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Abstract. Qualitative and numerical methods of researching nonlinear vibration 

systems are used to study the mathematical model of nonlinear vibrations of a 

biologically active rod. This model is widely used in biomechanics and medical 

research for designing new materials with biofactor elements that possess cer-

tain preset features. Conditions are established for the existence of a unique so-

lution of the boundary value problem for the beam vibration nonlinear differen-

tial equation, in which there is an integral summand with the fourth derivative 

by the spatial variables. This summand models the rheological factor in the sys-

tem. The existence of classes of nonlinear rheological vibration systems with 

dissipation that have blow-up regimes is stated theoretically. The relation be-

tween nonlinearity indices in such regimes is obtained. The theoretical possibil-

ity of using the Runge-Kutta method for numerical solution of the correspond-

ing boundary value problem is shown. The results are illustrated by a model ex-

ample. The importance of the obtained theoretical assumptions for the practical 

modeling, analysis, and synthesis of parameters of technological vibration sys-

tems is shown. 
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1 Introduction 

Mathematical modeling of both normal physiological and pathological processes is 

one of the current trends of modern medical research. It is especially important to note 

that modern medicine is largely an experimental science with a vast empirical experi-

ence of affecting different diseases with a variety of means. However, more often than 

not searching for experimental means of studying different process in biological me-

dia has many flaws due to our inability to limit ourselves to experiment only. There-

fore, mathematical modeling is often the most effective way of studying processes in 

living organisms (or their parts).  

In medical practice, numerical modeling of biomechanical processes is carried out 

on the basis of the continuous media mechanics models and numerical methods of 

solving corresponding systems of partial differential equations. 

Mathematical modeling methods can narrow down the search of optimal system 

parameters significantly. After such parameter optimization, experimental research 

can be carried out with much more information about the functioning of a biological 

system. The development of the mathematical modeling framework involves build-

ing a closed mechanical-mathematical model of the process that describes the be-

havior of a biological medium on the basis of equations in partial derivatives and the 

continuous medium mechanics principles. In addition, mathematical modeling in-

volves calculating constitutive relations between the components of stress tensors and 

deformation tensors. Correct mathematical formulation of the problem and the preset-

ting of initial and boundary conditions are necessary for effective research. The de-

velopment and software implementation of numerical algorithms adapted to the spe-

cifics of the problem under consideration and the visualization of the obtained numer-

ical results are also important.  

During the study of biomedical issues, we may come across processes, for whose 

mathematical description we use the frameworks of ordinary differential equations, 

mathematical physics equations, algebraic nonlinear equation systems, difference 

equations, the theory of bifurcations, chaos and order, etc. Examples of a successful 

use of such mathematical frameworks are presented in [1] for prognosing disease 

development, in [2-5] - for solving nonlinear dynamics problems in biology, chemical 

kinetics, etc. The development of numerical methods for solving problems in biome-

chanics also allowed solving problems in the physics of plasmas, the mechanics of 

deformable solids, etc. It is known that certain mathematical methods have evolved 

under the influence of biomedical problems, for example, the methods of mathemat-

ical statistics, Volterra equations, neural networks, methods of solving rigid differen-

tial equations, etc. 

The problems of researching mathematical models of linear and nonlinear dynam-

ic systems have become widespread in recent decades. We are talking about qualita-

tive approaches [6-11], analytical approaches [12-18], and combinations of such ap-

proaches and approximate research methods [19].   

The biological, medical, and sport problems that require research and numerical 

solution of partial equations have been formulated relatively recently. They are pre-
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sented in [20-22]. Rheological relations for biological continuous media have been 

developed in [23-24]. The range of tasks considered in this area is quite wide. 

The most important area in traumatology is the problem of mathematical model-

ing of human leg movement while walking in order to build orthopedic prostheses 

that imitate this movement. To model the distribution of dynamic loads and defor-

mations at the time of movement of the entire foot, it is necessary to use the frame-

work of partial differential equations, in particular the system of equa-tions of the 

mechanics of deformable solid body. Creating such models for the needs of trauma-

tology and orthopedics is a new and relevant task for computational biolo-gy and 

medicine. Computer-assisted implementation of virtual surgeries and predic-tion of 

their consequences is another prospective area. This is a very complex area of re-

search that is just beginning to emerge. The formulation of certain mathematical mod-

els and methods of their research are not totally clear.  However, the implementation 

of some virtual surgeries is a real task. Thus, in [25], numerical modeling of lithotrip-

sy surgeries (fragmentation of renal stones with acoustic waves initiated by a spark 

discharge or a laser pulse) is presented. The purpose of such studies is to find litho-

tripter operating modes (pulse duration and intensity, number of pulses), at which 

fragments of destroyed stone would be small enough for natural excretion. For this 

purpose, the picture of acoustic pulse propagation in the body and the stone was in-

vestigated numerically, and the problem of its destruction was solved. 

