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ABSTRACT
Recommending individuals through keywords is an essential and
common search task in online social platforms such as Facebook
and LinkedIn. However, it is often that one has only the impression
about the desired targets, depicted by labels of social contexts (e.g.
gender, interests, skills, visited locations, employment, etc). Assume
each user is associated a set of labels, we propose a novel task, Search
by Social Contexts (SSC), in online social networks. SSC is a kind of
query-based people recommendation, recommending the desired
target based on a set of user-specified query labels. We develop
the method Social Query Embedding Learning (SQEL) to deal with
SSC. SQEL aims to learn the feature representation (i.e., embedding
vector) of the query, along with user feature vectors derived from
graph embedding, and use the learned query vectors to find the
targets via similarity. Experiments conducted on Facebook and
Twitter datasets exhibit satisfying accuracy and encourage more
advanced efforts on search by social contexts.
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1 INTRODUCTION
Users in online social services such as Facebook, Instagram, and
LinkedIn, often perform search tasks to find the particular persons.
Given the name of the target person specified, the goal of social
search is usually to accurately recommend targets who are user
desires. However, it is every now and then that users have no
idea about the names of the targets, and have only very limited
information about the targets (e.g. gender, interests, hometown,
company, and graduated school). On the other hand, sometimes
users want to find some persons (e.g. experts or celebrities) who
meet some requirements (e.g. skills, awards, and visited locations).
The common settings of both scenarios is that the target persons
can be depicted by a set of labels. We think it is potential to develop
a system allowing such kind of social search without specifying
the names of targets. In this paper, we propose a novel search
task, Search by Social Contexts (SSC), which is to find the desired
targeted persons using the social network behind users and the

labels associated on users. SSC can be also considered as a query-
based people recommendation. By specifying a small set of labels
depicting the target, rather than her name, SSC is designed to
recommend a list of persons such that the true desired target is
covered and ranked at the top position in the list.

The proposed Search by Social Contexts lies in that there should
be latent correlation between the input query labels and the target
through the interactions between users and labels and the con-
nections between users in social networks. To perform search and
recommendation by contexts, we leverage the technique of node
feature representation learning in graphs to model the hidden corre-
lation between query labels and potential target users in the latent
space. A novel method, Social Query Embedding Learning (SQEL),
is developed to learn the feature representation (i.e., embedding
vector) of the query, and use the learned feature vector to find the
users with highest vector similarity scores as the recommended
targets. Here is our basic idea: the query embedding feature vec-
tor is a certain ensemble of an accurate query language model and
the proximity distribution between the query and other labels. The
former depicts the semantic similarity considering the interactions
between users and labels in the latent feature space, while the latter
quantifies the connectivity of query labels in the graph structure.
We conduct the experiments using Facebook and Twitter datasets
to validate whether SQEL can truly find the targets. The results
exhibit that SQEL outperforms a number of competing methods in
terms of accuracy.

Related Work. J. Kleinberg [5] first defines social search in a
network – searching over a social graph to find the set of indi-
viduals closest to a given user. Vieira et al. [12] re-formulate the
task as a structural ranking problem via friend recommendation
for users. Though Schendel et al. [9] recommend items possessing
a given set of tags in a social tagging graph, social interactions are
neglected. With search log data in LinkedIn and Facebook, Huang
et al. [4] unfold the relationships between graph distances and user
search behaviors. On the other hand, Roth et al. [8] and McAuley
and Leskovec [6] group and recommend friends based on social
activities of people. Though Mouratids et al. [7] use both graph
and geographical distance for people search, labels associated on
users are not considered. Last, a recent relevant study is Person-
of-Interest Search (POI-Search) [3], which allows user-specified
labels and the input user as the query. It is apparent that our SSC
is more challenging since the input user is not considered. In addi-
tion, requiring the input user in POI-Search is neither realistic or
generalized because the search task can be performed by anyone,
rather than only users in the specific social service. Nevertheless,
we will compare with POI-Search in the experiments.

