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Abstract

A security vulnerability is a flaw in software
or hardware systems that an adversary could
exploit to compromise resources. Despite the
never ending effort to reduce and prevent
the vulnerabilities, its number has been con-
stantly increasing until today. To deal with
the vulnerabilities that are increasingly found
in diverse systems, various methods to priori-
tize and manage the vulnerabilities have been
proposed. The de facto standard method used
to assess and prioritize the vulnerability based
on severity is using CVSS (Common Vulner-
ability Scoring System), and many organiza-
tions have been using this system for vulnera-
bility management. However, CVSS is limited
in that it only takes some properties (e.g., ease
of exploit, impact, etc.) of a vulnerability into
account when measuring severity, and hence,
CVSS scores are often considered inaccurate
or impractical. In this paper, we present a
semantic approach to assess the severity of
vulnerabilities by ranking them. Our ranking
method uses the relational information of how
strongly two vulnerabilities are related or sim-
ilar to each other. With this ranking method,
we try to find which vulnerability has more
common characteristics than others, since we
believe that if a vulnerability has more com-
mon and popularly used characteristics, then
the vulnerability is likely to attract more at-
tack trials. Based on this insight, we evalu-
ate our ranking method with real vulnerabil-

ity data and show that our method can sift
out more critical vulnerabilities effectively.

1 Introduction

A vulnerability is a flaw which exists in either hard-
ware or software systems and can be used to threaten
the systems [ALRL04]. A vulnerability itself is not a
problem unless an adversary exploits it for the pur-
pose of making the systems fail in terms of security.
In other words, the vulnerability can be used by ma-
licious people to violate the systems’ important secu-
rity properties such as Confidentiality, Integrity, and
Availability (CIA) [ALRL04]. Therefore, swiftly find-
ing and patching the vulnerabilities is one of the most
significant concerns for hardware or software manufac-
turers, security software vendors, and researchers.

Unfortunately, it is so labor intensive and time con-
suming to fix the ever increasing vulnerabilities, and
thus people want to prioritize vulnerabilities to know
much more critical ones. For example, we can decide to
fix remotely exploitable vulnerabilities prior to locally
exploitable ones because the former can be easily ex-
ploited by most attackers. To this end, the vulnerabil-
ities are managed in a systematic manner where they
are given a unique ID and stored in a central database,
NVD (National Vulnerability Database) [NIS17], and
their severity is assessed by a severity assessment sys-
tem.

Common Vulnerabilities and Exposures
(CVE) [MSR06, MIT18] is the most popular
vulnerability management scheme, which is operated
by NVD. If someone finds and asks to register a
newly discovered vulnerability, NVD issues a unique
ID (CVE identifier) to the vulnerability. Once the
vulnerability is registered to NVD, one can check
its related information by the issued CVE identifier,
which includes a short description, references, a list of
affected products, and a severity score. In particular,
the severity score is evaluated by Common Vulnera-
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bility Scoring System (CVSS) [FIR17], the de facto
standard to quantify a vulnerability’s severity. With
CVSS score, one can sort vulnerabilities from highest
to lowest, which helps prioritize the vulnerabilities to
fix.

However, many researchers have argued that the
CVSS does not account for what security experts per-
ceive in the wild [AM12, AM14]. For example, a
vulnerability with a low CVSS score is ranked in a
higher position in bug bounty programs [MM16], and
the CVSS scores of randomly selected vulnerabilities
are not correlated well with severity scores manu-
ally evaluated by experts in the security field [HA15].
More specifically, let’s take Heartbleed as an example.
Heartbleed (CVE-2014-0160) is one of the most well-
known vulnerabilities that received worldwide atten-
tion lately. It is an implementation flaw of OpenSSL,
the most used open source encryption library and TLS
implementation [Ope18]. This vulnerability can make
servers leak confidential data including the encryption
key of the servers, which makes the problem much
worse, but its CVSS score is just 5.0 out of 10.0 with
Medium severity level.

In this paper, we present a semantic approach to as-
sess the severity of vulnerabilities (specifically CVEs)
by analyzing descriptions for a CVE. There are many
text descriptions for a CVE, such as NVD entries, se-
curity blog posts, and manufacturers’ web bulletins,
and such text descriptions explain how to exploit the
CVE and what kind of damage can be caused if the
CVE is exploited by attackers. Since those descrip-
tions commonly present various characteristics about
the CVE in human readable natural language, we can
glean insightful information from them with the help
of Natural Language Processing (NLP) techniques.