The problems of biomechanics, as well as the tasks of controlling and regulating 

vibration processes in structural systems, are largely related to the problem of contact 

interactions with the medium, whose response to external influence depends on the 

prehistory or the history of load. In other words, external influence turns into the re-

sponse of the coupling medium. This feature of the medium is called self-regulation. 

Models of self-regulatory systems in biomechanics are models of bioactive materials, 

or materials with biofactor. Similar models have been developed, for example, in [26-

28]. A model of a self-regulatory medium, whose response to force impact is de-

scribed by a hereditary-type biofactor model [27], is used in this case.  The solution of 

the corresponding mixed problem for the fifth-order equation is built and the impact 

of the biofactor and material viscosity on the vibration process is investigated.  

The aim of the presented studies is to develop qualitative approaches and on their 

basis to theoretically substantiate the possibility of creating proper computational 

methods for solving problems in biomechanics. These tasks arise in the process of 

creating new orthopedic materials, as well as the modeling, synthesis and optimiza-

tion of parameters of corresponding orthopedic systems. 
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2 Investigation of the mathematical model of a nonlinear 

vibration system that generalizes the rheological vibration 

model with consideration of the effect of the biofactor  

2.1 Problem statement. The main result  

Let us denote (0, ) (0, )TQ l   ,  0,T  , 0 l   ,T   . In the domain 
TQ , we 

consider the first mixed problem for the nonlinear equation with real coefficients  

     2

2 2 1( ) ( ) ( )
q

tt xxt xx xx xxxx xx
xx

U a x U b x U b x U U


     

 
2

0

0

( ) ( ) ( , ) ( ) ( , )

t
p

xx xx
g t d x U x d c x U U f x t  


      (1) 

with the initial conditions 

0( ,0) ( )U x U x ,     (2) 

1( ,0) ( )tU x U x      (3) 

and the boundary conditions  

(0, ) (0, ) 0xxU t U t  , ( , ) ( , ) 0xxU l t U l t  .   (4) 

The mixed problem for the fifth-order nonlinear evolution equation considered here 

describes the vibrations of an elastic bioactive rod with consideration of the 

"memory" effect. The aim of this article is to conduct a qualitative study of the solu-

tion to the problem (1) - (4) in a limited range and obtain sufficient conditions for the 

existence of a generalized solution of the mixed problem in Sobolev spaces for the 

fifth-order differential equation (1), in which there is an integral summand with the 

fourth derivative according to the spatial variable that models the effect of "memory" 

in the vibration system. The obtained results will make it possible to apply adequate 

computational methods and computer simulation to the above problem for the optimal 

synthesis of the parameters of a vibration system whose mathematical model is the 

problem (1)-(4). Let us assume the following conditions are true:  

(1) functions 
2 ( ),a x   2 ( )

xx
a x  are bounded on (0, )l ; 

2 2( )a x A ,  2 2( )
xx

a x A , 

2 0A  ; 

(2) functions 
2 ( ),b x  2 ( )

xx
b x are bounded on (0, )l ; 

2 2( )b x B ,  2 2( )
xx

b x B ,
2 0B  ; 

(3) functions  
1( ),b x   1( )

x
b x are bounded on (0, )l ; 

1 0( ) 0b x b  ; 

(4) function 
0 ( )c x  is bounded on (0, )l ; 

(5) ( ) 0g t  , ( ) 0g t   for all  0,t  , 
0

0 ( )g t dt G



    ;  

(6) function ( )d x  is bounded on (0, )l , 
2( ) 0d x d  ; 

(7) 2p  , 2q  ; 

(8) functions ( , )f x t , ( , )tf x t  are integrable with square according to Lebesgue in the 

domain 
0

Q
 for any 

0 0  ; 
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(9) the initial deviation has the following features:  
0 ( )U x is a function integrable with 

power 2 2p
 
on (0, )l , the second derivative 

0 ( )U x  is a function integrable with 

power q  on (0, )l ,  the fourth derivative 
0 ( )U x  is a function integrable with square 

on (0, )l ,  
3 2q

xx xxxU U


,     
23

0 0

q

xx xxx
U U



 are the functions integrable with 

square on (0, )l , while 
0 ( )U x  satisfies the conditions (4);    

(10) the initial deviation has the following features: the second and the fourth deriva-

tives of 
1( )U x  are functions integrable with square

 
on (0, )l , while 

1( )U x  satisfies the 

conditions (4). 