2 PROBLEM STATEMENT
We first define a number of terms and notations, followed by the
problem definition of Search by Social Contexts.
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Definition 1: Social Network. A social network is a weighted
graph G = (V ,E). Each node v has a set of labels. Each edge repre-
sents the interaction between two nodes. Edge weights refer to the
interaction cost, where lower values indicate better interactions.

Definition 2: Context Query. A context query consists of a set
of labels q, in which ∀ci ∈ q : ci ∈ L, where L is the universe set of
labels.

Definition 3: User-Label Interaction.Auser-label interaction
ri j =

〈
ui , c j

〉
is a connection that links user ui ∈ V with label

c j ∈ L if ui possesses c j . We can have a set of user-label interaction
R = {ri j } from all of the interactions between users and labels.

Definition 4: Hybrid Graph. A hybrid graph is a weighted
graph H = (V, E), where the node set is the union of user set V
and label set L, i.e., V = V ∪ L, and the edge set is the union of
social tie set E and user-label interaction set R, i.e., E = E ∪R. Note
that we create a node for each label in the hybrid graph. The hybrid
graph can be considered to jointly model the connections between
users and the interactions between users and labels.

ProblemDefinition: Search by Social Contexts (SSC).Given
a social network G , the label set L, the user-label interaction R, the
context query q, and the budget parameter k , the task of search
by social contexts (SSC) is to recommend a ranking list of k users
S (|S | = k) such that the ground-truth target u⋆ can be not only
covered by list S (i.e., u⋆ ∈ S), but also accurately ranked at the
highest position in list S .

3 THE PROPOSED METHOD
To deal with the task of search by social contexts, we propose a novel
method, Social Query Embedding Learning (SQEL). The main idea of
SQEL is to learn the feature representation (i.e., embedding vector)
of the query, and use the learned feature vector to find the users
with highest vector similarity scores as the results. SQEL consists
of four main steps. First, based on the constructed hybrid graph,
we can learn the feature representation of each node using the
technique of node2vec [2], which maps nodes to a low-dimensional
space of features that maximizes the likelihood of preserving graph
neighborhoods of users and labels). For each label c ∈ L and each
user u ∈ V , we can derive d-dimensional vectors ®c and ®u, where
d is set as 128 through this work. When the query is given, the
second step is to build the query language model (Section 3.3) that
estimates the probability of any label c for the set of query labels q.
The third step is to learn the feature representation of the query
(Section 3.1). The query embedding vector ®q will be derived using
the query language model and the graph proximity between nodes
in the hybrid graph. The last step is to generate the recommended
list of users based on the similarity between feature vectors of the
query and users (Section 3.2).

3.1 Learning Query Representation
We aim to leverage the technique of maximum likelihood estimation
(MLE) to learn the feature representation (i.e., embedding vector)
of the query. The central idea of our method is to maximize the
likelihood of an query embedding probabilistic distribution towards
a query language model and the proximity distribution from query
labels to other labels in the hybrid graph H . The underlying as-
sumption is that the query feature vector is a certain ensemble of

query language model and the graph proximity distribution. The
query feature vector is required to be reflected by not only the
co-occurrence between labels, but also how users adopt labels in
the graph. In other words, we seek to learn the query embedding
feature vector that is close to the fusion of the query language
model and the graph proximity distribution by MLE. Here we first
define the probability of each label c given a query vector ®q, termed
query embedding distribution, as below:

p(c | ®q) =
s(®c, ®q)∑

c ′∈L s( ®c
′, ®q)
, (1)

where s(·, ·) is a similarity function that calculates the similarity
between two feature vectors, ®c is the embedding feature vector
of label c , and L is the set of all labels. Then for the query q, we
assume that there is a query language model θq , which quantifies
the importance of each query label ci ∈ q in the query. Let ®q⋆ be
the optimal query feature vector, which is the query embedding
vector (Eq. 1 that is closest to the ensemble of the query language
model θq and the proximity distribution pH(q → c). Therefore,
we propose to find the query feature vector that maximizes the
following log-likelihood function:

®q⋆ = arg max
®q

∑
c ∈L

(
α · p(c |θq ) + (1 − α) · pH(q → c)

)
logp(c | ®q),

(2)
where the proximity distribution from query labels to other labels
pH(q → c) is derived using Random Walk with Restart [11] in the
hybrid graphH ,α ∈ [0, 1] is the parameter to determine the relative
importance between the query language model and the proximity
distribution, and we will explain how to obtain the query language
model θq later in Section 3.3. We empirically set α = 0.7 by default
to derive the best results. Directly maximizing the objective in Eq. 2
is time-consuming due to the normalization in the denominator of
Eq. 1. And such normalization relies on the query vectors, so we can
have offline processing. We resort to take the relaxation [14] that
assumes the normalization is equal for all query vectors (Note that it
is a kind of heuristic). Consequently, we can use the similarity s(®c, ®q)
to replace p(c | ®q) in Eq. 2. Since the similarity depends on the query
vector ®q, maximizing objective function can be still influenced by
the query.

We take advantage of softmax function to estimate the similar-
ity between learned feature vectors of labels. We can define the
similarity function s(·, ·) as below:

s(®c, ®c ′) = exp

(∑d
i=0 ®ci ®c

′
i

∥®c ∥∥ ®c ′∥

)
, (3)

where d is the dimension of learned feature vectors. We assume
that each learned feature vector of label is a unit vector, i.e., the
norm equals to 1, under the setting without loss of generality. Then
we can rewrite the objective function from Eq. 2 to the following:

®q⋆ = arg max
®q

∑
c ∈L

(
α · p(c |θq ) + (1 − α) · pH(q → c)

)
·

(∑d
i=0 ®ci ®qi

∥ ®q∥

)
(4)



By letting the query feature vector be a unit vector, i.e., ∥q∥ = 1,
we can have the objective function in the form of Lagrange function:

L(®q, λ) =
∑
c ∈L

(
α · p(c |θq ) + (1 − α) · pH(q → c)

) d∑
i=0

®ci ®qi

+ λ

(
1 −

d∑
i=0

( ®qi )
2
)
,

(5)

where λ is the Lagrange multiplier. Through the mathematical
optimization method for Lagrange multipliers, we can derive the
first derivatives of the Lagrange objective function, as below:{

∂L
∂ ®qi
=

∑
c ∈L ®ci

(
α · p(c |θq ) + (1 − α) · pH(q → c)

)
− 2λ ®qi

∂L
∂λ = 1 −

∑d
i=1 ( ®qi )

2 ,

(6)
where ®qi is the i-th value of query feature vector ®q. By setting the
partial derivatives in Eq. 6 as zero, we can obtain the closed-form
solution of our objective as follows:

®qi =

∑
c ∈L ®ci

(
α · p(c |θq ) + (1 − α) · p(q → c)

)√∑d
j=1

(∑
c ∈L ®c j

(
α · p(c |θq ) + (1 − α) · pH(q → c)

) )2
. (7)

Eventually we can have the query feature vector ®qi using the closed-
form formula in Eq. 7.

3.2 Deriving the Ranking List
Since our goal is to recommend a ranking list of k targeted users S ,
we aim at estimating the social affinity between the queryq and each
user ui ∈ V based on the learned embedding vectors of users and
query ®ui and ®q. Users with higher social affinity scores to the query
are considered as more relevant to the query, and thus are ranked
at higher positions in the final list S . We select the top k users with
highest social affinity scores. We define the social affinity δ (ui ,q)
between user ui and query q using the similarity between two
embedding vectors defined in Eq. 3: δ (ui ,q) =

s( ®ui , ®q)∑
j s( ®uj , ®q)

.We can
simplify the computation of δ (ui ,q) by discarding the denominator
because it is the same for all users, i.e., δ (ui ,q) ≈ s( ®ui , ®q).

