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Abstract. Nowadays, in many industries, humans share the working areas with 

intelligent robots within the manufacturing bays to ensure a collaborative effec-

tive work. However, programming robotic systems remains a challenging topic 

due to its costs and the high complexity of the programming resources needed for 

each operational task. In this context, the gesture would present a powerful inter-

face tool to support the communication between humans and robots. We present 

in the first part a depth Time of Flight (ToF) based camera solution using machine 

learning for human body parts recognition and localization in the 3-dimensional 

space. In the second part, we use this information to teach robot movements and 

control its behavior in real time. Our solution recognizes with an accuracy of 90% 

the hand. It locates the human body parts and transfers continuously and in real 

time the actual location in order to guide the robot movements. In addition, our 

solution is also dedicated to proceed and classify two hand gestures used to mon-

itor a handling robotic arm. The application supports the engineers to reduce the 

development time. 
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1 Introduction 

Hand gestures are a natural form of human communication. For fabs where working in 

a shared area is needed, one person can use his body to interact with the machine. 

Therefore, gesture represents here a solid interface tool to convert this gesture into a 

relevant action. Computer vision has been explored in this topic and investigations were 

orientated towards solving the lack of interaction between humans and robots. The 

choice of using a Time of Flight (ToF) camera in our current application was based 

mainly on the advanced features offered by this technology. The camera provides the 

possibility of constructing a point cloud surrounding an object. As a result, direct pro-

cessing of the distance information is possible with exact 3D location of each pixel with 

a measurement accuracy in the range of ±5mm. The camera used in this work presents 
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also a robust behavior regarding the illumination changing conditions for indoor appli-

cations and allows a possible parameters configuration monitoring.  

The organization of the paper is as follow. In section II, we present a literature survey 

about related applications and methods used during the recent years. The hardware and 

the algorithms implemented in every phase of the developed solution are illustrated in 

section III. This is followed by the different experiments and their corresponding results 

described with brief discussions in section IV. We close up with a conclusion and out-

line the further future research trends. 

2 Related Work 

An effective collaboration between working humans and industrial robots needs fre-

quent interactions between both parts. In this context, researches were focusing in the 

recent years on developing methods to transfer human motions to robots. The procedure 

starts with locating the human body in the space. Cristian Cnton-Ferrer [1] used to place 

colored markers in different positions on the human body in order to facilitate the body 

parts tracking. Adrian B. introduced in his article [2] a convolutional neural network 

(CNN) cascaded architecture specifically designed for learning part relationships and 

refining poses. However, the architecture of a neural network can be complex, whereas 

it is possible to track in the space the human body parts only with reference to the 

information received from a depth camera. In previous studies, numerous researchers 

have adopted joysticks and haptic devices to teach and control the robots. In [3] the 

authors explain a framework for robots manipulation using a joystick. This playback 

mode is particularly suitable for a humanoid robot, and the utility model has the ad-

vantage of long distance control like for games, which is not a common scenario in 

industries. However, for applications that do not require very high precision in indus-

tries, speech recognition like explained in [4] becomes a way to teach robots based on 

natural perception channels of human beings. This approach is intuitive, however in 

industrial environment it can be problematic because of loud noises and low precision 

of voice commands. Guanglong Du [5] combines speech and gesture for online teach-

ing. He used a Kinect depth camera and an inertial measurement unit to capture the 

human-natural interactions and transfer it in real time to robots. Other researchers chose 

to use wearables (Jackets and gloves) to teach robots. However, they had difficulties in 

installing sensors in fixed positions inside the wearables, which lower the precision of 

the system.  

For gesture recognition, several techniques have been adapted for years. It started 

with using colorful gloves for hand and fingers tracking [6]. This method suffers from 

instability in the system. In 2007, Breuer P  introduced a new framework using a ToF 

camera in recognizing the hand shape [7] and the results proved less complexity and 

more accuracy. Several other authors have emphasized the importance of using many 

diverse training examples for 2D and 3D CNNs [8, 9]. The results shows high accuracy 

for hand gesture recognition tasks with usage of both RGB and depth cameras. How-
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ever, neural networks have difficulties in dealing with objects of various scales com-

pared to other algorithms like Haar, histogram of oriented gradients (HOG) and local 

binary pattern (LBP) introduced in [10]. Neural networks are also mainly used in clas-

sification tasks but it demands a large dataset. However, with a limited dataset the ref-

erence to the support vector machine SVM algorithm would be a better choice for high 

precision and overfitting scenario avoidance. George E. Sakr Compares in his paper 

[11] between both algorithms’ performances for waste sorting problem. 

3 Methodology 

We describe the methods to define the algorithmic components of our human body 

parts recognition and localization solution. 

