
On Domination and Control in Strategic Ability
(Extended Abstract)?

Damian Kurpiewski1, Micha l Knapik1, and Wojciech Jamroga1,2

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Interdisc. Centre for Security, Reliability and Trust, Snt, University of Luxembourg

1 Introduction

Many relevant properties of multi-agent systems refer to strategic abilities of
agents and their groups. A typical property to express is that the group of agents
A has a collective strategy to enforce temporal property ϕ, no matter what the
other agents do [1, 8, 6]. Verification of such properties, especially for strategies
with imperfect information, is difficult for a number of reasons. In particular,
incremental algorithms do not work, and the space of strategies is huge – usually
larger than the state space by orders of magnitude. However, some strategies are
better than others. Here, we propose and study a notion of strategic dominance
that refers to the amount of control obtained by a strategy. The formal definitions
and a detailed presentation of the results can be found in the original paper [3].
A prototype tool implementing our model checking algorithm is described in [4].

2 Comparing Partial Strategies

We propose and study a notion of domination that refers to the tightness of the
strategy. Technically, this is defined by introducing a new concept of input/output
characteristic of a (partial) strategy. The inputs of a strategy consist of all the
states where the strategy is granted the full control over the execution of the
system. To each of these entry points we assign the set of states where the
strategy returns the control to the environment, i.e., the outputs. A new strategy
is better than the original one if it assigns smaller outputs to the same inputs.

We prove that the notion of dominance based on the comparison of in-
put/output characteristics is sound, i.e., a dominating strategy can achieve at
least what the dominated one can. On the other hand, dominance does not nec-
essarily lead to simpler strategies. We thus combine the theoretical concept with
heuristics geared towards simplicity of strategies.

3 Model Checking with DominoDFS

We have used the new concept of dominance to design and implement an on-
the-fly model checking algorithm that tries to synthesise a winning strategy.

? Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).



Conf. DominoDFS MCMAS Approx. Approx. opt.

(1, 1) 0.0006 0.12 0.0008 < 0.0001

(2, 2) 0.01 8712∗ 0.01 < 0.0001

(3, 3) 0.8 timeout 0.8 0.06

(4, 4) 160 timeout 384 5.5

(5, 5)∗ 1373 timeout 8951 39

(5, 5) memout timeout memout 138

(6, 6)∗ memout timeout memout 4524

Conf. DominoDFS MCMAS SMC

(1, 1, 1) 0.3 65 63

(2, 1, 1) 1.5 12898 184

(3, 1, 1) 25 timeout 6731

(2, 2, 1) 25 timeout 4923

(2, 2, 2) 160 timeout timeout

(3, 2, 2) 2688 timeout timeout

(3, 3, 2) timeout timeout timeout

Table 1. Results for Bridge Endplay (left) and Castles (right). For the configurations
marked with (*), tests were only run on a single handcrafted instance of the model.

The main routine is based on depth-first search and synthesis, starting from the
initial state. The novelty of the approach consists in elimination of dominated
partial strategies, which substantially reduces the search space.

The algorithm, called DominoDFS, has been implemented in Python 3. We
compared its performance to three existing tools: the state of the art tool MC-
MAS [5], an experimental model checker SMC [7], and a prototype implemen-
tation (in C++) of the fixpoint approximation algorithms [2]. The experimental
results for the benchmarks of Bridge Endplay [2] and Castles [7] are shown in
Table 1. The running times are given in seconds; the timeout was 4h.

The results show that DominoDFS significantly outperforms MCMAS and
SMC. It also successfully competes with the basic implementation of fixpoint
approximation. We also note that our new approach can handle models that do
not submit to the fixpoint approximation scheme (i.e., Castles), as well as ones
on which the output of SMC is faulty (i.e., Bridge Endplay).

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic.
Journal of the ACM, 49:672–713, 2002.

2. W. Jamroga, M. Knapik, and D. Kurpiewski. Fixpoint approximation of strategic
abilities under imperfect information. In Proc. of AAMAS, pages 1241–1249, 2017.

3. D. Kurpiewski, M. Knapik, and W. Jamroga. On domination and control in strategic
ability. In Proceedings of AAMAS, pages 197–205, 2019.

4. D. Kurpiewski, M. Knapik, and W. Jamroga. STV: Model checking for strategies
under imperfect information. In Proceedings of AAMAS, pages 2372–2374, 2019.

5. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-source model checker
for the verification of multi-agent systems. International Journal on Software Tools
for Technology Transfer, 2015.

6. F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning about strategies. In Proceed-
ings of FSTTCS, pages 133–144, 2010.

7. J. Pilecki, M.A. Bednarczyk, and W. Jamroga. SMC: Synthesis of uniform strategies
and verification of strategic ability for multi-agent systems. Journal of Logic and
Computation, 27(7):1871–1895, 2017.

8. P. Y. Schobbens. Alternating-time logic with imperfect recall. Electronic Notes in
Theoretical Computer Science, 85(2):82–93, 2004.