3.3 Query Language Model
The word embedding techniques have been validated to improve
the accuracy of document retrieval [1][13]. Based on such an idea,
to develop an accurate language model θq for the query, we further
extend the embedding from vocabulary terms to label nodes in the
graph. To estimate the probability of any label c given the language
model θq , i.e., p(c |θq ), our main idea is to impose an assumption:
the conditional independence between query labels – when users
performing context queries, they tend to describe the underlying
target using clues from multiple aspects that might not be directly
correlated (e.g. q = {NYC, Python, Spaghetti, BMW}). Note that this
conditional independence assumption may not hold for all cases
of user queries. To simplify the computation, we make such an
assumption, and leave the modeling of correlation between query
labels in the future work.

In order to estimate the query language model p(c |θq ), the Bayes

rule is applied: p(c |θq ) =
p(θq |c)p(c)

p(q) ≈ p(θq |c)p(c) (the term p(q)

can be neglected as it is independent of label c). Based on the

abovementioned conditional independence between query labels,
we can have the query language model as below:

p(c |θq ) ≈ p(c1, c2, · · · , ck |c)p(c) = p(c)
k∏
i=1

p(ci |c), (8)

where {ci |i = 1, 2, · · · ,k} are the set of query labels, and k is
the size of query label set. We compute p(ci |c) in Eq. 8 using the
similarity formula Eq. 3 with the learned embedding feature vectors
that depict the high-order relationships between labels and users
in the hybrid graph, as follows.

p(ci |c) =
s( ®ci , ®c)∑

c j ∈L s( ®c j , ®c)
. (9)

In addition, we can to compute p(c) based on the law of total prob-
ability: p(c) ≈

∑
c j ∈L s( ®c j , ®c). A label with higher similarity with all

the other labels will derive higher probability.

4 EVALUATION
The experiments are conducted using Facebook and Twitter social
network data provided by SNAP1. The data statistics are shown
in Table 1, in which CC means clustering coefficient while APL
refers to average path length in the social network G. Labels in
both data used include the terms of school, hometown, employer,
skill, gender, location, position, etc. In the social networks, we
compute the edge weights using the Jaccard coefficient: wu,v =

1 − (|Lu ∩ Lv |/|Lu ∪ Lv |), where Lu is the set of labels of node u.
Our general aims at examining whether or not the proposed SQEL
can help accurately find the desired targets for the task of search
by social contexts.

Table 1: Statistics of Facebook and Twitter data.

#nodes #edges CC APL
Facebook 4,039 88,234 0.606 4.7
Twitter 81,306 1,768,149 0.565 4.5

We compare SQEL with four competing methods: (a) label match-
ing (LM): using the query label set Q to find a list of possible
target users u such that the labels of u have the highest over-
lap with Q , LM(u,Q) =

|Lu∩Q |

|Lu |
; (b) Center-Piece Subgraph (CePS)

[10] with OR operation: consider those users containing at least
one label in Q as the source nodes in CePS, run the CePS algo-
rithm, and return a list of possible targets u with the highest CePS
scores CePS(t ,Q); (c) CePS+LM: the selection procedure is simi-
lar to CePS but returns the list of possible target users with the
highest average rank scores of CePS and LM, CePSLM(u,Q) =
1
2 (rank(CePS(u,Q) + rank(LM(u,Q))); and (d) POI-Search [3] is a
greedy heuristic algorithm to find the target covering the query
labels and having strong social interactions and higher proximity
scores towards the query labels.