3.1 Hardware Choice 

Our proposed solution is based on the usage of a PMD CamBoard pico flex ToF camera, 

with a resolution 224 x 171 pixels. We chose for our application to work with a frame 

rate equal to 35fps. It shows a 100 times higher depth accuracy than a stereo camera 

and finally it is less sensitive to mechanical alignment and environmental lighting 

conditions for indoor applications. The dimension of the camera is 62 mm x 66 mm x 

29 mm, which make the implementation on a moving robotic arm easy. We run all the 

training algorithms and the tests on a CPU Intel core i5.  

3.2 Human Body Parts Tracking 

The usage of the geodesic distance is a way to construct a graph representation of the 

3D points that is invariant to articulation changes and, thus, allows identifying the hu-

man body parts regardless his pose or his position. The geodesic distance is defined as 

the shortest path between two points p and q on a curved surface and according to Loren 

A.S. Artashes M. in their paper [12], it is calculated as follows: 

                                                             dG = ∑ ω(e)eϵSP(p,q)                                                        (1) 

Where 𝑒 represents the edge that links 𝑝 and 𝑞, 𝜔(𝑒) is the possible Euclidian distances 

between the two points going through different edges and 𝑆𝑃(𝑝, 𝑞) contains all edges 

along the shortest path between 𝑝 and 𝑞. Considering two separate 3D points 

𝑝(𝑝1, 𝑝2, 𝑝3) and 𝑞(𝑞1, 𝑞2, 𝑞3) in the 3D coordinate system of the camera, the computa-

tion of the Euclidian distance is given by the Pythagorean formula: 

                                           d(p,q)=d(q,p)= √∑ (p
i
-q

i
)
2n

i=1                  (2) 

 

We refer to the Dijkstra’s algorithm to construct the geodesic graph from the depth 

image retrieved from the ToF camera. As an output, the algorithm helps in locating the 

different parts of the human body in the space including the hands. These parts are 

simply tracked on the geodesic graph. The considered algorithm presents a low 
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computational time ~230ms when we consider a limited number of 3D points in the 

depth image. Before we construct the geodesic graph, we construct the vertices-edges 

graph 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡), where Vt={ (xi,yj
) }

t
 is the vector of the considered points in the 

2D image, which we call vertices and  Et⊆ VtxVtis the group of the edges, which present 

the Euclidian distance between two vertices. Et is determined as follows [12] 

 Et={ ((xi,yj
) ,(xk,yl

)) ϵ VtxVt    d( (xi,yj
) ,(xk,y

l
))<δ^‖(i,j)T-(k,l)T‖∞ <1}             (3)   

  
||.||∞ is the maximum norm and (𝑖, 𝑗)𝑇 ,(𝑘, 𝑙)𝑇 are the 2D coordinates of the two points 

(𝑥𝑖 , 𝑦𝑗) and  (𝑥𝑘 , 𝑦𝑙) in the depth image. 𝛿 is a threshold up to it a distance is considered 

edge. 
The Dijkstra’s algorithm in this case is summarized in the flow chart Fig.1.  

 

Fig. 1. Flowchart of the geodesic graph construction 

3.3 Hand Shape Recognition 

In our solution, we build for the human part recognition (in our case the hand) both 

Haar and Local Binary Pattern (LBP) feature-based cascade classifiers. Therefore, we 

collect 2D amplitude (Greyscale) images from the camera and we organize them into 

two categories: cropped positive images that present the hand in different scales and 

different orientations and negative images, which include objects others than a hand. 

We feed the image dataset into one of the two  algorithms mentioned above that extracts 
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relevant features from the available images based on the variation of intensity in differ-

ent regions of pixels and save these feature values in an xml file. 

 

Preprocessing     Before moving to the feature extraction phase, we work on the noise 

reduction. Due to the presence of reflective objects in the environment, the images 

received from the ToF camera can present noisy regions. To reduce the noise, two 

different techniques are applied for every received frame:  

 The application of a median filter, which helps in removing the salt and pepper 

noise from the amplitude. 

 The ToF cameras have the advantage of allowing the user to set the desired 

exposure time. By setting a low exposure time (200ms), we can reduce the 

noise in the image.  

We move next to the background to make the processing simpler. For the proposed 

solution, we focus our interest on a distance up to 1 meter in front of the camera. 

 

3.4 Hand Localization 

Once recognized in real time we draw a bounding box around the hand and we consider 

this box as our new Region Of Interest (ROI). We develop an algorithm that structures  

in a two-dimensional array the pixels that define the contour of the largest object in the 

ROI, which would be certainly our recognized hand. We determine later the center of 

mass of the hand (the hand is considered as a rigid corps and we define it by its center 

of mass). As a result, we get the xc, yc and zc coordinates of the center of mass of the 

hand from the depth confidence image retrieved from the ToF camera. For a better 

localization in the space, we consider another point 𝑝(𝑥𝑝, 𝑦𝑝 , 𝑧𝑝)  on the hand and we 

determine the orientation of the hand as follows: 

                                                

{
 
 

 
 α=Cos-1(

yp-yc

zp-zc
)

β= Cos-1(
xp-xc

zp-zc
)

γ= Cos-1(
yp-yc

xp-xc
)

                                               (4) 

3.5 Gesture Classification 

We limited our classification to two classes: palm and fist starting by capturing 100 

training greyscale images for each hand posture with different lighting. The considered 

training stages are illustrated in Fig.2.  