The function  : (0, ) 0,U l T  (T is a positive number or  ) is called the 

generalized solution to the problem (1)-(4) in the domain 
TQ  if it satisfies the initial 

conditions (2) and the integral equality 


2

2 2 1

0

( ) ( ) ( )

l
q

tt xxt xx xx xx xx xx xxU V a x U V b x U V b x U U V


     

2

0

0

( ) ( ) ( , ) ( ) ( ) ( , ) 0

t
p

xx xxg t d x U x V x d c x U UV f x t V dxdt  
     

  (5) 

for almost all  0,t T  and for all testing functions V ,  for which the equality (5) is 

correct. 

The solution ( , )U x t  has the following features: 

- the functions U , 
tU  are continuous on  00,T  according to the time variable, 

the second derivative 
ttU  is bounded on  00,T  according to the time variable for an 

arbitrary number 
0T  from the interval  0,T ; 

- the function U  is integrable according to the spatial variable with power q  on 

 0,l ; the function 
tU is integrable with square

 
according to the spatial variable on 

 0,l ; the function 
ttU  is integrable with square

 
together with the second derivative 

according to the spatial variable on  0,l . 

The main result.  Let the conditions (1), (2), (3), (4), (5), (6), (7), (8), (9), (10) be 

satisfied. Then the finite time T , which depends on the coefficients, the right-hand 

side of the equation, and the initial data, can be specified, at which a generalized solu-

tion U  of the problem (1) - (4) exists in the domain 
TQ . 
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2.2  Galerkin method  

Because the space 2, 4 2 2ˆ(0, ) (0, ) (0, ) (0, )r pV l W l H l L l with  max , 2 4r q q   is 

a separable Banach, there is a countable set in it  k

k



, where any finite number of 

elements is linearly independent and the closure of its linear shell in ˆ(0, )V l  coincides 

with ˆ(0, )V l . Let us note that  k

k



can be selected orthonormal in the 

space 2 (0, )L l . Let’s consider the functions 
1

( , ) ( ) ( )
N

N N k

k

k

U x t c t x


 , 1,2,...N  , 

where  
1

Nc , 
2

Nc ,…, N

Nc  are solutions of the corresponding Cauchy problems 

2

2 2 1

0

( ) ( ) ( )

l
q

N k N k N k N N k

tt xxt xx xx xx xx xx xxU a x U b x U b x U U   


       

2

0

0

( ) ( ) ( , ) ( ) ( , ) 0

t
p

N k N N k k

xx xxg t d x U x d c x U U f x t dxdt     
     

 ,         (6) 

0,(0)N N

k kc U ,     1,(0)N N

k kt
c U ,     (7) 

where   
0 0,

1

( ) ( )
N

N N k

k

k

U x U x 


 ,  
1 1,

1

( ) ( )
N

N N k

k

k

U x U x 


 , 

0 0 ˆ (0, )
0N

V l
U U  ,  

2 4
0

1 1 (0, ) (0, )
0N

H l H l
U U  ,    

N  . On the basis of the Karatheodori theorem [29] there exists an absolutely 

continuous solution to the problem (6), (7), determined in a certain interval  00,t . 

From the evaluations obtained below, it follows that 
0t T , while number T  will be 

determined later. 

Let us multiply (6) by  N

k t
c , sum it up by k  from 1 to N  and integrate it by t  

from 0 to T  . We will obtain  

   
2 2 2

2 2 1

0

1
( , ) ( ) ( ) ( )

2

l
q

N N N N N N N

t xxt xx xxt xx xx xxt

Q

U x dx a x U b x U U b x U U U




   

   

 
1

22

0

0 0

1
( ) ( ) ( , ) ( ) ( , )

2

t l
p

N N N N N N N

xx xxt t tg t d x U x U d c x U U U f x t U dxdt U dx  
     

  . (8) 

Let us evaluate the summands of the equality (8). Based on condition (1)  

   
2 2

1 2 2( ) N N

xxt xxt

Q Q

I a x U dxdt A U dxdt

 

   . 

According to condition (2)  

    
2 22 222

2 2 0 2
(0, )

0 0

( ) ( , ) ( , ) , sup ( )
2 2

l l

N N N N

xx xxt xx xx
x l

Q

B B
I b x U U dxdt U x dx U x dx B b x



 


      . 

