The MONET Consortium. MONET Architecture Overview, Technical Report Deliverable

DO4, The Monet Consortium, March 2003 Available from http://monet.nag.co.uk
23. The MONET Consortium. The MONET Mathematical Query Ontology. Technical Report
 Deliverable D13, The MONET Consortium , March 2003, http://monet.nag.co.uk
24. Ostrowski, David A., A lightweight Framework for Web-Based, 3D, Information
 Visualization, Intnl. Conf. on Enterprise Inf. Systems and Technologies, EIWST 2007

Functional Programs as Linked Data

Joshua Shinavier
josh@fortytwo.net

Soph-Ware Associates, Inc.,
624 W. Hastings Rd, Spokane, WA 99218 USA

http://www.soph-ware.com

Abstract. The idea of linked programs, or procedural RDF metadata,
has not been deeply explored. This paper introduces a dedicated scripting
language for linked data, called Ripple, whose programs both operate
upon and reside in RDF graphs. Ripple is a variation on the concatenative
theme of functional, stack-oriented languages such as Joy and Factor, and
takes a multivalued, pipeline approach to query composition. The Java
implementation includes a query API, an extensible library of primitive
functions, and an interactive command-line interpreter.

1 Introduction

Most of the data which populates today’s Semantic Web is purely descriptive in
nature, while the complex procedural machinery for querying, crawling, trans-
forming and reasoning about that data is buried within applications written in
high-level languages such as Java or Python, and is neither machine-accessible
nor reusable in the Semantic Web sense. This paper explores the notion of linked
or distributed programs as RDF graphs, and presents a functional, concatenative
interpreted language, closely related to Manfred von Thun’s Joy1, as a proof of
concept.

For a Turing-complete RDF query language, Ripple is an exercise in mini-
malism, both in terms of syntax and semantics. A Ripple program is a nested
list structure described with the RDF collections vocabulary, and is thereby a
first-class citizen of the Semantic Web. Significantly, the language is restricted to
a single RDF query operation: the forward traversal of links. Broadly speaking,
the goal of this project is to demonstrate that:

1. linked programs have all of the advantages of generic linked data2

2. a stack language is like a path language, only better
3. for most linked data purposes, forward traversal is all you need

1 http://www.latrobe.edu.au/philosophy/phimvt/joy/j01tut.html
2 http://www.w3.org/DesignIssues/LinkedData.html

2 Functional Programs as Linked Data

The Java implementation resolves HTTP URIs, dynamically, in response to
traversal operations, similarly to the Tabulator [1], the Semantic Web Client
Library3, and related tools4. Linked programs are drawn into the query environ-
ment in exactly the same manner, extending the the evaluation of queries to a
distributed code base.

2 Syntax

Ripple’s query model combines a computational scheme based on stack manip-
ulation with a functional ”pipes and filters” pattern. The stack paradigm makes
for minimal, point-free syntax at the RDF level, while the pipeline mechanism
accommodates RDF’s multivalued properties by distributing operations over ar-
bitrary numbers of intermediate results.

2.1 Textual Representation

The code samples in this paper are written in Ripple’s own RDF syntax, which
is very close to Turtle5.
Note: throughout this paper, the namespace prefixes rdf, rdfs, xsd, rpl, stack,
stream, math, graph, and etc are assumed to be predefined. Typing any of these
prefixes, followed by a tab character, at the command line will reveal a number
of terms in the corresponding namespace.

URIs may be written out in full or abbreviated using namespace prefixes.

<http://www.w3.org/2004/09/fresnel>. # a URI reference
rdfs:Class. # a qualified name
:marvin. # using the working (default) namespace
rdfs:. # this URI has an empty local name
:. # legal, and occasionally meaningful

Keywords are the local names of a fixed set of special URIs. Currently, the
local name of every primitive function is a keyword.

swap. # same as stack:swap

RDF Literals are represented as numbers and strings.

42. # an integer (xsd:integer for now)
3.1415926535. # a floating point value (xsd:double)
"the Universe". # a string Literal (xsd:string)
"English"@en. # a plain Literal with a language tag
"2007-05-07"^^xsd:date. # a generic typed Literal

3 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/semwebclient/
4 http://moustaki.org/swic/
5 http://www.dajobe.org/2004/01/turtle/

Functional Programs as Linked Data 3

Blank nodes lose their identity between sessions, but it’s often useful to refer
to them within a session.

_:node129n4ttifx2. # a bnode with a generated id
_:tmp1. # a bnode with a user-defined id

Lists are indicated by parentheses.

("apple" "banana"). # a rdf:List

One symbol not found in Turtle is the slash operator (see Query Evaluation).
Where it is affixed to an RDF property, it is equivalent to the forward traversal
operator6 of Notation3. A likely extension to the language will add quantifiers
for regular path expressions, including /?, /*, and /+. E.g.

@define smush: /*owl:sameAs.

2.2 Commands and Queries

The interface distinguishes between two kinds of statements: queries, which are
expressions to be evaluated by the query processor, and commands or directives,
which perform specific tasks. Currently supported directives include:

Define a namespace prefix foo.
@prefix foo: <http://example.org/foo#>.

Define :bar as the list (1 2 3).
@define bar: 1 2 3.

Remove all statements about :bar
@undefine bar.

Write (a bnode closure of) the terms in namespace foo: to a file.
@export foo: "file.rdf".

Save the entire graph to a file.
@saveas "file.rdf".

Quit the application.
@quit.

2.3 Compositional Syntax

At the level of lists and nodes, Ripple queries are expressed in postfix notation,
or in diagrammatic order. Each query is a list in which the concatenation of
symbols represents the composition of functions. When the functions are RDF
properties, a query is equivalent to a path expression:
6 http://www.w3.org/DesignIssues/N3Alternatives

4 Functional Programs as Linked Data

=> "The RDF Vocabulary (RDF)"
("apple" "banana")/rdf:type/rdfs:isDefinedBy/dc:title.

This particular expression takes us from the list ("apple" "banana") to its
type, rdf:List, from the type to the ontology, rdf:, which defines it, and from
the ontology to its title, "The RDF Vocabulary (RDF)". The same idea applies
to primitive functions:

=> recently pinged DOAP documents
10 "doap" /pingTheSemanticWeb/toString.

Here, too, we can imagine data (a stream of lists or stacks) flowing from
the left hand side of the expression and emerging from the right hand side
of the expression (the head of the stack) after undergoing a transformation of
some kind. In this case, a stream of one stack containing the two arguments to
the built-in ”Ping the Semantic Web” function becomes a stream of ten stacks
containing URIs which toString then converts to string literals.

2.4 RDF Representation

Every Ripple program is expressible in RDF, where it takes the form of a sim-
ple rdf:List. In the Java implementation, conversion between the RDF graph
representation of a list and its more efficient linked list counterpart is implicit.
For example, you may navigate a list using either list primitives or the RDF
collections vocabulary, interchangeably.

("apple" "banana")/rdf:first. # => "apple"
("apple" "banana")/uncons/pop. # => "apple"

When we assign a program a URI, we’re pushing its definition to the same
RDF model from which our query results are drawn:

@define hello:
"Hello world!".

Given an appropriate base URI and web-visible triple store, the program
itself becomes a part of the global graph of linked data, enabling remote users
and applications to read it in, execute it, and build upon it without restriction.

3 Query Evaluation

Ripple’s evaluation strategy hinges on a dichotomy between between active
and passive stack items. Active items exhibit type-specific behavior, whereas
passive items simply push a ”copy of themselves” to the stack. Every item has
a well-defined arity which, roughly speaking, is the number of arguments it
consumes. To be precise, the arity is the depth to which the stack must be
reduced before the item can be applied. For instance, the swap function requires
two arguments, so the evaluator must make sure that the stack is normalized

Functional Programs as Linked Data 5

to two levels before swap receives it. Evaluation proceeds, lazily, until all active
items have been eliminated from the head of the stack, at which point the stack
is said to be in normal form (to one level). The only symbol active by default is
the rpl:op operator, which has the effect of making the preceding item active
as follows:

1. RDF properties consume a subject and map it to a stream of zero or more
objects

2. primitive functions exhibit ”black box”, custom behavior
3. lists become an extension of the stack (execution ”removes the parentheses”)
4. all other items consume nothing and produce nothing (they just cause the

stack to disappear)

Note: in the text notation, rpl:op is abbreviated as the slash prefix attached
to the item it follows. For example, (2 /dup) is just a more compact way of
writing (2 dup rpl:op).

Now, consider the following definition and query:

x => x*x
@define sq: /dup/mul.

=> 16
4/:sq.

The major steps in the evaluation of the query are as follows:

1. (4 :sq rpl:op!) – rpl:op is active by default
2. (4 dup rpl:op! mul rpl:op!) – dereference and dequote list :sq
3. (4 dup rpl:op! mul!) – mul primitive becomes active
4. (4 dup! mul!) – mul needs two arguments. Recurse
5. (4 4 mul!) – dup consumes its one argument and applies is rewrite rule
6. (16) – mul now has two reduced arguments, and applies its rule, yielding 16

3.1 The Compositional Pipeline

Ripple differs from typical stack languages in that, rather than consuming a
single stack as input and producing a single stack as output, Ripple’s functions
operate on streams containing any number of stacks. For instance, the following
query yields not one, but several values:

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
<http://www.w3.org/People/Berners-Lee/card#i>/foaf:knows.

