
Explicit Memorization for Recurrent Neural
Networks with Autoencoders

Antonio Carta1[0000−0002−0003−2323]

Università di Pisa, Pisa, Italia
antonio.carta@di.unipi.it

Abstract. Recurrent neural networks are difficult to train due to the
vanishing and exploding gradient problem. Most of the solutions in the
literature revolve around the design of new models able to mitigate this
issue. However, they ignore the training algorithm, relying on gradient
descent and end-to-end training. In this extended abstract, we propose a
conceptual separation of recurrent models into two components: a feature
extractor and a memory. We introduce the Linear Memory Network, a
recurrent model based on this conceptual framework. The separation
of the two components allows us to concentrate on the development of
better memory models and training algorithms. We exploit this model to
design several algorithms to train the LMN and its hierarchical extension
and initialize the memory based on the optimal solution of the linear
autoencoder for sequences. After the initialization, the autoencoder is
implicitly used as an explicit memory by encoding and decoding the entire
sequence of hidden states in its memory. The experimental results show
that using these algorithms, designed for memorization, we can improve
the results of recurrent models on a variety of tasks.

Keywords: Recurrent Neural Networks · Autencoders · modular neural
networks.

1 Introduction

Recurrent neural networks (RNN)[6] solve sequential problems by iteratively
updating an internal state at each timestep. Recently, RNNs obtained state-of-
the-art results in several sequential domains, such as speech recognition [7] and
machine translation [12]. Despite their success, RNNs are extremely difficult to
train due to the vanishing gradient problem[10], which makes it extremely hard
to learn long-term dependencies.

The work outlined in this extended abstract focuses on the development of a
novel memorization mechanism for recurrent neural networks. The objectives of
this work are:

– the design of novel RNN models with explicit memorization;
– the design of novel training algorithms for the RNN memory;
– the study of the tradeoffs between a pure memorization approach for sequential

problems and end-to-end training.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



96 Antonio Carta

Currently, recurrent architectures are trained end-to-end by stochastic gradient
descent. Most of the work in the literature try to improve current recurrent
models by proposing architectural changes. Instead, our proposal is based on
two principles: the separation between memory and functional components, and
the development of specialized training algorithms for recurrent networks, a field
largely ignored by the current literature.

2 State of the Art

Several solutions have been proposed to mitigate the vanishing and exploding
gradient problem. Gated architectures, like LSTM[11] and GRU[5], try to solve this
problem modifying the model architecture to reduce the vanishing gradient (but
without eliminating the problem). Orthogonal models[14, 17, 1] solve the problem
by exploiting orthogonal linear transformations and linear activation functions,
which guarantee the constant gradient propagation. However, orthogonal models
still perform worse than gated architectures on several tasks.

Attention models[3] solve the problem by performing a weighted sum of the
entire sequence of previous hidden states. This approach solves the vanishing
gradient problem but it is much more computationally expensive and does not
scale to long sequences. Memory-Augmented Neural Networks (MANN)[8, 9] are a
class of models made of a controller and an external memory, where the controller
can read and write the memory through an interface. These models try to solve
the memorization problem on a model-definition level. While they obtained
highly promising results on some synthetic tasks, they are extremely hard to
train. Furthermore, since the model is trained end-to-end there are no guarantees
that the resulting model will use the external memory in any meaningful way.

Linear autoencoders for sequences (LAES)[15] are a fundamental component
of our proposed model. The optimal solution of a LAES can be easily found
with a closed-form expression[15]. Furthermore, the literature provides some
equivalence results which bridge the gap between feedforward networks, which
can see the entire sequence at once, and recurrent neural networks[16].

3 Problem Statement

We separate the problem of processing sequential data into two subproblems:

functional problem the problem of extracting informative features from the
current input, given the current state of the memory;

memorization problem the problem of encoding the features extracted by the
functional component into a memory.

The memorization module is a recurrent component and therefore can suffer
from the vanishing gradient problem. We focus our work on the development
of new models and training algorithms for this component. Dividing sequential
problems into two separate subproblems allows building separated solutions



Explicit Memorization for Recurrent Neural Networks with Autoencoders 97

xt

ht hm
t

hm
t

yht ymt

MemoryFunctional

xt

ht

yt

mt
1

mt−1
1

T0 = 1

mt
2

mt−1
2

T1 = 2

Fig. 1: LMN and MultiScale LMN architecture.

optimized for the peculiarities of the task, including novel architectures and
training algorithms. Furthermore, each component can be easier since it must
solve only part of the problem. As an example, the Linear Memory Network [2],
one of our proposed models, is made of a feedforward network and a linear
recurrent network, two components which are less complex than a monolithic
RNN.