The algorithm starts with the extraction of SIFT features for each training image 

following four successive stages:  

 Find the locations of potential interesting points (key points) in the image.  

 Refine the key points’ locations by eliminating points of low contrast.  

 Assign an orientation to each key point based on local image features.  

 Compute a local feature descriptor at each key point. 

In the next step, we cluster our extracted features with k-mean clustering algorithm: 

 Choose randomly 4 centroids, which will present the centers of each cluster. 
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Fig. 2. Algorithm stages for gesture classification 

 Assign every key point (defined in the previous step) to the nearest centroid.  

 Shift the centroids to the average location of all the key points assigned to 

them and  repeating this procedure until the assignments stop changing.  

In the end for each training image we get 4 clusters and each cluster is defined by a 

vector whose elements are the extracted key points from the previous step. Afterwards, 

depending on the hand posture, images of the same category are then labeled with the 

same number: Label or class 1 for the fist training images, class 2 for the palm training 

images. The final step consists in using the hand posture images with their assigned 

labels to train a multiclass SVM model. We chose to set the penalty factor C value to 

103 in order to optimize our model in terms of lowering misclassifications within the 

training data. We defined that our training run for maximum 100 iterations and with an 

error tolerance 𝜀 of 10-6. 

 

3.6 Human Upper Body Tracking 

Once constructed we detect on the geodesic graph the body parts of the human who is 

standing in an idle pose by looking for the largest geodesic distances from the center in 

all directions: up, left, right, down left, down right. They correspond respectively to the 

location of the head, the left hand, the right hand, the left foot, the right foot The limited 

field of view of the used pico flexx ToF camera (62° x 45°) allows a restricted human 

upper body tracking. 

3.7 Hand Shape Recognition 

We prepare for testing 4 classifiers: two HAAR feature-based classifiers and two LBP 
feature-based classifiers trained each on a dataset composed of 1200 positive samples 
and 1000 negative samples. The evaluation of the 4 classifiers is based on a test done 
first on 200 and second on 500 successive frames. We look with the camera in areas 
including different objects (hands and other objects). 

The performance of the cascade classifier depends on the feature-based algorithm 
used during the training and the number of stages adopted to create the classifier. Over-
training can create a weak classifier. It is the case of the LBP classifier trained for 20 
stages.  Based on the previous results, we calculate different performance metrics pre-
sented in the table 1. 

The fourth LBP feature-based classifier shows the best performance in a range between 
100mm and 600mm in front of the camera with the highest recognition accuracy ~90% 
and a low false positive rate <0,02. Using this classifier, the recognition rate is equal to 
26ms. 
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Table 1. Performances of pre-trained cascade classifiers 

 

TP:True Positive;  TN:True Negative;  FP:False Positive;  FN:False Negative;  TPR:True Positive Rate 

3.8 Gesture Classification 

We evaluate the performance of the SVM model by testing 50 images from each hand 
posture. The results show 86% right classification for the open hand and 76% right clas-
sification for the closed hand. The classification process takes 18ms for every testing 
image and it will be tested to control handling tasks for an automated robotic arm. 

3.9 Data Transmission 

Once the hand has been recognized, classified and located in the space we construct a 

message with all information about the hand and serialize it in a binary form via proto-

buffer to a global server. We use the MQTT protocol for data transmission and we use 

for testing a Kuka robot system with a pico flexx installed on a gripper flange. The 

robot connects to the same server and gets in real time the message sent by the camera. 

Tests indicate that the robot follows the hand movements in all directions and the whole 

process takes 300 milliseconds. The test was executed by kind support at the laboratory 

of the company Wandelbots GmbH Dresden. 

4 Conclusion And Next Steps 

We present a very promising solution for human gesture recognition that can be used 

for industrial robots guidance. The system’s design fuses the information received from 

a Time of Flight camera together with sophisticated machine learning techniques. Our 

evaluation proves that its robustness, accuracy, efficiency and cost-effective character-

istics make it a suitable framework for applications in robotic perception and interaction 

for collaborative industrial robots. The developed system contributes as an alternative 

approach for teaching robots movements without referring to complex programming. 

Our solution is adaptive to different robots models and can help to teach or control 

robots without additional teaching tools (joystick, trackball...).  

To deal with the limitations of our system regarding the small opening view of the 

camera and the limited detecting range, an interesting future direction will be to apply 

advanced machine learning algorithms in a compact sensor data fusion system. This 
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system will not only increase the perception rate and decrease uncertainties in a com-

plex environment for industrial shared areas between robots and humans but will also 

help robots to acquire intelligence in order to establish an effective collaborative work. 
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