If we compose it with another query, the second query needs to be capable
of consuming not just a single stack, but many stacks, and of distributing its
operation over all of them:

<http://www.w3.org/People/Berners-Lee/card#i>/foaf:knows/foaf:name.

6 Functional Programs as Linked Data

To this end, Ripple conceives of functions as ”filters”, which behave like the
elements of a pipeline: receiving input, transforming it, and passing it on. Filters
may have state; for example, stream:limit filters (which count their input stacks
and stop transmitting them after a certain point) or stream:unique filters (which
remember their input stacks, and will not transmit a duplicate).

4 Examples and Use Cases

4.1 Arithmetic

In Ripple, as in Forth, stack shuffling operations take the place of bound variables
in complex expressions.

n => fibonacci(n)
@define fib:

0 1 /rolldown # push initial value pair and put n on top
(/swap/dupd/add) # push the step function
/swap/times # execute the step function n times
/pop. # select the low value

=> 13
7/:fib.

4.2 Recursion

Owing to the global nature of URIs, recursive definition is uncomplicated in Rip-
ple. Functions may reference each other, and themselves, arbitrarily. Evaluation
of @defined programs is delayed until forced by the evaluation of a query.

n => n!
@define fact:

/dup 0 /equal # if n is 0...
(1 /popd) # yield 1
(/dup 1 /sub /:fact /mul) # otherwise, yield n*fact(n-1)

/branch.

=> 120
5/:fact.

4.3 Exploring a FOAF Neighborhood

The ability to request and aggregate RDF metadata on the fly gives Ripple’s
query engine the properties of a web crawler. ”Intelligent” applications aside,
there are many conceivable use cases for simply discovering and aggregating a
large chunk of data in a configurable fashion. The following program targets the
decentralized, linked data of the FOAF network, beginning with Tim Berners-
Lee’s profile.

Functional Programs as Linked Data 7

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

foaf1 => foaf1, foaf2, foaf3, ...
@define foafStep: # iterator for a FOAF crawler

(id # include foaf1 itself
owl:sameAs # include nodes identified with foaf1
foaf:knows # include those foaf:known by foaf1

)/each/i # apply all three patterns at once
/unique. # eliminate duplicate results

=> names of TBL and friends, and of friends of friends
<http://www.w3.org/People/Berners-Lee/card#i>

:foafStep 2/times /foaf:name.

4.4 Searching and Filtering in Revyu.com

Revyu.com is one of many7 innovative web services which offer linked RDF
views of their data. The web site links reviewers to reviews, reviews to things,
and some things to book metadata in the RDF Book Mashup8. Here, we’re more
interested in narrowing the search space to a handful of ”hits” than we are in
the aggregated data as a whole.

a f => a, if a/f is true, otherwise nothing
@define restrict:

/dupd/i # apply the filter criterion, f
id # keep the stack if a/f is true
scrap # throw the stack away if it isn’t

/branch.

@prefix scom: <http://sites.wiwiss.fu-berlin.de[no break]
/suhl/bizer/bookmashup/simpleCommerceVocab01.rdf#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

r => r, if r is a book review, otherwise nothing
@define bookReviewsOnly:

(/foaf:primaryTopic # from review to topic
/owl:sameAs # from topic to possible book
/rdf:type scom:Book /equal # is it really a book?

)/:restrict.

@prefix rev: <http://purl.org/stuff/rev#>.

7 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
8 http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/

8 Functional Programs as Linked Data

=> labels of all of Tom’s book reviews
<http://revyu.com/people/tom> /foaf:made

/:bookReviewsOnly # books only
(/rev:rating 3 /gt)/:restrict # 4 stars or better
/rdfs:label. # from review to label

The query yields two results:

rdf:_1 ("Review of The Unwritten Rules of Phd Research, [...]")
rdf:_2 ("Review of Designing with Web Standards, by Jeff[...]")

Unlike the FOAF example, this program places a heavy burden on a single
network server. If possible, it would be in the best interest of both server and
client to offload query evaluation to the web service. Knowing when to use an
API for federated queries, as opposed aggregating data, probably has more to
do with the economics of distributed computing than with the rest of this paper.
However, the API itself is certain to be a simple one. It could even be as simple as
the passing of the dereferenceable URI of a single expression, to be resolved and
evaluated remotely. Perhaps a REST service and an OWL-S service description
could be generated based on a given query pattern.

4.5 Graph Transformations and Other Side Effects

The Ripple implementation includes a number of ”experimental” primitives
which may be useful for graph transformations and in common metadata ”rewiring
scenarios”9. As these primitives affect the state of their environment (for in-
stance, by adding or removing statements), they are to be used with caution.
The following is an example of a ”safe” application of the new and assert prim-
itives. It transforms a resource description by creating a new blank node which
retains and renames a few of the original node’s edges.

Note: to see a description of these or any other primitive functions, type in
their names at the command line, followed by a period.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

node map => a new node with "mapped" edges
@define mapped:

/each/i # distribute over a list of pairs
/new # create a new node
i/dipd/rotate/assert # assert a mapped statement
1/limit. # produce the node just once

Maps to a minimal FOAF-like vocabulary.
@prefix ex: <http://example.org/minimalFoaf#>.

9 http://simile.mit.edu/wiki/Rewiring Scenarios

Functional Programs as Linked Data 9

@define myMap:
(rdf:type rdf:type) # copy any rdf:type edges
(foaf:name ex:name) # map foaf:name to ex:name
(foaf:knows ex:knows). # map foaf:knows to ex:knows

=> minimal FOAF for TBL
<http://www.w3.org/People/Berners-Lee/card#i> :myMap/:mapped.

Other side effects may be more subtle. For instance, the following program
affects the ”Ping the Semantic Web” service which we queried earlier, possibly
influencing subsequent query results.

uri => uri (having pinged the Semantic Web)
@define ping:

/toString/urlEncoding
"http://pingthesemanticweb.com/rest/?url=" /swap/strCat
/get.

=> PTSW’s response to a ping of Ripple’s DOAP URI/document
<http://fortytwo.net/2007/03/ripple/doap#>/:ping.

Other potentially useful side-effects include the sending of an e-mail or the
firing of a system-specific event.

5 Implementation

Ripple is implemented in Java and uses the Sesame 2 (beta) RDF framework.
The command-line interface relies on ANTLR for lexer/parser generation and on
JLine for command history and tab completion. The project is built with Maven
and is distributed under an open source license. Software releases are available
at http://fortytwo.net/ripple.

6 Related Work

Ripple is strictly a resource-centric language and is not intended as an alternative
to SPARQL. The fact that Ripple is rather like a path language makes it much
more effective at some tasks than the ”relational” SPARQL, and vice versa. The
same can be said of any of the other RDF Path10 languages, such as Versa11

or the path portion of PSPARQL12. Probably the closest thing to Ripple is
Ora Lassila’s Wilbur13 toolkit and path language, which integrates RDF with
Common Lisp (coming soon: Python!). Deep integration [2] of languages such
as Ruby [3] and Python [4] with RDF are related efforts, as well.
10 http://esw.w3.org/topic/RdfPath
11 http://copia.ogbuji.net/files/Versa.html
12 http://psparql.inrialpes.fr/
13 http://www.lassila.org/publications/2001/swws-01-abstract.shtml

10 Functional Programs as Linked Data

7 Conclusion and Future Work

Ripple is an exploratory project, which is to say that further development will be
driven by discoveries made along the way. If the hypertext web is any indication
of the future of the web of data, it will be vast, complex, and overall, loosely
structured. As it grows, we will need a sophisticated web of programs to keep
pace with it.

In addition to the command-line interpreter, the distribution contains a query
API, and the embedding of the Ripple query processor in further Semantic Web
applications is a very likely use case. In the short term, I would like to integrate
Ripple with a graphical RDF browser such as Longwell14, and investigate the
federated query scenario mentioned above.

Christopher Diggins has done some work on static typing for stack languages
[5], and it would be interesting to see if or how such a type system can be
expressed with an ontology. Currently, Ripple’s type system is just a form of
API documentation, so a more rigorous one would definitely be a step forward.

Compilation is another interesting possibility. While Ripple will always have
an interpreted component, a modular Ripple program could be compiled to
optimized Java bytecode and then reinserted into the environment as a primitive
function.

References

1. Tim Berners-Lee et al. Tabulator: Exploring and Analyzing linked data on
the Semantic Web. In Proceedings of the 3rd International Semantic Web
User Interaction Workshop, 2006.