 

 

Using condition (3), we will obtain  
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    
22

0 1 2

3 1 0

0 0

( ) ( , ) ( , )

l l
qq

N N N N N

xx xx xxt xx xx
Q

b C C
I b x U U U U x dx U x dx

q q
 



     ,  

at that 
1 0C  , the positive constant 

2C  depends on 
0

1
(0, )

sup ( )
x l

b b x


 .  

Based on conditions (5), (6),   

   
2 2

3 1 4

4

10

( ) ( ) ( , )
2 2

t

N N N N

xx xxt xxt xx

Q Q Q

C G C
I g t d x U x U d dxdt U dxdt U dxdt

  


  


       ,  

where 
1 0   is an arbitrary constant, while positive constants 

3C , 
4C  depend on 

0

(0, )

sup ( )
x l

d d x


 , T .  According to condition (4), 

2
0

5 0 5 6( )
p p p

N N N N N

t t

Q Q Q

I c x U U U dxdt C C U dxdt C U dxdt

  



       

0

5 6 7 0

0 0

( ,0) ( , )

p
t l

p p
N N N N

t t

Q Q

C C U x U x dxdt C U dxdt C U dx

 

         

 
22

8 7 0 9

0 0 0

( , ) ,

p
l l

p p
N N N

t t

Q

C U dxdt C U dx C U x dx dt





     
0

0
(0, )

sup ( )
x l

C c x


 ,  

positive constants 
5 9C C  are independent from N .  

Using condition (8), one can get  

 
2

2

6

1
( , ) ( , )

2

N N

Q Q

I f x t U dxdt f x t U dxdt

 

 
   

  
  . 

Taking into account the evaluation of integrals 
1 6I I ,  after proper choice of a 

sufficiently small constant 
1   the next inequality is true: 

     
2 2 2

0

1
( , ) ( , ) ( , ) ( , )

2

l
q

N N N N

t xx xx xxt

Q

U x U x U x dx U x dxdt



       
     

         
2 2 2

10 11 0 1 0 0

0

l
qp

N N N N N N

t xx xx xx
Q

C U U dxdt C U U U U dx



        
         

   
222

12 13

0 0

( , ) ( , )

p
l

N

t

Q

C f x t dxdt C U x dx dt





    ,  0,T  ,   (9) 

where 
10 13C C are positive constants independent on N . Using the Grönwall-

Bellman inequality, from (9) we obtain  

     
2 2 2

0

1
( , ) ( , ) ( , ) ( , )

2

l
q

N N N N

t xx xx xxt

Q

U x U x U x dx U x dxdt



       
     

  
22

1 2

0 0

( , )

p
l

N

tM M U x dx dt



    ,  0,T  ,   (10) 
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while positive constants 
1M , 

2M  depend on the coefficients, the right-hand side of 

the equation, and the initial data and are independent of N . 

The Bihari lemma can be applied to inequality (10) [30, p. 110].   

     
2 2 2

0

1
( , ) ( , ) ( , ) ( , )

2

l
q

N N N N

t xx xx xxt

Q

U x U x U x dx U x dxdt



       
     

 
   

1

2 2
2 2

1 2

2

2 ( 2)
p

p

M

p M M T





  
 

   (11) 

at 
   2 2

1 2

2

2
p

T
p M M





. Therefore, from (11) it follows  

  

     

2,
1 0

2 2 2
1 0 1

30, ; (0, )

30, ; (0, ) 0, ; (0, )

q

N

L T W l

N

t L T H l L T L l

U M

U M








 ,   (12) 

where positive constant 
3M  is independent on N ,  1 0,T T . 

Let us further differentiate (6) according to variable t , multiply the obtained 

equality by  N

k tt
c , sum up all the equations according to k  from 1 to N  and inte-

grate the result according to the variable t  from 0 to  , 
1(0, ]T  . Let us evaluate the 

summands of the obtained equality using conditions (1)-(10) just as the previous 

evaluations were obtained. Based on the above evaluations, on can get 

     

2 22
4

1 1
1

0
4 5

2
( , ) ( , ) ( , )

2 (2 2)

l

N N N

tt xxt xxtt q
q

Q

M
U x U x dx U x dxdt

q M M T

  




   
      

   (13) 

at 
  1

4 5

1

1 q
T

q M M



.  From inequality (13) we conclude that  

  

     

2
2 0

2 2 2
2 0 2

60, ; (0, )

60, ; (0, ) 0, ; (0, )

N

t L T H l

N

tt L T H l L T L l

U M

U M








, 

where the positive constant 
6M  is independent on N ,  2 0,T T . Let  

      12 2

4 51 2

2 1
min ,

12
qp

T
q M Mp M M



  
  

  

. After performing additional a priori 

evaluations and conclusions, for the arbitrary  0 0,T T  one can obtain 


0

2 2

0

( ) ( ) ( ) ( ) ( ) ( , ) ( , )

T

t

tt xx xxt xx xx xx xx xx

Q

x U U a x U U b x U U g t d x U x d U U x t       

 

0

0 1( ) ( , ) ( ) 0

T

p q

xx

Q

c x U f x t U dxdt b x U dxdt   
  .   (14) 
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Given the arbitrariness of 
0T , it follows from (14) that U  satisfies equation (1) in 

terms of distributions. Taking into account the smoothness of the obtained function, 

we conclude:  U  is a generalized solution of the problem (1)-(4) in 
TQ  . 

