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Abstract. Possibilistic logic provides a convenient tool for dealing with
inconsistency and handling uncertainty. In this paper, we propose pos-
sibilistic description logics (DLs) as an extension of description logics.
We give semantics and syntax of possibilistic description logics. Two
kinds of inference services are considered in our logics and algorithms
are provided for them. These algorithms are implemented using KAON2
reasoner.

1 Introduction

Dealing with uncertainty in the Semantic Web has been recognized as an im-
portant problem in the recent decades. Two important classes of languages for
representing uncertainty are probabilistic logic and possibilistic logic. Arguably,
another important class of language for representing uncertainty is fuzzy set
theory or fuzzy logic. Many approaches have been proposed to extend descrip-
tion logics with probabilistic reasoning, such as approaches reported in [14, 12,
10]. These approaches can be classified according to ontology languages, the
supported forms of probabilistic knowledge and the underlying probabilistic rea-
soning formalism. The work on fuzzy extension of ontology languages has also
received a lot of attention (e.g., [16]). By contrast, there is relatively few work
on combining possibilistic logic and description logic.

Possibilistic logic [5] or possibility theory offers a convenient tool for handling
uncertain or prioritized formulas and coping with inconsistency. It is very pow-
erful to represent partial or incomplete knowledge [4]. There are two different
kinds of possibility theory: one is qualitative and the other is quantitative. Qual-
itative possibility theory is closely related to default theories and belief revision
[7, 3] while quantitative possibility can be related to probability theory and can
be viewed as a special case of belief function [8].

The application of possibilistic logic to deal with uncertainty in the Semantic
Web is first studied in [13] and is then discussed in [6]. When we obtain an
ontology using ontology learning techniques, the axioms of the ontology are often
attached with confidence degrees and the learned ontology may be inconsistent
[11]. In this case, possibilistic logic provides a flexible framework to interpret the
confidence values and to reason with the inconsistent ontology under uncertainty.



However, there exist problems which need further discussion. First, there is no
formal definition of the semantics of possibilistic description logics. The semantic
extension of possibilistic description logic is not trivial because we need negation
of axioms to define the necessity measure from a possibility distribution. Second,
there is no implementation of possibilistic inference in description logics.

In this paper, we discuss possibilistic extension of description logics. Both
syntax and semantics of possibilistic description logics are provided in Section
3. The inference services in possibilistic description logics are also given. After
that, we provide algorithms for implementing reasoning problems in Section 4.
Finally, we conclude this paper in Section 5.

We assume that the reader is familiar with description logics and refer to the
description logic handbook [1] for more details.

2 Possibilistic Logic

Possibilistic logic [5] is a weighted logic where each classical logic formula is
associated with a number in (0, 1]. Semantically, the most basic and impor-
tant notion is possibility distribution π: Ω → [0, 1], where Ω is the set of all
classical interpretations. π(ω) represents the degree of compatibility of inter-
pretation ω with available beliefs. From possibility distribution π, two mea-
sures can be determined, one is the possibility degree of formula φ, defined
as Π(φ) = max{π(ω) : ω |= φ}, the other is the necessity or certainty degree of
formula φ, defined as N(φ) = 1−Π(¬φ).

At syntactical level, a possibilistic formula is a pair (φ, α) consisting of a
classical logic formula φ and a degree α expressing certainty or priority 1. A
possibilistic knowledge base is the set of possibilistic formulas of the form B =
{(φi, αi) : i = 1, ..., n}. The classical base associated with B is denoted as B∗,
namely B∗ = {φi|(φi, αi) ∈ B}. A possibilistic knowledge base is consistent iff
its classical base is consistent.

Given a possibilistic knowledge base B and α∈(0, 1], the α-cut (strict α-cut)
of B is B≥α = {φ∈B∗|(φ, β)∈B and β≥α} (B>α = {φ∈B∗|(φ, β)∈B and β>α}).
The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{αi :
B≥αi is inconsistent}.

There are two possible definitions of inference in possibilistic logic.

Definition 1. Let B be a possibilistic knowledge base.

– A formula φ is said to be a plausible consequence of B, denoted by B`P φ,
iff B>Inc(B) ` φ.