Another interesting property of the separation is that it allows us to concen-
trate on the memorization task. What are the limits of memorization? How can
we learn when and what to forget? These questions become easier to address if
we focus only on the memorization subtask.

4 Results

To investigate the separation of the memory from the model architecture we
introduced the Linear Memory Network (LMN)[2], a novel recurrent model where
the functional component is implemented using a feedforward network and the
memorization component is implemented using a linear recurrence. The model
update is computed as follows:

ht = σ(Wxhx
t +Wmhm

t−1)

mt = Whmht +Wmmmt−1,

where ht is the hidden state and mt is the memory state. Despite the linearity
of the recurrence, the model is equivalent to an RNN. To memorize the sequence
of hidden activations h1, . . . ,hT we can train the memorization component to
encode the sequence. Since the memorization component is linear, it can be
trained using the LAES algorithm [15] to obtain the optimal autoencoder of the
hidden state sequence. Using this initialization technique, the memory component
is able to encode the hidden state sequence, and therefore the memory can be



98 Antonio Carta

used to represent the entire sequence of extracted features. After the initialization,
the model is finetuned with end-to-end training. In [2] we extended the RNN
pretraining algorithm in [15], based on the LAES algorithm [15], to pretrain the
LMN. In our experiments, we have found that the memory of the LMN, especially
when initialized with the LAES, is superior to gated architectures when it comes
to learning long-term dependencies. Table 1 shows the frame-level accuracy on
the sequence modeling problem on four different MIDI datasets.

In a follow-up work, we extended the LMN by separating the memory compo-
nents into k separate modules, each one taking the sequence of hidden activations
with a different sampling rate. The resulting model, dubbed Multi-Scale LMN, is
a hierarchical model inspired by the Clockwork LMN [13]. Hierarchical models
are especially useful to process long sequences that contain long-term dependen-
dencies. The architecture of the Multi-Scale LMN can shorten the length of the
dependencies between the input elements by subsampling the original sequence.
The model is trained incrementally by adding a new memory module after a fixed
number of epochs, each one initialized with the LMN pretraining algorithm. The
experimental results improve on the state-of-the-art on the sequence generation
and the common-suffix TIMIT [13] compared to equivalent Clockwork RNNs and
LSTMs. Figure 1 shows a schematic view of the architecture of the LMN and
the MultiScale LMN.

LMNs are related to another class of recurrent models: orthogonal recurrent
networks. Imposing the orthogonality on the LMN and truncating the gradient, an
approach inspired by the original LSTM training algorithm[11], the network gains
a constant propagation of the gradient, and therefore the vanishing and exploding
gradient problems are provably eliminated. However, compared to orthogonal
models the LMN has two distinct advantages: first, despite the linearity of the
memory, the entire network is still nonlinear since the functional component is
a (possibly multi-layer) feedforward network. Orthogonal models instead can
use a limited class of activation function to guarantee the constant gradient
propagation. Furthermore, the pretraining with the LAES is much more effective
than a random orthogonal initialization, since the resulting model is an optimal
autoencoder. These advantages can be seen also in the experimental results,
where the LMN achieves better results than any other orthogonal model in
the literature on sequential MNIST and permuted MNIST. Other experimental
results on TIMIT show a similar trend.

5 Conclusions and Future Work

The results of our research show that recurrent architectures can benefit from
better training algorithms and initializations focused on solutions for the mem-
orization subtask. The proposed conceptual separation allows separating the
memory component to design novel models and training algorithms. An example
of this approach is the Linear Memory Network, where the linearity of the mem-
ory is exploited to develop a pretraining algorithm that initializes the memory
with the optimal autoencoder. The connection with the work on orthogonal



Explicit Memorization for Recurrent Neural Networks with Autoencoders 99

Table 1: Frame-level accuracy computed on the test set for each model. RNN-RBM
results are taken from [4]

JSB Chorales MuseData Nottingham Piano MIDI

RNN 31.00 35.02 72.29 26.52
pret-RNN 30.55 35.47 71.70 27.31
LSTM 32.64 34.40 72.45 25.08
RNN-RBM* 33.12 34.02 75.40 28.92

LMN-A 30.61 33.15 71.16 26.69
LMN-B 33.98 35.56 72.71 28.00
pret-LMN-B 34.49 35.66 74.16 28.79

models is fundamental to guarantee good properties necessary to learn long-term
dependencies. We remark how these results are a consequence of the separation
of the model into two components.