To this end, we first collect text descriptions il-
lustrating the characteristics of CVEs from various
sources: NVD, blogs, and web bulletins. Next, we
extract information from the text descriptions, which
includes the type of product where a CVE is found,
which version of the product that has the CVE,
whether there exists an easy-to-use exploit for the
CVE, and so forth. Once such information is ex-
tracted, then we apply a ranking method to under-
stand the severity of CVEs clearly. Based on the ex-
tracted information, our ranking method first tracks
how strongly CVEs are related or similar to one an-
other. This relation can reveal whether characteristics
of a CVE are also shared by other CVEs or not. Fi-
nally, our ranking method sorts CVEs in order, i.e., a
CVE with more common characteristics will be ranked
higher. The intuition behind our ranking method is
that if characteristics of a CVE are more general,
which means that they could be commonly/widely
adopted by attackers, then the CVE is more serious.

To get the rank of each CVE, we employ the TextRank
algorithm [MT04], and it is an unsupervised ranking
algorithm that can summarize and extract important
sentences or words within a text.

To initially evaluate our proposed ranking ap-
proach, we have collected real CVE data and apply our
method to the data. In addition, we compare our rank-
ing results with CVSS score to understand whether our
approach can clearly reflect real world opinions. Our
initial results show that our approach provides much
more realistic (and reasonable) ranking results than
CVSS.

2 Method

Before we give the detailed explanation on our vul-
nerability ranking method, we illustrate our system
overview in Figure 1. Our method operates in three
phases: (1) corpus building, (2) graph building, and
(3) vulnerability ranking. Our method is a text-
oriented vulnerability ranking, and thus we need a lot
of text descriptions about CVEs. Fortunately, NVD
compiles related information in a database and allows
to access the information freely, and we glean CVE de-
scriptions from NVD to build CVE description corpus.
After building the corpus, our method generates a vul-
nerability ranking graph where a vertex represents a
CVE. In the graph, vertices are linked to one another
when there is a certain relation between two CVEs.
We will discuss the relation that the CVEs can have
in the following sections. Once we completed the graph
building, we run TextRank algorithm on the graph to
obtain importance scores of the CVEs, by which the
CVEs are sorted.

2.1 Vulnerability ranking

Ranking model Our vulnerability ranking method
is based on TextRank [MT04], which is a graph-based
and unsupervised ranking model. TextRank summa-
rizes a text by ranking sentences in the text according
to their importance and singling out a set of higher
ranked sentences. In the model, a sentence is rep-
resented as a vertex, and two sentences are linked to
each other if they share similar contents, or words. Al-
though TextRank is an application of Google’s PageR-
ank [BP98] to text summarization, the two ranking
methods are different in that TextRank operates on
an undirected graph. This is because, unlike web
pages, sentences do not have explicit reference re-
lations. Therefore, TextRank cannot use the graph
structure information which denotes that a node votes
another one. Instead, TextRank assigns a similarity
weight on each link between two nodes, and they ex-
change the weight when calculating the importance
score.



Preprocessor

Sentence 

Boundary 

Detection

PoS Tagging

CVE Description

CVE-YYYY-XXXX Sentence 1, Sentence 2 …

CVE-YYYY-XXXX Sentence 1, Sentence 2 …

… …

NVD

Graph Builder

Linker

Link Weight 

Evaluator

Rank CVE

1 CVE-YYYY-XXXX

2 CVE-YYYY-XXXX

3 CVE-YYYY-XXXX

… …

Corpus Building
Graph Building and Ranking

regex: (CVE-\d{4}-\d{4,7})

Figure 1: Vulnerability ranking system overview

In the ranking graph G=(V, E), where V is the set
of vertices and E is the set of edges, let’s assume that
there is a vertex Vi. For Vi, let In(Vi) and Out(Vi) be
the set of predecessors of Vi and the set of successors
of Vi, respectively. In addition, if there is a vertex Vj

that belongs to In(Vi), the similarity weight between
Vi and Vj is defined as wji. Then, the importance
score of the vertex Vi can be computed as below:

IS(Vi) = (1−d)+d∗
∑

Vj∈In(Vi)

wji∑
Vk∈Out(Vj)

wjk
IS(Vj)

(1)

where d is a damping factor, which denotes the prob-
ability (1 - d) for a random surfer on the graph to
jump from a vertex to another one randomly [BP98].
In this model, the importance score of a vertex is dis-
tributed to its successors proportionally to the simi-
larity weight. Therefore, a vertex that is similar to
majority of other vertices within the graph tends to
have a higher importance score.

In our vulnerability ranking problem, we believe
that a vulnerability that has similar properties with
all kinds of vulnerabilities is important and thus needs
to be fixed first. This is because, if such a vulnerability
is found in a hardware or software product, it means
that the vulnerability makes the product have broad
attack surfaces. In other words, the product can be
attacked in various ways. Here, for two vulnerabilities
to have similar properties means that they can be used
by similar types of attacks or violate one of the CIA
triads alike.