2. Vrandecic, D., Deep Integration of Scripting Languages and Semantic Web
Technologies, In Soren Auer, Chris Bizer, Libby Miller, 1st International
Workshop on Scripting for the Semantic Web SFSW 2005 , volume 135
of CEUR Workshop Proceedings. CEUR-WS.org, Herakleion, Greece, May
2005. ISSN: 1613-0073

3. Fernandez, O., Deep Integration of Ruby with Semantic Web Ontologies, see
gigaton.thoughtworks.net/ofernand1/DeepIntegration.pdf

4. Marian Babik, Ladislav Hluchy: Deep Integration of Python with Web On-
tology Language. Proc. of Scripting for the Semantic Web Workshop at the
ESWC, Budva, Montenegro, June 12, 2006, CEUR Workshop Proceedings,
ISSN 1613-0073, online CEUR-WS.org/Vol-181/paper1.pdf

5. Diggins, C., Typing Stack-Based Languages, available at http://www.cat-
language.com/paper.html

14 http://simile.mit.edu/wiki/Longwell

An Architecture to Discover and Query

Decentralized RDF Data

Uldis Bojārs1 and Alexandre Passant2 and Frederick Giasson3 and John Breslin1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
[uldis.bojars, john.breslin]@deri.org

2 Université Paris IV Sorbonne, Laboratoire LaLICC, Paris, France
alexandre.passant@paris4.sorbonne.fr

3 Zitgist LLC., Quebec City, Canada
fred@fgiasson.com

Abstract. In this paper we describe a distributed architecture consisting
of a combination of scripting tools that interact with each other in order
to help to find and query decentralized RDF data. Thanks to this architec-
ture, anyone can participate in the collaborative discovery of Semantic Web
documents by simply browsing the web. This system is useful for dynamic
discovery of RDF content and can provide a useful source of RDF documents
for other Semantic Web applications. Key components of this architecture
are the Semantic Radar plugin used for discovery of Semantic Web data,
Ping The Semantic Web service for aggregating locations of RDF data, and
services using RDF data illustrated here with the example of doap:store.

1 Introduction

As the Semantic Web meme is spreading the number of RDF documents available on
the Web is constantly growing and so is the number of tools creating and using this
information. People create their FOAF4 profiles, developers describe open-source
projects using DOAP5, and bloggers and bulletin boards provide data from their
sites using SIOC6 [4]. Semantic Web search engines such as Swoogle [6] and SWSE
[10] have been developed to help to find this information, and browsers such as
Tabulator [2] or Disco7 can help to navigate through the Semantic Web.

The amount of documents indexed by Swoogle has reached more than 1.4 million
but that is a small amount compared to the size of the Web estimated to be more
than 11.5 billion documents [8]; the density of these RDF documents on the Web is
still low and finding them can be a hard and laborious task. Moreover, an area which
these search engines currently do not address is dynamic content, since information
on dynamic websites such as blogs and online community sites is being generated
at a fast pace. To adapt to this new trend, a new kind of infrastructure is necessary
to enable Semantic Web applications to quickly harvest and use this information.

We present a scripting architecture that aims to solve this problem of finding
and querying up-to-date decentralized RDF data, in almost real-time. Our goal is to
show how simple scripting applications can work together to provide an extensible
architecture for applications browsing and querying Semantic Web documents.

The rest of this paper is organized as follows. Section 2 describes our approach
and its key features - decentralized scripting and user participation in discovery of
Semantic Web data. Similar to the idea of Web 2.0 where tools and interfaces are

4 http://foaf-project.org/
5 http://usefulinc.com/doap/
6 http://sioc-project.org/
7 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/

driven by users the collaborative discovery provides a way to let everyone be part of
this architecture. In section 3 we describe the complete architecture of the system
consisting of the following components: (1) Semantic Radar, a browser extension
used to detect presence of Semantic Web content while browsing the web, (2) Ping
The Semantic Web (PTSW), a service for aggregating notifications about recently
discovered and updated Semantic Web documents and (3) external services such as
doap:store that use these data sources to provide browsing and querying interfaces.
Finally, we will present a preliminary evaluation of our approach, introduce related
work and conclude the paper by presenting some of the future work.

2 Our approach

A decentralized system. Using the philosophy of Unix programming, we decided
to work on a set of small scripting application that each focus on a single job and try
to do it as good as possible rather that working on a new centralized architecture.
Thus, the system can be seen as a synergy of applications and web services assembled
together in a ”semantic pipeline”: one tool will concentrate on finding documents,
another on storing their URIs and providing them to consumers of RDF data, while
the third will provide RDF query and browsing interfaces.

User participation. The other characteristic that differentiates this system from
services such as Swoogle, is that it strongly involves user participation in the way we
discover new Semantic Web documents. No preliminary knowledge of RDF or user
effort is required, since users just have to browse the Web to be part of this discovery,
as we will see in section 3.2. Thus, real users are involved in this architecture of
participation and can help to discover the ”invisible” Semantic Web.

Data provider. The centric point of our approach is the way to provide found
data to users. Using previous discovery of Semantic Web content, but also pinged
by other services such as TalkDigger8, Ping The Semantic Web maintains a list of
RDF documents URIs which is constantly updated, acts as a data provider and can
be the entry point of a lot of services, as it provides fresh Semantic Web data.

Browsing and querying services. Using the list of URIs maintained by our
data provider, external services that browse or query RDF data can be plugged to
this architecture. The first implemented service of this kind is doap:store, a search
engine dedicated to DOAP projects, described in detail in section 3.4, while other
already existing services as SWSE are also using it.

3 Architecture of the System

Our system involves the following components (see Fig. 1):

– Data sources, i.e. RDF documents spread around the Semantic Web, created by
people themselves or by some of the tools they are using as SIOC exporters9;

– Semantic Radar10, a Firefox plugin that allows anyone to be part of the dis-
covering of Semantic Web documents by simply browsing the Web, using auto-
discovery links to find RDF data from HTML pages;

– Ping The Semantic Web11 (PTSW), a web service that stores a list of RDF
document URLs it receives pings about, mainly via the Semantic Radar but
also thanks to other services;

8 http://talkdigger.com
9 http://sioc-project.org/exporters

10 http://sioc-project.org/firefox
11 http://pingthesemanticweb.com

– Browsing and querying services, that use the list of documents URIs stored
within PTSW, as doap:store12 to query and browse DOAP projects or SWSE
search engine.

Fig. 1: Global architecture of the system

3.1 Data Sources and RDF Auto-discovery

The starting point of our architecture is RDF data sources that we need to discover.
That includes all the RDF information published by people or information systems
that they are using. Examples of RDF information on the web include SIOC, FOAF
and DOAP data. An important question is how to detect links to RDF information
from any web page.

RDF/XML Syntax Specification [1] recommends to use a <link> element in in
the <head> element of HTML pages to point to additional RDF documents instead
of directly embedding RDF/XML content in web pages, which may cause validation
against DTD to fail, unless using RDFa or other embedded RDF approach. To use
this technique the href element should point to the URI of RDF/XML content and
the type attribute should contain the value "application/rdf+xml".

<link rel="alternate"

type="application/rdf+xml" title="RSS 1.0"

href="http://apassant.net/blog/feed/rdf" />

This linking technique is known as RDF auto-discovery and is recommended and
used by a number of Semantic Web projects and vocabulary specifications, such as

12 http://doapstore.org

DOAP, FOAF13, ICRA14 and SIOC. The same technique with different MIME types
is also widely used to point to RSS and Atom feeds. It offers automatic discovery
of machine-processable information associated with webpages and applications are
aware of that. I.e., web browsers use RSS auto-discovery links to display an RSS
icon and to read or subscribe to RSS feeds associated with webpages.

By adding a link to FOAF profile a person enables visitors of the website to dis-
cover machine-readable FOAF data using web browser extensions such as Semantic
Radar introduced in the next section. Data export tools such as WordPress SIOC
plugin15 use RDF auto-discovery links to facilitate discovery of the information they
create.

It is its ease of understanding and implementing that makes RDF auto-discovery
a popular choice for indicating presence of RDF data or any other metadata related
to a web page.

3.2 Semantic Radar extension for Firefox

Semantic Radar is a Firefox browser extension (written in XUL and JavaScript)
which inspects web pages for RDF auto-discovery links and informs a user about
presence of them by showing icons in the browser’s status bar.

When an auto-discovery link is detected, Semantic Radar examines the title

attribute of the link tag. It uses this attribute as a hint - and only a hint, since it
is designed for humans - and if its content matches a pattern associated with one
of the data types the application is built to detect, it displays the corresponding
icon. Currently supported data types are FOAF, SIOC and DOAP and the patterns
used to detect them using the title attribute are simply ”FOAF”, ”SIOC” and
”DOAP”.

This function makes users aware of the invisible Semantic Web that is part of
web pages they are exploring every day. An important aspect of the tool is that it is
not limited to a particular ontology (there were separate tools for detecting FOAF
or other ontologies before that) but provides a generic way to detect various types
of documents related to auto-discovery links and can be extended to cover more
types of data in the future.

Semantic Radar allows users to click an icon and see this data in a user-friendly
RDF browsing interface making it better understandable for human users. As such
it can play a role in education and outreach of the Semantic Web to classic Web
users and developers. By installing a simple browser plugin users can see what
Semantic Web documents are associated with webpages and can explore this infor-
mation without a need to look at raw RDF data. This is the first motivation for
users to install this extension. E.g., when browsing a weblog that links to author’s
FOAF profile a user can get additional information about the author and his social
relations.