In general, the experimental results show consistent improvements on several
challenging datasets. The improvements are especially evident on datasets that
require the memorization of long sequences, like complex sequences of notes in
MIDI datasets or sequential pixel MNIST. These datasets are especially difficult
for RNNs, which suffers from the vanishing gradient problem. They are also
difficult for LSTMs, which tend to forget their input after a long sequence, due
to the exponential effect of the forget gate. However, it must be noted that
on different datasets, like several natural language processing benchmarks, the
ability to forget past information seems a key component of every successful
model. Therefore, we believe it is important to study new approaches that are
able to combine the advantages of pure memorization models with architectures
that are able to selectively forget.

This line of research offers several directions for future work. The linearity of
the memory is useful to investigate the application of hessian-free optimization
methods for RNNs.

Another possible line of research is the application of our approach to other
fields. We are currently evaluating the domain of continual learning for sequential
data as a possible avenue for future research. Continual learning models must
be able to continually learn from new data without forgetting the old samples.
We believe that this is a setting that could benefit from a separate memory, able
to recognize the different samples and account for the differences between each
subtask.

In conclusion, we believe a stronger focus on the memorization properties of
recurrent models and training algorithms can bring large benefits to the field.

References

1. Arjovsky, M., Shah, A., Bengio, Y.: Unitary Evolution Recurrent Neural Networks
(nov 2015), http://arxiv.org/abs/1511.06464



100 Antonio Carta

2. Bacciu, D., Carta, A., Sperduti, A.: Linear Memory Networks. In: ICANN (2019),
http://arxiv.org/abs/1811.03356

3. Bahdanau, D., Cho, K., Bengio, Y.: Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR abs/1409.0, 1–15 (2014).
https://doi.org/10.1146/annurev.neuro.26.041002.131047, http://arxiv.org/abs/
1409.0473

4. Boulanger-Lewandowski, N., Bengio, Y., Vincent, P.: Modeling Temporal Dependen-
cies in High-Dimensional Sequences: Application to Polyphonic Music Generation
and Transcription. ICML (Cd) (2012), http://arxiv.org/abs/1206.6392

5. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. CoRR abs/1412.3, 1–9 (2014).
https://doi.org/10.1109/IJCNN.2015.7280624, http://arxiv.org/abs/1412.3555

6. Elman, J.L.: Finding structure in time. Cognitive science 14(2), 179–211 (1990)
7. Graves, A., Mohamed, A.r., Hinton, G.: SPEECH RECOGNITION WITH DEEP

RECURRENT NEURAL NETWORKS Alex Graves, Abdel-rahman Mohamed and
Geoffrey Hinton Department of Computer Science, University of Toronto. IEEE
International Conference (3), 6645–6649 (2013). https://doi.org/10.1093/ndt/gfr624

8. Graves, A., Wayne, G., Danihelka, I.: Neural Turing Machines. CoRR abs/1410.5,
1–26 (2014). https://doi.org/10.3389/neuro.12.006.2007, http://arxiv.org/abs/
1410.5401

9. Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska,
A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A.P.,
Hermann, K.M., Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C.,
Blunsom, P., Kavukcuoglu, K., Hassabis, D.: Hybrid computing using a neu-
ral network with dynamic external memory. Nature 538(7626), 471–476 (2016).
https://doi.org/10.1038/nature20101, http://dx.doi.org/10.1038/nature20101

10. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02), 107–116 (1998)

11. Hochreiter, Sepp; Schmidhuber, J.: Long Short-Term Memory. Neural Computation
9(8), 1–32 (1997). https://doi.org/10.1144/GSL.MEM.1999.018.01.02

12. Johnson, M., Schuster, M., Le, Q.V., Krikun, M., Wu, Y., Chen, Z., Thorat,
N., Viégas, F., Wattenberg, M., Corrado, G., Hughes, M., Dean, J.: Google’s
Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation.
In: TACL (nov 2017), http://arxiv.org/abs/1611.04558

13. Koutník, J., Ch, H., Greff, K., Ch, K., Gomez, F., Ch, T., Schmidhuber, U.: A
Clockwork RNN. arXiv preprint arXiv:1402.3511 (2014), http://proceedings.mlr.
press/v32/koutnik14.pdf

14. Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient Orthogonal Parametri-
sation of Recurrent Neural Networks Using Householder Reflections. In: ICML. pp.
2401–2409 (dec 2017), http://arxiv.org/abs/1612.00188

15. Sperduti, A.: Linear autoencoder networks for structured data. In: International
Workshop on Neural-Symbolic Learning and Reasoning (2013)

16. Sperduti, A.: Equivalence results between feedforward and recurrent neural networks
for sequences. IJCAI International Joint Conference on Artificial Intelligence 2015-
Janua(Ijcai), 3827–3833 (2015)

17. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning
recurrent networks with long term dependencies. In: ICML. pp. 3570–3578 (jan
2017), http://arxiv.org/abs/1702.00071