How to represent a vulnerability in a graph?
In our ranking graph, a vertex represents the short de-
scription of a CVE, which is less than 10 sentences and
recorded for every CVE in NVD. For example, a ver-
tex labeled with CVE-2014-0160 represents the text
description presented in Figure 2 which is excerpted
from NVD 1. From content words in the description,
we can grasp how the vulnerability can be exploited by

1http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0160

The (1) TLS and (2) DTLS implementations in
OpenSSL 1.0.1 before 1.0.1g do not properly handle
Heartbeat Extension packets, which allows remote at-
tackers to obtain sensitive information from process
memory via crafted packets that trigger a buffer over-
read, as demonstrated by reading private keys, related
to d1 both.c and t1 lib.c, aka the Heartbleed bug.

Figure 2: Description of CVE-2014-0160 (Heartbleed)

attackers and what kind of damages can be caused af-
ter the vulnerability is successfully exploited. In other
words, in the CVE description, the characteristics of
the CVE are expressed in natural language, and the
presence of common characteristics between two ver-
tices determines whether they are linked together or
not. Notice that the text description cannot be used
directly to be drawn as a vertex and needs to pass
the predefined preprocessing steps to be converted to
a bag-of-words such as part-of-speech tagging, lemma-
tization, and so forth.

How to define similarity between two vulner-
abilities? For two CVEs to share similar character-
istics can be defined as having similar words in both
of their bags-of-words simultaneously. If the two bags-
of-words describing the two CVEs have similar words,
we compute the similarity between them by employ-
ing text similarity measures such as Jaccard index or
TF-IDF cosine similarity [BYRN99]. In this work, we
employ Jaccard index [Pau12] as presented in Equa-
tion 2, where X and Y are the sets of unique words
that constitute each bag-of-words of the two vulnera-
bility descriptions.

JaccIndex(X,Y ) =
|X ∩ Y |
|X ∪ Y |

=
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
(2)

Using this metric, we can measure how similar two
CVEs are. For instance, we present three CVEs and
their descriptions in Figure 3 and summarize their
similarities in Table 1. Since both CVE-2015-0311
and CVE-2015-7645 are vulnerabilities of Adobe Flash
Player and affect the same operating systems (i.e., MS



Unspecified vulnerability in Adobe Flash Player
through 13.0.0.262 and 14.x, 15.x, and 16.x through
16.0.0.287 on Windows and OS X and through
11.2.202.438 on Linux allows remote attackers to exe-
cute arbitrary code via unknown vectors, as exploited
in the wild in January 2015.

(a) CVE-2015-0311

Adobe Flash Player 18.x through 18.0.0.252 and 19.x
through 19.0.0.207 on Windows and OS X and 11.x
through 11.2.202.535 on Linux allows remote attackers
to execute arbitrary code via a crafted SWF file, as
exploited in the wild in October 2015.

(b) CVE-2015-7645

Unspecified vulnerability in Oracle MySQL Server
5.6.23 and earlier allows remote authenticated users
to affect availability via unknown vectors related to
Server : Security : Privileges.

(c) CVE-2015-2567

Figure 3: Three random CVEs registered in 2015 and
their NVD descriptions.

Windows and Apple OS X), they are the most similar
vulnerability pair among the three vulnerability pairs.
Next, CVE-2015-0311 and CVE-2015-2567 are similar
to each other because they have the same property
that remote attackers can exploit the vulnerabilities
via unknown vectors. In consequence, CVE-2015-0311
has various factors to be exploited by attackers such as
Adobe Flash Player, OS, and unknown attack vectors,
and we can conclude that it should be handled earlier
than others.

3 Evaluation

To evaluate our ranking method, we randomly selected
100 CVEs from NVD, which were registered in 2014,
and then constructed a small corpus consisting of the
100 CVE descriptions. The descriptions are converted
to bags-of-words, and the conversion requires prepro-
cessing that normally consists of sentence boundary
detection, stop word removal, and lemmatization. Af-
ter that, we run TextRank algorithm on the CVE de-
scription corpus and obtain the rank of the 100 CVEs.
In Table 2, we present the CVEs ranked in the top 10
out of 100. Due to the page limitation, we could not

CVE pair Jaccard index
CVE-2015-0311 & CVE-2015-7645 0.6182
CVE-2015-0311 & CVE-2015-2567 0.2223
CVE-2015-7645 & CVE-2015-2567 0.1132