3 Model example. Results of numerical integration   

The following equation can serve as the simplest model example (1)  
2

0 0 0 ( , )
p

tt xxxxt xxxx tU aU bU a U b U c U U f x t


      , 2p  .    (15) 

In equation (15), the function ( , )U x t  is transverse movement of beam cross-section 

with the coordinate x  at any given time t ; 0a  , 0b  , 
0 0b  are constants that are 

expressed through geometric and physical-mechanical parameters of the beam, con-

stant 
0 0a   characterizes the effect of resistance forces in the vibration system (linear 

case), constant 
0c  describes nonlinearly elastic forces affecting the system, ( , )f x t  is 

external driving force. Boundary conditions (4) correspond to the model of the beam 

with fixed pivot bearings at the ends  0x   and x l . In case of the mixed problem 

(15), (2)-(4) can be obtained using the above considerations, the value of the critical 

time 
0T , at which the vibration system functions in a regime without blow-up at 

0t T , and goes into the blow-up regime at 
0t T . It is easy to show that value 

0T  

satisfies the condition  

  
 0 2 /2

2

ˆ2
p

T
p M M





, 

while ,M M   are some generalized parameters of the vibration system which de-

pend on the constant of equation (15) and the initial data.  

Fig. 1 shows the dependence of the critical value of 
0T  on generalized parameters 

of the vibration system ,M M at nonlinearity index 3p   which characterizes non-

linearly elastic features of the environment. 

The qualitative results obtained in the previous section make it possible to investi-

gate with the help of numerical methods the dynamic regimes of vibrations for equa-

tion (15) in case of the problem with initial deviation 0

2 , 0 2
( )

2 2 , 2

x l x l
U x

x l l x l

 
 

    

and 

zero initial velocity of deflection of the pivot points and zero boundary conditions. 
The problem set describes natural transverse vibrations of the rod, which at the initial 

moment of time is loaded by concentrated force at the point with coordinate 2x l . 

The above problem is a problem of the same form as (15), (2)-(4). As shown above, 

there is a single generalized solution to this problem. Therefore, for numerical inte-

gration of motion equations, the choice of method is important only from the compu-

tational point of view. Numerical solution of the problem is carried out using the 

fourth-order Runge-Kutta method.  Figure 2 presents the law of time deviation of the 

rod midpoint, depending on the correlation between the frequencies of natural and 
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forced vibrations under the following conditions: 1l  , 0,001a   , 1b   , 

0 0 0a b  , 
0 100c  , 5p  , ( , ) 300sin9,48f x t t . 

 

 

Fig. 1. Dependence of value 
0T  on the generalized parameters of the vibration system at 

3p  . 

   

 

Fig. 2. The law of rod midpoint deviation time change (resonant regime) 

Figure 3 shows the same law provided ( , ) 300sin9,48 2f x t t  . 
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Fig. 3. The law of rod midpoint deviation time change (non-resonant regime) 

4 Conclusions  

The mathematical model of nonlinear vibrations of a bioactive rod was investigated 

using combined qualitative and numerical approaches with consideration of the self-

regulation phenomenon. This mathematical model is used in biomechanical studies of 

new materials and to synthesize vibration system parameters. This, in turn, is an im-

portant issue in current medical research. The mathematical model of a vibration sys-

tem is presented as a mixed problem for a fifth-order equation with memory. Subcriti-

cal and critical system operation regimes were evaluated. Analytical correlations that 

characterize the moment of process transition to the blow-up regime were established. 

The qualitative and numerical results are the next: 

 physical and mechanical parameters of a vibration system determine the critical 

value of the time parameter, up to which the system is in the blow-up-free regime;  

 the attenuation rate does not depend much on the degree of nonlinearity of the 

resistance force, while the effect of the resistance force on the vibration period at 

small values of a , p  is minor;  

 depending on the correlation of frequencies of natural and induced vibrations in 

the system, there will be a time increase of vibration amplitude (resonance) or 

vibration beating. 
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