– A formula φ is said to be a possibilistic consequence of B to degree α, denoted
by B`π(φ, α), iff the following conditions hold: (1) B≥α is consistent, (2)
B≥α`φ, (3) ∀β>α, B≥β 6` φ.

1 In possibilistic logic, the weight of a possibilistic formula (φ, a) can be also considered
as possibility degree of the formula. However, in most applications of possibilistic
logic, we often consider the weight as certainty degree.



3 Possibilistic Description Logics

In this section, we define the semantics and syntax of possibilistic DLs and
inference problems of it. We do not specify the underlying DL language, which
can be any (decidable) description logic.

3.1 Syntax

The syntax of possibilistic DL is based on the syntax of classical DL. A possi-
bilistic axiom is a pair (φ, α) consisting of an axiom φ and a weight α∈(0, 1]. A
possibilistic RBox (resp., TBox, ABox) is a finite set of possibilistic axioms (φ, α),
where φ is an RBox (resp., TBox, ABox) axoim. A possibilistic DL knowledge
base B = (R, T ,A) consists of a possibilistic RBox R, a possibilistic TBox T
and a possibilistic ABox A. We use R∗ to denote the classical DL axioms associ-
ated with R, i.e., R∗ = {φi : (φi, αi)∈R} (T ∗ and A∗ can be defined similarly).
The classical base B∗ of a possibilistic DL knowledge base is B∗ = (R∗, T ∗,A∗).
A possibilistic DL knowledge base B is said to be inconsistent if and only if its
classical base B∗ is inconsistent.

Given a possibilistic DL knowledge base B = (R, T ,A) and α∈(0, 1], the α-
cut of R is R≥α = {φ∈B∗|(φ, β)∈R and β≥α} (the α-cut of T and A, denoted
as T≥α and A≥α, can be defined similarly). The strict α-cut of R (resp., T , A)
can be defined similarly as the strict cut in possibilistic logic. The α-cut (resp.,
strict α-cut) of B is B≥α = (R≥α, T≥α,A≥α) (resp., B>α = (R>α, T>α,A>α)).
The inconsistency degree of B, denoted Inc(B), is defined as Inc(B) = max{αi :
B≥αi is inconsistent}.

We use the following example as a running example throughout this paper.

Example 1. Suppose we have a possibilistic DL knowledge base B = (R, T ,A),
where R = ∅, T = {(BirdvFly, 0.8), (HasWingvBird, 0.95)} and A = {(Bird
(chirpy), 1), (HasWing(tweety), 1), (¬Fly(tweety), 1)}. The TBox T states that
it is rather certain that birds can fly and it is almost certain that something
with wing is a bird. The ABox A states that it is certain that tweety has wing
and it cannot fly, and chirpy is a bird. Let α = 0.8. We then have B≥0.8 =
(R≥0.8, T≥0.8,A≥0.8), where R≥0.8 = ∅, T≥0.8 = {BirdvFly, HasWingvBird}
and A≥0.8 = {HasWing(tweety), ¬Fly(tweety), Bird(chirpy)}. It is clear that
B≥α is inconsistent. Now let α = 0.95. Then B≥α = (R≥0.95, T≥0.95,A≥0.95),
whereR≥0.95 = ∅, T≥0.95 = {HasWingvBird} andA≥0.95 = {HasWing(tweety),
¬Fly(tweety), Bird(chirpy)}. So B≥α is consistent. Therefore, Inc(B) = 0.8.

3.2 Semantics

The semantics of possibilistic DL is defined by a possibility distribution π over
the set I of all classical description logic interpretations, i.e., π : I → [0, 1].
π(I) represents the degree of compatibility of interpretation I with available
information. For two interpretations I1 and I2, π(I1) > π(I2) means that I1

is preferred to I2 according to the available information. Given a possibility



distribution π, we can define the possibility measure Π and necessity measure N
as follows: Π(φ) = max{π(I) : I ∈ I, I |= φ} and N(φ) = 1−Π(¬φ), where ¬φ is
the consistency negation defined in [9]2. Given two possibility distributions π and
π′, we say that π is more specific (or more informative) than π′ iff π(I) ≤ π′(I)
for all I ∈ Ω. A possibility distribution π satisfies a possibilistic axiom (φ, α),
denoted π |= (φ, α), iff N(φ)≥α. It satisfies a possibilistic DL knowledge base B,
denoted π |= B, iff it satisfies all the possibilistic axioms in B.