In the evaluation setting, we first choose users in a random
manner as the ground-truth targets. Then for each ground-truth
target user ū, we randomly select k labels from the label set of
users {ū} ∪ N(ū), denoted by L {ū }∪N(ū), to be the query label set
Qū , where N(ū) is the immediate neighbors of user ū in the social
networkG , LX =

⋃
vinX Lv is the union of label sets of usersX , and

1http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/egonets-Twitter.html



Figure 1: Accuracy scores by varying the number of query
labels in Facebook ad Twitter data.

|Qū | = k . Here we set k = 10 by default, and will vary k to simulate
different knowledge extent about the target. To control the hardness
of the search task, we introduce a hardness parameter τ ∈ [0, 1]. In
selecting the query labels, we randomly choose τk labels from LN(ū)
and (1 − τ )k labels from Lū . Higher τ values make the task more
challenging. The design τ can also reflect that real users sometimes
provide inaccurate evidences about the desired targets. We set τ =
0.6 by default. We generate 500 pairs of queryQi and corresponding
ground-truth user ūi based on the above setting, i.e., Qi ∈ T , |T | =
500. Given the top-n targets Sn (Qi ) returned by a method and
the ground-truth targets S⋆(Qi ) = ūi , we define the evaluation
metric using accuracy: accuracy =

∑
Qi ∈T hit(Sn (Qi ), S

⋆(Qi ))/|T |,
where hit(Sn (Qi ), S

⋆(Qi )) = 1 if |Sn (Qi ) ∩ S⋆(Qi )| , 0; otherwise:
hit(Sn (Qi ), S

⋆(Qi )) = 0. It can be observed that as n increases, the
search task tends to be easier and will obtain higher accuracy. We
set n = 5 by default.

The evaluation plan consists of two parts. The first is General
Evaluation: varying the number of query labels k = |Q | to show the
performance of SQEL. A largerQ set means that the query contains
more information depicting the target. The second is sensitivity
analysis: varying the hardness τ – higher τ will introduce more
indirect labels that might be less relevant to the target, and thus
make the task more difficult; and vary the parameter α in Eq. 2 –
higher α will make the query embedding more significantly learned
from the query language model.

Experimental results are shown in Figure 1. By varying the num-
ber of query labels k , we can find that the proposed SQEL outper-
forms the other competing methods, especially when the number
of query labels increases. It is because more labels provide more evi-
dences about the desired targets. Though the integration (CePS+LM)
of structural connectivity in CePS and label matching in LM can
boost the effectiveness, the accuracy values are still lower than
SQEL. In addition, SQEL also clearly and consistently outperforms
the recent work POI-Search. These results imply that learning the
feature representation of query and users can effectively capture
the search intent and accurately obtain the targets.

Figure 2 shows the results of sensitivity analysis for the parame-
ters of (a) the hardness τ and (b) α that determines the importance
between query language model and proximity distribution in Eq.
2. We can apparently find, in Figure 2(a) that higher values of τ
lead to lower accuracy scores while lower τ produces better perfor-
mance, since more labels describing the target make the task easier.

Figure 2: Accuracy by varying (a) the hardness parameter τ ,
and (b) α in Eq. 2.

The results are consistent in both Facebook and Twitter datasets.
On the other hand, in Figure 2(b), too high or too low values of α
values lead to worse accuracy scores. The performance tends to
be better when alpha is around 0.7, which is therefore used as the
default value. Such results also inform us the influence of query
language model is more significant than the proximity distribution
in learning query representation.

5 CONCLUSIONS
This paper proposes the task of Search by Social Contexts (SSC)
to recommend the target individuals desired by the user based
on a set of query labels in social networks. The main technical
contribution is the novel development of Social Query Embedding
Learning (SQEL), which learns the feature representation of the
query considering the query language model and the proximity
distribution in a user-label interaction hybrid graph. Experimental
results show promising accuracy. We will also evaluate SQEL using
a user study by a developing Facebook application. The future work
is to extend SSC by imposing spatio-temporal contexts – the targets
are required to reflect the current time and location of the user.
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