The second function of Semantic Radar - ”pinging” or sending notifications - is
an important part of our architecture for collaborative discovery of Semantic Web
data. Whenever a RDF auto-discovery link is discovered by the application it sends
a ”ping” to PTSW service - described in the next section - which collects and aggre-
gates these notifications. As a result, users are building a ”map” of Semantic Web
documents, once again without additional effort. This provides a second motivation
to install the plugin.

The ping function of Semantic Radar can be switched off at any time by clicking
the radar icon in the status bar or via extension preferences thus addressing possible

13 http://rdfweb.org/topic/Autodiscovery
14 http://www.icra.org/systemspecification/#specificLink
15 http://sioc-project.org/wordpress

Fig. 2: Overview of Semantic Radar

privacy questions. Additional safe-guards are provided by creating a ”black-list” of
URLs that pings will not be sent about, i.e., when browsing intranet pages.

Joint work of the users browsing the web using Semantic Radar extension and
of PTSW service makes collaborative discovery of RDF documents possible. An
important characteristic of this process is that the pings are generated by real
users. Brin [5] uses an intuitive model of random walkers on the web to explain
Google PageRank (the probability of a ”random walker” visiting a web page is
its PageRank). In collaborative discovery of information there are real ”walkers”
browsing the information that we can assume they are interested in. Thus the ping
summary directly indicate not only presence of pages but also how popular they
are.

3.3 Ping The Semantic Web Service

Ping The Semantic Web (PTSW) is a web service that acts as a multiplexer for RDF
document notifications. It collects and archives notifications about recently updated
or created RDF documents and HTML documents with RDF auto-discovery links,
and provides an up-to-date list of Semantic Web documents to services (e.g., web
crawlers, software agents) that request it. Similar web services are already widely
used for aggregating changes to web feeds, with weblogs.com processing millions
of pings each day. PTSW is dedicated to Semantic Web documents and all the
sources they may come from: blogs, databases exported in RDF, hand-crafted RDF
files, etc. This service can work together with the Semantic Radar or receive pings
directly from content provides that let it know about new documents they produce.
E.g., TalkDigger and revyu.com send pings for every RDF document they produce
to ensure that the information is up-to-date even if nobody browses them using
Semantic Radar.

Fig. 3: Pings workflow in PTSW

Applications ping PTSW using one of the ping interfaces provided - REST [7] or
XML-RPC. Once the service receives a ping and checks that the document is either
RDF or HTML document with RDF auto-discovery links, it parses discovered RDF
document(s) to categorize them in one or more of the following 5 categories based
on presence of classes and properties from these ontologies: RDFS, OWL, SIOC,
FOAF and DOAP. This list can be extended to other vocabularies in the future.

We decided to concentrate on FOAF, SIOC and DOAP first because they are
widely available on the Web, and are created by end-users, content management
tools and large websites such as FOAF from LiveJournal, SIOC from online com-
munity sites and TalkDigger, and DOAP from people and companies describing
their software projects.

PTSW provides a live export of its list of URLs which can be used by soft-
ware agents to find RDF documents. This list can be filtered according to type
(vocabularies and ontologies used), date of update, RDF serialization, etc. The cat-
egorization of RDF documents by various types is used to help applications to get
a list of documents they can understand and are interested in. This way we are
minimizing the work of the software that requests a list, so that it can concentrate
on manipulating the data instead of searching for it.

PTSW acts as one of the first steps of the Semantic Web food chain: Semantic
Web search engines such as SWSE and Swoogle can use data from PTSW in order
to quickly update recently changed RDF documents and to find next documents
to index, using rdfs:seeAlso relationships that can exist from one document to
another, and other third-party applications can use it to get an up-to-date list of
RDF documents. Currently PTSW uses incoming pings to detect updated RDF
documents. The service does not poll RDF documents for updates, but may be
extended to do so.

3.4 doap:store

We use doap:store16, a search engine dedicated to DOAP projects, throughout this
paper as an example of a service that uses the list of RDF documents found by
the Semantic Radar and PTSW. It is the first service to use PTSW as its main
source of information. Since DOAP data are now created and used by many open-
source developers and there was no easy way to find a project based on its DOAP
description and metadata, we decided that the data collected by PTSW provide a
good opportunity to write such a service.

Every hour a Python script gets the list of latest pings received by PTSW and
categorised as DOAP documents. It parses the list of URLs, retrieves associated
RDF documents and puts them in a local triple store, using the 3store API [9].
Since 3store supports contexts, projects can be easily updated when PTSW receives
new pings: content of the old RDF file is removed from the store and replaced by
the updated content, so that project descriptions are constantly up-to-date.

Contrary to existing software project directories such as Freshmeat17, the main
distinguishing feature of doap:store is its distributed approach. In regular project
directories users have to register at a service and then describe their project using
some specific forms, in doap:store they just need to publish a DOAP description
of their project on the Web. Then they can ping PTSW directly or have a Seman-
tic Radar enabled Firefox browser ping PTSW when they or visitors browse the
webpage.

Fig. 4: Information flow in doap:store

We believe that this approach shows what the Semantic Web can offer to both
data providers and end-users as:

16 http://doapstore.org
17 http://freshmeat.net

– project maintainers just have to provide a single project description by creating
it in a machine-readable format - DOAP - that can be understood by different
tools such as doap:store and any generic RDF browser;

– they keep control of the project information since they don’t need to publish it
on various places where they will not be in control of their data anymore;

– end-users can get an immediate benefit of it, since updated description can be
immediately seen in previously mentioned tools.

doap:store is written in PHP and is a quite a small application with about 600
line of code including HTML templates. One of the reasons that helped to realize it
so quickly is that it does not have to deal with data discovery since this is managed
by previous steps of the application chain introduced in this paper: Semantic Radar
and PTSW. Therefore it only needs 10 lines of Python code to integrate and update
data in its local database.

The interface offers various ways to query and browse documents:

– using a basic search engine, that allow to retrieve projects by name (doap:name),
description (doap:description and doap:shortdesc), both of them, or by
hostname (using the URI of the RDF graph corresponding to a doap:Project);

– using a tagcloud of programming languages. Tags are retrieved from DOAP files
thanks to the doap:programming-language property, and then mashed-up to
solve case variations and provide a case-insensitive tagcloud;

– using a YubNub18 command line. Thus, doap:store can be queried with as simple
queries as doap name=rdf, from web browsers search engines, or other YubNub
tools;

– using SPARQL. For most advances users, a SPARQL endpoint is available,
offering the way to query the data store or creating new documents from existing
content of the data store using SPARQL CONSTRUCT instruction.

4 Evaluation

In order to evaluate our system, we made a short comparison of the number of
files found by different search engines19. Swoogle identifies 416 documents using the
DOAP ontology, while a Google search for doap filetype:rdf returns 448 docu-
ments. PTSW has matched 527 DOAP files, while SPARQL queries addressed to
doap:store returns 446 document (using a graph query to find URIs that documents
containing at least one instance of doap:Project) and 879 projects.

This comparison shows only data which are relevant to doap:store, i.e. a small
amount of all RDF data available on the Semantic Web, but one important thing to
notice is that this system provides fresh, almost real-time data. To illustrate this,
the latest file indexed by Swoogle is from the mid-February 2007, while the latest
new file registered in our system was retrieved at the beginning of April 2007. This
is even more true with SIOC data since PTSW can record it as soon as data is
created - if the blog engine adds it to the list of its pinging services.

PTSW currently has more than 7M documents indexed. A detailed evaluation
of different types of data collected by Ping The Semantic Web is outside the scope
of this paper and is planned for future work.

5 Related Work

Wiki pages, such as FOAFBulletinBoard20, were one of the first tools to collect
together a number of URIs of RDF documents. This approach works well while

18 http://yubnub.org
19 On March 30, 2007
20 http://rdfweb.org/topic/FOAFBulletinBoard

there is only a small list of documents with every person adding one or two of them.
Its disadvantages are: (1) these lists are usually not maintained (since it requires
user intervention) and, as a result, loose quality over time; (2) it is not feasible to
manually add URIs when many Semantic Web documents are being created at a
fast pace, such as with blog data export in RDF.

SWSE and Swoogle are search engines for the Semantic Web. Swoogle [6] cur-
rently contains information on more than 1.4 million RDF documents and is used
to find ontologies and Semantic Web documents. SWSE [10] crawls and indexes dif-
ferent types of web documents (XHTML, Atom, etc.), converts them to RDF and
provides a user interface to help locate and navigate this information. They may
provide APIs to access information indexed but the main use of these services is
people using a web interface to query for data.

PiggyBank [11] is a Firefox browser extension which allows to collect RDF data
in a distributed fashion. Harvest [3] is an early system that can be used to gather
information from diverse repositories to build, search, and replicate indexes, and to
cache objects as they are retrieved across the Internet.

Our architecture does not aim to replace Semantic Web search engines and
concentrates on one task only - to discover RDF documents on the web and supply
applications with a high quality list of Semantic Web documents. Its main use
is to retrieve lists of RDF documents in a machine readable form using the API
provided. An important difference from existing work is that a large number of
users participate in a collaborative discovery of resources on the Web, and that a
browser plugin is only the first step of a larger architecture.