Table 1: Pairs of the three CVEs registered in 2015
and their Jaccard index

CVE ID CVSS Keyword

CVE-2014-
5694

5.4 Android, X.509 certificate, SSL, MITM

CVE-2014-
3169

7.5 Use-after-free, DOM, Google Chrome, DoS,
remote attack

CVE-2014-
6707

5.4 7Sage LSAT Prep - Proctor, Android,
X.509 certificates, SSL, MITM, spoof

CVE-2014-
1741

7.5 Integer overflows, Blink, Google Chrome,
remote attackers, DoS

CVE-2014-
1316

5.0 Heimdal, Apple OS X, remote attackers,
DoS, Kerberos 5

CVE-2014-
2536

4.3 Multiple directory traversal, McAfee, re-
mote authenticated users

CVE-2014-
2279

6.4 Multiple directory traversal, SeedDMS, re-
mote authenticated users, read arbitrary
files, .. (dot dot) in the logname parame-
ter

CVE-2014-
5836

5.4 GittiGidiyor, Android, X.509 certificates,
SSL, MITM, spoof

CVE-2014-
0885

6.8 CSRF, Admin Web UI, IBM Lotus Protec-
tor for Mail Security, remote authenticated
users, unknown vectors

CVE-2014-
5780

5.4 Bouncy Bill, Android, X.509 certificates,
SSL, MITM, spoof

Table 2: Top 10 CVEs generated by our ranking
method and their CVSS scores and keywords. CVSS
score ranges from 0.0 (not severe) to 10.0 (the most
severe) and it is increased by 0.1.

specify the whole description about each of the CVEs
but present some keywords in the table.

Taking a look at Table 2, we know that most of
the CVEs are related to an X.509 public key certifi-
cate problem and can cause some remote attacks such
as Man-In-The-Middle (MITM) attacks and Denial of
Service (DoS) attacks. In addition, the CVEs are re-
ported to be found in widely used software products
including Android, Google Chrome, and Apple OS X.
In summary, our ranking method ranks CVEs higher,
which (1) are related to a security hole (e.g., certifi-
cate verification bypass), (2) are found in popularly
used products (e.g., Android) , and (3) can cause well-
known types of attacks (e.g., MITM and DoS).

Note that, while the CVSS score for CVE-2014-5694
is lower than that for CVE-2014-3169, CVE-2014-5694
is located at a higher position than CVE-2014-3169
by our ranking method. This is because the keywords
contained in the description of CVE-2014-5694 (i.e.,
Android, X.509, SSL, etc.) are commonly found in
other CVEs’ descriptions more frequently than those
of CVE-2014-3169 (i.e., DOM, Google Chrome, DoS),
which has an impact on the weights of the links to
which the CVE is connected.

4 Discussion

Although our ranking method gives a new rank of
the vulnerabilities, reflecting other facets that were
never used for assessing the vulnerabilities’ severity,
the ranking method has issues to be addressed fur-



ther. First, using NVD descriptions, we make nodes
of the vulnerability ranking graph. However, the de-
scriptions are a short text and provide limited infor-
mation. On the contrary, there are useful sources from
which we can glean detailed information about vul-
nerabilities. For example, one can search Microsoft
Security Bulletins [Mic18] for web documents explain-
ing about newly discovered or patched vulnerabili-
ties in their own words, and many researchers and
practitioners post security-related information on their
own blogs [Fee18]. In addition, exploits, which are
a set of commands to infringe a system using a vul-
nerability, are archived with related information in a
database [Sec18], and thus we can collect another type
of information that explains how to use the vulnera-
bility from the viewpoint of practitioners.

Furthermore, to measure the similarity of given two
vulnerabilities, we use Jaccard index based on their
CVE descriptions. However, we can extend our sim-
ilarity measure, considering not only such topologi-
cal semantics but also distributional semantics such
as word embeddings. In addition, it is not sufficient to
measure two vulnerabilities’ similarity only consider-
ing the textual descriptions because there are other
factors to determine whether given two vulnerabili-
ties are similar to each other, which may not be ex-
pressed in the descriptions. For instance, there are
bug bounty programs that are operated by many or-
ganizations such as Google, Mozilla, and Facebook,
and they give a bounty for a bug or a vulnerability
to the bug discoverer. Then, we can assume that two
vulnerabilities are similar if their bounties are set in a
similar level.

5 Conclusion

In this work, we present a semantic way to assess
vulnerabilities by examining their textual descriptions
from which we can grasp characteristics of the vulnera-
bilities. We then build the vulnerability ranking graph
by representing each vulnerability’s characteristics as
a node, which are expressed in natural language, and
run the TextRank algorithm on the graph to obtain
the rank of the vulnerabilities. As our future work, we
will address the issues discussed in Section 4 to im-
prove the performance of our ranking method to the
degree to which security experts and practitioners can
agree with our ranking result. To this end, we are
going to carry out expert-based performance evalua-
tion for our ranking method, inspired by the existing
research work [HA15].
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