6 Conclusion

In this paper, we described an architecture involving user participation in order to
discover Semantic Web documents by simply browsing the Web, creating an up-to-
date database of RDF documents which can be used by search engines and Semantic
web applications to provide search and user-friendly services over this information.

We have shown how a combination of simple scripts can facilitate discovery of
distributed Semantic Web data. Benefits of a number of independent applications
acting together are that every application is good at a particular task and that new
applications can be added to this pipeline because of open data formats used.

End-user applications such as doap:store can use a database of RDF documents
provided and build user friendly applications. By bridging the gap between creators
of Semantic Web data and the applications that use them, we expect this architec-
ture to provide incentives to create more data and better applications, making the
Web of Data into a reality.

While one of the principles of Web 2.0 is that tools and interfaces are driven by
users [12], our framework realizes this by providing methods that allow everyone
to be part of the Semantic Web initiative. This is a very important difference from
blog ping aggregators because collaborative discovery involves and relies upon user
participation - the architecture of participation in Web 2.0 terms. Through this
architecture, we hope to see how user activity can lead to an enrichment of Semantic
Web interfaces to distributed data.

7 Future Work

The future work regarding this architecture has two main aspects.
First, we will try to improve tools and architecture. For example, future versions

of Semantic Radar should be able to let users define services other than PTSW
they want to send pings to: that way, users could create their own pinging service
that will make some specific actions when it receive a new ping. PTSW can also be

improved, possibly including news types of data sources, such as SPARQL endpoints
and metadata embedded in webpages. We also hope that other third party services
using PTSW will be deployed, as we did with doap:store. Various search engines
and front-ends can be created, such as the Zitgist search engine to be released soon.

Performance is not an issue for PTSW now but with a growing number of pings
scalability can become a challenge for PTSW. We plan to address it by distributing
work across a number of servers as required.

Next, second part will consist of more detailed analysis of data collected. Re-
garding collaborative discovery, an interesting case study would be to see if there is
connections between navigation path and Semantic Web documents relationships.
Thus, we could see if people browse HTML documents and follow paths that are
related to the Semantic Web metadata they are associated to. To do that we will
parse RDF documents registered by PTSW and extract connections between Se-
mantic Web documents. We could also make further research about provenance of
namespaces / classes per domain to identify various clusters of metadata.

8 Acknowledgements

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/02/CE1/I131.

References

1. D. Beckett. Rdf/xml syntax specification. w3c recommendation, 2004.
2. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,

A. Lerer, and D. Sheets. Tabulator: Exploring and analyzing linked data on the
semantic web. In Proceedings of the 3rd International Semantic Web User Interaction
Workshop, 2006.

3. C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1–2):119–125, 1995.

4. J. G. Breslin, A. Harth, U. Bojars, and S. Decker. Towards Semantically-Interlinked
Online Communities. In The 2nd European Semantic Web Conference (ESWC ’05),
Heraklion, Greece, Proceedings, May 2005.

5. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks, 30(1-7):107–117, 1998.

6. L. Ding and T. Finin. Characterizing the semantic web on the web. In 5th International
Semantic Web Conference, 2006.

7. R. T. Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD dissertation,Dept. of Computer Science, Univ. of California, Irvine,
Calif., 2000.

8. A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages. In
International World Wide Web Conference, 2005.

9. S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage, 2003.
10. A. Harth, J. Umbrich, and S. Decker. MultiCrawler: A Pipelined Architecture for

Crawling and Indexing Semantic Web Data. In 5th International Semantic Web Con-
ference, 2006.

11. D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic web
inside your web browser. In 4th International Semantic Web Conference, pages 413–
430, 2005.

12. T. O’Reilly. What is web 2.0: Design patterns and business models for the next
generation of software. O’Reilly Nework, 2005.

Empowering Moodle with Rules and Semantics

Sergey Lukichev, Mircea Diaconescu, Adrian Giurca

Brandenburg University of Technology at Cottbus
{Lukichev, M.Diaconescu, Giurca}@tu-cottbus.de

Abstract. This short paper describes preliminary ideas for empowering
e-learning platform Moodle with rules and semantics. Many existing web
applications already contain a lot of structured information, which is
still not presented in machine-readable way. Extracting this information
from an existing e-learning platform may give benefits to course tutors
such as more control over course management, advanced reports and
filters, reasoning over the course content. We describe how to represent
the existing Moodle content in RDF and how to add rules on top of
the RDF fact base. A semi-automatic method for rule mining and rule
development is discussed.

Keywords: Moodle, RDF, Semantic Web, Rule Mining, RDF-izing Moodle,
e-learning, reasoning

1 Introduction

In spite of a large amount of theoretical research conducted in the area of the Se-
mantic Web, existing Semantic Web technologies are still hard to use practically
and it is difficult for end users to take a benefit of them. The RDFa standard
[3] is called upon to help web developers to enrich their content with semantics.
There are debates and opinions that these standards are still difficult to employ
and an alternative approach, using Microformats1, claims about simplicity in
introducing semantics to the existing web pages.

In order to get rid of the burden of the manual content annotation, a lot
of work has recently been focused on extracting semantics from the existing
content. Wikis, blogs, various content management systems and e-learning plat-
forms contain a lot of unstructured data and this data as it is now cannot release
the full power of its semantics. It cannot be shared using common vocabulary,
there are no reasoning and semantic querying capabilities. An issue of extracting
semantics from existing content becomes important and a number of works has
been introduced for the semantic blogging [5] and for extracting semantics from
the Wikipedia templates [4]. The Structured Blogging initiative2 has developed
plug-ins for the semantic annotation of Wordpress, MovableType and Drupal
contents using Microformats.
1 Microformats: http://microformats.org/
2 Structured Blogging: http://structuredblogging.org

The use of Semantic Web technologies in e-learning may bring benefits to
tutors and students. For instance, a tutor may want to know which courses
take those students, who usually take the Web Technology course?, or what is
an average grade of students, who did not use a recommended course tutorial?
A traditional solution to answering such questions is to use relational databases
(SQL queries, views). But moving to RDF is a shift to the open world with many
distributed resources, identified by URIs as a mechanism for referring to global
constants on which there exists some agreement among multiple data providers.
Queries can be performed not only over a single database, but over the content of
several distributed educational systems, including resources, which are externally
available on the web.

As a working platform we use Moodle, an Open Source e-learning application,
written in PHP and widely used by teachers all over the world. As a reasoning
platform we choose Jena 23, a Semantic Web Framework, which allows reasoning
on top of RDF fact bases with rules. Courses in Moodle already contain enough
information to answer sample queries (see above) and many others, but in order
to get answers, semantics should be extracted first and then rules on top of the
structured data have to be defined.

We describe how to obtain an RDF fact base from the Moodle content and
to empower it with rules. Rules add flexibility to the content analysis and give
more control to tutors over the courses and teaching process. The distinct point
of our approach among others is that it employs rules, which are obtained semi-
automatically in two steps: i) using data mining methods over RDF for deriving
initial rule base and ii) extending the initial rule base with more complex rules
by a rule modeler (for instance, a course lecturer). The approach consists of the
following steps:

1. Deriving the Moodle information model and generating an RDF fact base
out of the Moodle content on the base of the information model (Section 2);

2. Mining rules, using the RDF fact base, obtained in the previous step. The
mining process is automatic and its result is a rule base with rules in a form
of P (x) → Q(x), for example, A student, who takes the Web Technologies
course, usually takes the Logic for Information Systems course. (See Section
3 for details);

3. Extending the initial rule base, obtained in the previous step with hand-
crafted rules, which may contain additional conditions and define new con-
cepts. Usually rules, defined on this step use logical atoms in their conditions,
which have been obtained by the rule mining process. Rules on this step are
created by tutors. For instance, A student, who takes the Logic for Infor-
mation Systems course and completes all assignments is a diligent student.
This is a derivation rule since it derives the concept of a diligent student,
which may later be used in other rules or in querying. The condition part of
this rule also contains the logical atom A student takes a course, defined in
the step 2 by the rule mining process.

3 Jena Semantic Web Framework: http://jena.sourceforge.net/

2 The Moodle Information Model

In this section we describe an excerpt from the Moodle information model (Fig-
ure 1), derived from the Platform Specific Model (PSM) of the Moodle database
schema. The excerpt contains a number of classes and relations as a basis for
RDF-izing existing Moodle content.

MoodleLog
id
time
ip

User
id
name 1 *

refers

Action
name
url 1

*perform

Resource

*

1

info

Label TextPage WebPage Link

Activity
*

1

involves

Forum Assignment Lesson

Quiz

Course
id
name* 1

course

Fig. 1. An excerpt from the Moodle Information Model

The core class is the MoodleLog class, which represents a log entry in the
Moodle database. All kind of actions, performed by students and tutors are
recorded. Each record has one User, which may perform exactly one Action at
a time over a specific Resource of a Course. A Resource is either a Label, a
TextPage, a WebPage or a Link.

Every course may have a number of activities. Each Activity is either a Fo-
rum, an Assignment, a Quiz or a Lesson.

An RDF representation of this model is derived straightforward. Every UML
class on the diagram corresponds to the RDF Schema class and every UML
attribute/association corresponds to the RDF Schema property.

The RDF fact base is updated from the Moodle database automatically by a
script, which runs periodically. Another option to maintain consistency between
Moodle content and its RDF representation is an extension of Moodle, which
generates RDF triples at the same time when the Moodle log is updated.

3 Rule Mining

The rule mining algorithms used here are provided by R. Agarwal et al in their
seminal papers about mining association rules ([1], [2]). The MoodleLog class
from the Moodle Information Model is a transactional database. A typical in-
stance of this class (at the PSM4 level) has the following values for its properties:

4 Platform-Specific Model in the Model-Driven Architecture approach

((id,320834), (time, 1174041794), (userid, 219), (module, forum),
(action, "view discussion"), (url, "discuss.php?d=413&parent=1350"))

These property-value pairs are translated into an RDF set of triples. As in the
classical problem of mining association rules the goal is to generate all association
rules that have support and confidence greater than the user-specified minimum
support (minsup) and minimum confidence (minconf) respectively. Recall that
the formal problem of mining association rules as in [1] is: Let I = {i1, . . . , in}
a set of items. Let D be a set of transactions (i.e. our MoodleLog extension),
where each transaction T is a set of items such that T ⊆ I. Each transaction
has a unique identifier (i.e. id). We say that a transaction T contains X ⊆ I if
X ⊆ T . An association rule is an implication of the form X ⇒ Y where X ⊆ I,
Y ⊆ I, and X ∩ Y = ∅. The rule X ⇒ Y holds in the transaction set D with
confidence c if c% of transactions in D that contain X also contain Y . The rule
X ⇒ Y has support s in the transaction set D if s% of transactions in D contain
X ∪ Y .

Applying the AprioriTid algorithm [2] on our RDF fact base generated from
the Moodle logs, we can easily obtain a set of binary association rules involving
RDF(S) triples. This is why the use of Jena 2 as a reasoning engine is appropriate.
Notice that the algorithm shows best results on large data sets. Our actual
Moodle log has more than 500000 entries. An example of a (typed) mined Jena
2 rule is:

(?X moodle:perform moodle:view) <-
(?X rdf:type moodle:User) // type information
(?X moodle:perform moodle:view_discussion)
(moodle:view_discussion moodle:url "discuss.php?d=413&parent=1350"^^xs:string)
(moodle:view moodle:involves moodle:quiz372)
(moodle:quiz372 rdf:type moodle:Quiz) // type information

4 Extending the Rule Base

A rule base, obtained by the rule mining process (Section 3) can be extended
with more complex rules, which may define new concepts, for instance, A student,
who has more than 10 forum posts is active in the forum discussion.

(?X, userdef:activeInForum ?Forum) <- (?X rdf:type moodle:Student) (?X userdef:post ?Forum)
(?X userdef:numberOfPosts ?Y) ge(?Y, "10"^^xs:integer)

This rule defines a concept of a student, who is active in the forum discus-
sion. Such rules are created manually and a rule modeler should have a possibility
to define rules in a user-friendly environment. One possible solution is an edi-
tor, which allows composing rules by non-technical users using a point-and-click
interface with cut-and-paste pop-up windows and drop-down menus. Such inter-
face allows selecting a predicate from a predefined list and filling term slots with
values and variables. An example of such editor is provided in ILOG JRules5.
Since the target rule platform is Jena 2, rules from the editor are translated into
Jena 2 rules. This can be done using I1 rule interchange service, which allows
rule interchange between different rule languages and platforms. The core of the

5 ILOG JRules: http://ilog.com/products/jrules

interchange service is the R2ML loss-free rule interchange format ([7]), developed
in the REWERSE Working Group I16.

Another possible solution is to use Attempto Controlled English7 (ACE).
ACE allows writing rules, using unambiguous subset of the English language.
The work on the ACE to R2ML transformation (in order to obtain Jena 2 rules)
has been started ([8], Chapter 1), but we consider the first solution with point-
and-click interface as more appropriate for non-technical users.

5 Conclusion

In this paper we have described preliminary ideas for empowering e-learning
platform Moodle with rules and semantics. Our further work on this project is
towards practical implementation. The primary goal is to give tutors a useful
application for flexible course management and reporting by implementing a
Moodle module, based on the rule and semantics technologies such as RDF and
Jena 2 and on Web 2.0 technologies as Ajax. The possible extension of the project
is e-learning platforms integration, using Semantic Web Services, for instance,
for rule interchange and querying of several fact bases.

References

1. R. Agrawal, T. Imielinski, A. N. Swami. Mining association rules between sets of
items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of
the 1993 ACM SIGMOD International Conference on Management of Data, pages
207–216, Washington, D.C., 26–28 1993.

2. R. Agrawal, R. Srikant, Fast algorithms for mining association rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, pages 487–499. Morgan Kaufmann, 1994.

3. B. Adida, M. Birbeck, RDFa Primer 1.0, 12 March 2007,
http://www.w3.org/TR/xhtml-rdfa-primer/

4. Auer, S.; Lehmann, J.: What have Innsbruck and Leipzig in common? Extracting
Semantics from Wiki Content. June 2007, Innsbruck, Austria

5. K. Mller, U. Bojars and J. G. Breslin. Using Semantics to Enhance the Blog-
ging Experience. In 3rd European Semantic Web Conference (ESWC2006), Budva,
Montenegro, June 2006.

6. G. Klyne and J.J. Caroll (Eds.), Resource Description Framework (RDF): Concepts
and Abstract Syntax, W3C, 2004

7. G. Wagner, A. Giurca and S. Lukichev, Language Improvements and Extensions,
REWERSE I1 Deliverable I1-D8, published as a technical report, March 2006,
http://rewerse.net/deliverables-restricted/i1-d8.pdf

8. G. Wagner, S. Lukichev, N. E. Fuchs, Tool Improvements and Extensions 2,
REWERSE I1 Deliverable I1-D11, published as a technical report, March 2007,
http://rewerse.net/deliverables-restricted/i1-d11.pdf

6 REWERSE I1 (Interchange services, downloads, etc): http://rewerse.net/I1
7 Attempto Project Home Page: http://attempto.ifi.unizh.ch

Semantic Scripting
Challenge Submissions

A user-friendly interface to browse and find DOAP project with doap:store
Alexandre Passant

Scripting a SIOC explorer
Benjamin Heitmann, Eyal Oren

Ripple: Functional Programs as Linked Data
Joshua Shinavier

A lookup index for Semantic Web resources
Eyal Oren, Giovanni Tummarello

Integrating SPARQL Endpoints into Directory Services
Sebastian Dietzold, Sören Auer

The challenge prize is kindly provided by:

A user-friendly interface to browse and find
DOAP projects with doap:store

Alexandre Passant

Université Paris IV Sorbonne, Laboratoire LaLICC, Paris, France
alexandre.passant@paris4.sorbonne.fr

1 Motivation

The DOAP[2] vocabulary is now widely used by people - and organizations - to
describe their projects using Semantic Web standards. Yet, since files are spread
around the Web, there is no easy way to find a project regarding its metadata.

Recently, Ping The Semantic Web1 (PTSW) and Semantic Radar2 plugin for
Firefox introduced a new way to discover Semantic Web documents[1]: by brows-
ing the Web, users ping the PTSW service so that it can maintain a contineously
updated list of Semantic Web document URIs.

Thus, the idea of doap:store - http://doapstore.org is to provide a user-
friendly interface, easily accessible for not RDF-aware users, to find and browse
DOAP projects, using PTSW as a provider of data sources. This way, users do
not have to register to promote a project as in freshmeat3 or related services,
but just need to publish some DOAP files on their websites to benefit of this
distributed architecture. doap:store is the first implemented service using PTSW
data sources to provide such browsing and querying features.

2 Architecture

doap:store involves 3 main components:

– A crawler: Running hourly, a tiny script parses the list of latest DOAP pings
received by PTSW and then put each related RDF files into a triple-store;

– A triple-store: The core of the system, storing RDF files retrieved thanks
to the crawler, and providing SPARQL capabilities to be used by the user-
interface that is plugged on the endpoint;

– A user-interface: A simple interface, offering a list of latest retrieved projects,
a case-insensitive tagcloud of programming languages, and a search engine
to find DOAP projects regarding various criteria in a easy way.

While the crawler is written in Python, the interface is PHP5-based and the
triple-store used is 3store[3], so both the crawler and the interface use its API
to fetch and retrieve data. The whole application - without the API - is about
600 lines of code.
1 http://pingthesemanticweb.com
2 http://sioc-project.org/firefox
3 http://freshmeat.net

2

3 Finding and browsing DOAP files

Apart the tagcloud used to find projects by programming language, a simple
search-engine can be used to retrieve projects by (1) name (doap:name), (2)
description (both doap:desc and doap:shortdesc), (3) name or description
and (4) hostname (using the URI of the graph containing a project, since 3store
is context-aware). A single SPARQL[4] query is used to find related projects,
with an FILTER REGEXP expression added to the query depending on the search
criteria.

Users can simply browse retrieved projects, ordered by name. Each project
page provides a view of its available metadata, with links to the original RDF
file and to a page displaying other projects from the same hostname. Since
the DOAP ontology provides rdf:label for all its properties, not only project
metadata but also property names are retrieved from the triple-store.

Another friendly way to query doap:store is to use YubNub4, a command
line service for the Web, since a doap command have been created for it. So,
from their browser search engine or any YubNub client, users can type doap
desc=RDF to be redirected to the doap:store results page listing projects with a
description containing the RDF string.

Finally, for most advanced users, doap:store offers a SPARQL endpoint5 -
using a Javascript editor6 - that can be used to query data or construct new
RDF documents based on the actual content of the triple-store.

Thus, all these features provide various ways to retrieve informations about
DOAP projects, from the easiest interface to the most advances SPARQL queries,
in a single interface.

4 Acknowledgements

I would like to thank Uldis Bojārs and Frederick Giasson for their respective
work on Semantic Radar and PTSW, that help to provide data sources for this
service.

References

1. U. Bojārs, A. Passant, F. Giasson, and J. G. Breslin. An Architecture to Dis-
cover and Query Decentralized RDF Data. In 3rd Workshop on Scripting For The
Semantic Web (SFSW07), June 2007.

2. E. Dumbill. DOAP: Description of a Project. http://usefulinc.com/doap/.
3. S. Harris. SPARQL query processing with conventional relational database sys-

tems. In International Workshop on Scalable Semantic Web Knowledge Base System
(SSWS 2005)., 2005.

4. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Working Draft, W3C, 2006. http://www.w3.org/TR/rdf-sparql-query/.

4 http://yubnub.org
5 http://doapstore.org/sparql.php
6 http://dannyayers.com/2006/09/27/javascript-sparql-editor

SFSW Challenge Entry: Scripting a SIOC
explorer

Benjamin Heitmann and Eyal Oren

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Exploring SIOC data In order to explore SIOC data from multiple online
social communities in an integrated way, we have developed a SIOC explorer. It
enables importing and exploring SIOC data from community sites if they expose
their content by publishing it in the SIOC 1 format. The SIOC explorer can be
found online2, and its source code can be found at the launchpad site3.

Using the SIOC explorer The entry page shows a list of SIOC forums in the
database. In terms of SIOC each collection of posts is called a “forum”. After
selecting a forum, a list of post excerpts is shown in the main column. The user
can expand a specific post in order to see the full content and comments. The
user can then browse posts by author or by topic or by period of time across
all forums in the database. On the left side a possible list of filters is displayed,
which can be used to restrict which posts get displayed.

Benefits for the user Firstly, different types of community sites, like weblogs,
forums, mailing lists and IRC chat logs can export their content as SIOC data.
This includes not only posts but also replies, information about authors and
commenters and the links between all entities. The SIOC explorer uses this
information to give the user a unified view on the content and structure of
multiple sources.

Secondly, the SIOC format allows for richer content metadata. Topics can
refer to terms from a SKOS4 taxonomy, person references can point to FOAF5

profiles, post titles and creation timestamps are expressed with the Dublin Core6

vocabulary. The SIOC explorer allows the user to explore and navigate the data
using all the available metadata.

In contrast, RSS7 based news readers can only aggregate posts, and they
can only use the limited metadata capabilities of RSS, like author names and
category keywords.
1 http://rdfs.org/sioc/spec/
2 http://www.activerdf.org/sioc/
3 http://launchpad.net/sioc-ex
4 http://www.w3.org/TR/swbp-skos-core-spec/
5 http://xmlns.com/foaf/0.1/
6 http://dublincore.org/
7 http://web.resource.org/rss/1.0/

Capabilities of the Semantic Web Besides allowing shared concepts be-
tween different sources, the Semantic Web allows each source to use different
and evolving schemata to describe new concepts and to mix vocabulary from
different ontologies. SIOC data can refer to SKOS topic descriptions or to FOAF
personal profiles. In the SIOC explorer this gives the user the ability to filter
posts based on fine-grained constraints:

Example of a complex type: FOAF maker When browsing a forum with
more then one author, each of the authors is identified by an instance of
FOAF:maker. When browsing the posts of such a forum, the user can locate
the filter “maker” in the left column, click on “show details” and then select
e.g. the workplace of a specific maker instance. Only posts from the maker
with the specified workplace will then be displayed.

Browsing data from foreign schemata The SIOC explorer can handle data
using vocabularies, which are not associated with SIOC data, because the
navigation engine is domain agnostic and only relies on the features of RDF
data. We use this feature to put e.g. the week of each post in the database
using SIOCEX:week. SIOC posts only have a timestamp, but materialising
this property using our own vocabulary allows the user to easily browse posts
by week, month or year. This can be seen in the left column after selecting
a forum.

Usage of a Scripting Language To develop the SIOC explorer, we extended
the Ruby on Rails framework8 with components for consuming and process-
ing Semantic Web data. The first component is ActiveRDF9, which addresses
the “model” mismatch and maps RDF data onto objects. The second compo-
nent is BrowseRDF10, a faceted browsing and navigation engine that enables
exploration of large Semantic Web datasets without domain-specific knowledge.
The third component is a SIOC crawler which crawls, extracts, normalises and
integrates SIOC data.

Each of the three components is designed to augment and integrate with
Ruby on Rails. ActiveRDF can serve as a data layer in Ruby on Rails, replac-
ing or augmenting the default ActiveRecord layer. The BrowseRDF navigation
algorithms are implemented as a library for Ruby on Rails and provides generic
navigation on top of ActiveRDF. The SIOC crawler uses several libraries and
command-line tools which are external to Ruby, and incorporates the results
into the model of the Ruby on Rails application.

Using ActiveRDF and our other extensions, the integration of Rails with RDF
data was straightforward and the development effort was quite low compared to
the benefits of using Semantic Web data. The models itself are automatically
provided as virtual models, the controller (with all application logic) contains
around 95 lines of code and the views contain around 100 lines of abstract HTML.
The SIOC crawler consists of around 150 lines of code.
8 http://www.rubyonrails.org/
9 http://www.activerdf.org/

10 http://www.browserdf.com/

Ripple: Functional Programs as Linked Data

Joshua Shinavier
josh@fortytwo.net

Soph-Ware Associates, Inc.,
624 W. Hastings Rd, Spokane, WA 99218 USA

http://www.soph-ware.com

Abstract. Ripple is a scripting language expressed in RDF lists. Its
scripts both operate upon and are made up of RDF metadata, extend-
ing the idea of HTTP dereferenceability to computation. Ripple is a
variation on the ”concatenative” theme of functional, stack-oriented lan-
guages such as Joy and Factor, and distinguishes itself through a multi-
valued, ”pipeline” approach to query composition, as well as the inherent
distributability of its programs. The Java implementation of Ripple in-
cludes a query engine, a provisonal assortment of primitive functions,
and an interactive interpreter which parses commands and queries in
a readable, Turtle-like format. A demo application can be found at:
http://fortytwo.net/ripple.

Key words: RDF, scripting language, semantic web, linked data

1 Linked Data

”Linked data”1 is the subset of the Semantic Web which associates statements
about the ”thing” identified by a particular URI with the corresponding web
location. An appropriate HTTP request for such a URI should produce an RDF
document containing statements about it. Ripple assumes, furthermore, that
the set of statements in such a response is complete, and the software may reject
statements about the URI from any other source. This restriction makes the
language referentially transparent with respect to its one RDF query operation,
forward traversal.

2 RDF Equivalence

Not only does Ripple operate on linked data, but its programs are meant to
be linked data as well. Every Ripple expression is equivalent to a collection of
type rdf:List. In the Java implementation, conversion between the RDF graph
representation of a list and its more efficient linked list counterpart is transpar-
ent to the user application. RDF properties are identified with functions which
map subjects to objects. For instance, in the following query, dup, toString,
1 http://www.w3.org/DesignIssues/LinkedData.html

2 Ripple: Functional Programs as Linked Data

sha1, swap, and equal are all primitive functions, whereas foaf:mbox and
foaf:mbox sha1sum are properties:

@prefix : <http://fortytwo.net/2007/03/ripple/demo#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@define goodMboxSha1Sum:

/dup /foaf:mbox/toString/sha1 /swap /foaf:mbox_sha1sum /equal.

The @define directive creates a new list and identifies it with a URI, in this
case: http://fortytwo.net/2007/03/ripple/demo#goodMboxSha1Sum. The list
may then be applied as a function:

<http://www.w3.org/People/Berners-Lee/card#i>/:goodMboxSha1Sum.

The above is a program which dereferences Tim Berners-Lee’s FOAF URI,
finds the sha1 sum of his email address, and checks it against the stated value,
yielding true. Characteristically of Ripple, it doesn’t matter where or when a
program is executed; provided that its URI is made to be dereferenceable (for
instance, by exporting data to a public location, or eventually, by attaching the
interpreter to a triple store with a SPARQL endpoint), the program itself is
dereferenceable, and a Ripple query engine on a remote machine will draw it
into its own execution environment as needed.

3 The Compositional Pipeline

If Joy2 is a stack language, then Ripple is a ”stream-of-stacks” language. Each of
its functions consumes a series of stacks as input, and produces a series of stacks
as output, which is how it gets away with using RDF properties as functions.
This simple query, for instance, yields not one, but several values:

<http://www.w3.org/People/Berners-Lee/card#i>/foaf:knows/foaf:name.

To distribute operations over an arbitrary number of values, Ripple replaces
functions with ”instances” which behave like elements of a pipeline: receiving
input, transforming it, and passing it on. Instances may have state; for example,
instances of the limit primitive (which counts its input and stops transmitting
them after a certain point) or of the unique primitive (which remembers its
input, and will not transmit a duplicate stack).

4 Conclusion and Future Work

Ripple is an exploratory project, which is to say that further development will
be driven by discoveries made along the way. Thus far, Ripple has been most
useful for quickly picking out and exploiting useful patterns in linked data. If
the hypertext web is any example, the web of data will be vast, complex, and
overall, loosely structured. As it grows, we will need an equally sophisticated
web of programs to keep pace with it.
2 http://www.latrobe.edu.au/philosophy/phimvt/joy/j00ovr.html

Scripting challenge entry: A lookup index for
Semantic Web resources

Eyal Oren and Giovanni Tummarello

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Finding Semantic Web statements The Semantic Web can be seen as a
large knowledge-base of statements about resources, forming an interconnected
graph through multiple references to the same resources. But the graphs in the
Semantic Web are decentralised: there is not one single knowledge base that con-
tains the graph of statements but instead anyone can contribute statements on
his “personal” web-space. The complete graph is only visible after crawling and
integrating the fragments mentioned on these personal subspaces. For developers
of Semantic Web applications, which operate on Semantic Web data, the decen-
tralisation poses a challenge: how and where to find statements (information)
about certain resources?

A simple lookup index We have developed (an initial version of) a simple
lookup index called Sindice that helps developers in this situation. Sindice is
available online1, the code is available open-source2 under the LGPL license.

Benefits for the user By itself our index has no benefits for the end-user. But
any application that uses Semantic Web data, such as the Disgo3, Tabulator4,
or BrowseRDF5 RDF browsers, the DBin6 information sharing client, or the
SIOC browser7, can use Sindice to offer their users a better service. Next to
every resource that they encounter these applications can place a “find more
information”. When users click that button, their application would request a
list of relevant sources with more information about a resource, and follow one
or more of these sources, learning things that others said about that particular
resource. Instead of crawling the Semantic Web themselves, they need only ask
Sindice for pointers to good sources.

1 http://activerdf.org/sindice
2 http://launchpad.net/sindice
3 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
4 http://www.w3.org/2005/ajar/tab
5 http://browserdf.com
6 http://dbin.org
7 http://activerdf.org/sioc

Crawling sources Users can request explicit crawls of their updated docu-
ments through the RESTful API8. Apart from that, Sindice periodically (cur-
rently every twenty minutes) requests recently updated documents itself from
http://pingthesemanticweb.com and visits each source to index its contents.
Once our hardware infrastructure is stable we will also index large RDF dumps
from Swoogle9, SWSE10 and Wikipedia11. With our current datastructure, and
based on our currently indexed data, we estimate that storing 300 million re-
sources (which is our minimal target) will occupy approximately 77Gb of data,
which is quite readily available on ordinary hardware.

Ranking results We rank results using a cheap and potentially “useful enough”
algorithm. We give precedence to sources on the same hostname as the queried
resource (following the linked-data model that resources should have meaningful
descriptions on their own de-referenceable URIs. We further rank sources on their
PageRank, their size (in amount of statements) and their amount of statements.
We also investigate a feedback model where often-used sources would be boosted
as well.x

Project scope Sindice is a simple lookup index and its scope is limited: it does
not index the actual RDF in the documents but only the resources mentioned;
it does not allow full queries on the data but only lookups from resource to
mentioning sources. Keeping the scope focused we are able to keep our index
small and fast, namely an on-disk hashtable: resource ⇒ source[].

Implementation Sindice is built using the Ruby scripting language for rapid
prototyping and uses the Ruby on Rails Web application framework to handle
routing of requests and offering a RESTful API with various response formats
(HTML, JSON, and XML). Sindice uses several external libraries such as the
Redland12 “rapper” RDF parser and the QDBM13 persistent hashtable. Sindice
also uses several online services such as http://pingthesemanticweb.com, which
is queried periodically to find recent RDF documents, and an estimation14 of
Google’s PageRank to estimate relative importance of sources. Apart from the
automatically generated Ruby on Rails code, the core Sindice library is imple-
mented in around 200 lines of code (including comments) and the Web appli-
cation, handling requests and generating HTML, JSON, and XML responses in
around 130 lines of code (including comments).

8 http://activerdf.org/sindice/parse/URL
9 http://swoogle.umbc.edu

10 http://swse.deri.org
11 http://dbpedia.org
12 http://librdf.org
13 http://qdbm.sourceforge.net
14 http://seopen.com/seopen-tools/pagerank.php

Integrating SPARQL Endpoints into Directory

Services

Sebastian Dietzold1 and Sören Auer1,2

1University of Leipzig, Germany
Department of Computer Science

dietzold@informatik.uni-leipzig.de

2University of Pennsylvania, USA
Department of Computer and Information Science

auer@seas.upenn.edu

We demonstrate1 the integration of RDF knowledge bases from our social,
semantic collaboration tool OntoWiki via SPARQL endpoints into directory ser-
vices based on the Lightweigth Directory Access Protocol (LDAP). In order to
achieve this, we translate LDAP queries into SPARQL queries and transform the
incoming SPARQL results back into the LDAP data model. The transformation
component is implemented as a backend for the widely used OpenLDAP server2.

LDAP based directory services are an important part in the IT infrastructure
of most organisations and enterprises. They act as a central service for integrating
new applications into an IT infrastructure and can be accessed by many di�erent
types of clients ranging from content management systems to personal email
tools.

Fig. 1. "Same same but di�erent": Visualization of a common RDF model in OntoWiki
(left) and over LDAP in the email-reader evolution (right)

Typical content which is stored in directory services is information about
users or hardware. Even though it has a complex schema with global unique

1 Sources and documentation: http://aksw.org/Projects/LDAP/Backend.
2 http://www.openldap.org

object identi�ers and sophisticated syntax matching rules, LDAP lacks powerful
semantics and is restricted to a tree like data model.

To combine the user acceptance of LDAP directory services and the semantic
power of RDF knowledge bases, we decided to implement a SPARQL endpoint
backend for OpenLDAP.

The core functionality of the backend is:

1. Transformation of given LDAP query strings into SPARQL queries: This
is done in a straightforward way. LDAP query strings allow AND, OR and
NOT composition of simple attibute �lters. An attribute �lter consists of an
attribute name, a �lter type (equality, presence, order, ...) and a �lter value.
The corresponding SPARQL query uses UNION, OPTIONAL, FILTER and
BOUND constructs and matched schema names.

2. Match RDF schema / OWL ontology URIs to LDAP schema identi�ers:
There are two ways to deliver RDF data over LDAP directories. First, it
is possible to translate a complete LDAP schema to OWL [2, 3]. In the
following, this OWL ontology can be used for instance creation. Second, we
allow to con�gure matching tables for easy integration of given RDF models
(e.g. a mapping from FOAF3 to inetOrgPerson [4]).

This demo will allow users to modify and query the content of an RDF knowl-
edge base4. The modi�cations can be done using the semantic collaboration tool
OntoWiki [1]. To query the knowledge base, any LDAP capable mail user agent
can be used (see �gure 1). The demo is not limited to OntoWiki knowledge bases
but can be used in combination with arbitary SPARQL endpoints containing in-
formation about people.

References

1. Auer, S., Dietzold, S., Riechert, T.: OntoWiki - A Tool for Social, Semantic Col-
laboration. In Cruz, I.F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L., eds.: The Semantic Web - ISWC 2006, 5th International
Semantic Web Conference, ISWC 2006, Athens, GA, USA, November 5-9, 2006,
Proceedings. Volume 4273 of Lecture Notes in Computer Science., Springer (2006)
736�749

2. Dietzold, S.: Generating RDF Models from LDAP Directories. In Auer, S., Bizer,
C., Miller, L., eds.: Proceedings of the SFSW 05 Workshop on Scripting for the
Semantic Web , Hersonissos, Crete, Greece, May 30, 2005. Volume 135 of CEUR
Workshop Proceedings., CEUR-WS (2005)

3. Dietzold, S.: Basic vocabulary to use LDAP data in RDF. OWL ontology (2005)
http://purl.org/net/ldap.

4. Smith, M.C.: De�nition of the inetOrgPerson LDAP Object Class. RFC 2798, The
Internet Engineering Task Force (IETF) (2000) http://www.ietf.org/rfc/rfc2798.txt.

3 http://www.foaf-project.org/
4 We want to use the model of all submitted ESWC2007 FOAF documents here.

	proceedings-intro.pdf
	paper1.pdf
	paper2.pdf
	paper3.pdf
	paper4.pdf
	paper5.pdf
	paper6.pdf
	paper7.pdf
	paper8.pdf
	paper9.pdf
	paper10.pdf
	paper11.pdf
	paper12.pdf
	challenge1.pdf
	challenge2.pdf
	challenge3.pdf
	challenge4.pdf
	challenge5.pdf