Given a possibilistic DL knowledge base B = 〈R, T ,A〉, we can define a
possibility distribution from it as follows: for all I ∈ I,

πB(I) =
{

1 if ∀φi∈R∗ ∪ T ∗ ∪ A∗, I |= φi,
1−max{αi|I 6|= φi, (φi, αi) ∈ R ∪ T ∪ A} otherwise.

(1)

As in possibilistic logic, we can also show that the possibility distribution de-
fined by Equation 1 is most specific possibility distribution satisfying B. Let
us consider Example 1 again. I = 〈∆I , ◦I〉 is an interpretation, where ∆I =
{tweety, chirpy} and BirdI = {tweety, chirpy}, FlyI = {chirpy}, and HasWingI

= {tweety}. It is clear that I satisfies all the axioms except BirdvFly (whose
weight is 0.8), so πB(I) = 0.2.

We have the following theorem which says that consistency of a possibilistic
DL knowledge bases can be equivalently defined by the possibility distribution
associated with it.

Theorem 1. Let B be a possibilistic DL knowledge base and πB be the possibility
distribution obtained by Equation 1. Then B is consistent if and only if πB |= B,
where πB is the possibility distribution defined by Equation 1.

The proof of is clear by considering Condition (i) of the consistency negation.
Similar to possibilistic logic, we have the following result.

Proposition 1. Let B be a possibilistic DL knowledge base and πB be the pos-
sibility distribution obtained by Equation 1. Then Inc(B) = 1−maxI∈IπB(I).

Proposition 1 shows that the inconsistency degree of a possibilistic DL knowledge
base can be equivalently defined by the possibility distribution.

3.3 Inference in possibilistic DLs

We consider the following inference services in possibilistic DLs.

– Instance checking: an individual a is a plausible instance of a concept C
with respect to a possibilistic DL knowledge base B, written B |=P C(a), if
B>Inc(B) |= C(a).

2 There are two kinds of negations defined in [9]: consistency negation and coherence
negation. An axioms ψ is said to be a consistency-negation of an axiom φ, written
¬φ, iff it satisfies the following two conditions: (i) {φ, ψ} is inconsistent and (ii)
there exists no other ψ′ such that ψ′ satisfies condition (i) and Cn({ψ′})⊂Cn({ψ}).



– Subsumption: a concept C is plausible subsumed by a concept D with respect
to a possibilistic DL knowledge base B, written B |=P CvD, if B>Inc(B) |=
CvD.

– Instance checking with necessity degree: an individual a is an instance of
a concept C to degree α with respect to B, written B |=π (C(a), α), if the
following conditions hold: (1) B≥α is consistent, (2) B≥α |= C(a), (3) for all
β>α, B≥β 6|=C(a).

– Subsumption with necessity degree: a concept C is subsumed by a concept
D to a degree α with respect to a possibilistic DL knowledge base B, written
B |=π (CvD, α), if the following conditions hold: (1) B≥α |= CvD, (2)
B≥α |= CvD, (3) for all β>α, B≥β 6|=CvD.

We illustrate the inference services by reconsidering Example 1.

Example 2. (Example 1 continued) According to Example 1, we have Inc(B) =
0.8 and B>0.8 = (R>0.8, T>0.8,A>0.8), where R>0.8 = ∅, T>0.8 = {HasWingv
Bird} and A>0.8 = {HasWing(tweety),¬Fly (tweety), Bird(chirpy)}. Since
B>0.8 |= Bird (tweety), we can infer that tweety is plausible to be a bird from
B. Furthermore, since B≥0.95 |= Bird(tweety) and B≥1 6|=Bird(tweety), we have
B |=π (Bird(tweety), 0.95). That is, we are almost certain that tweety is a bird.

4 Algorithms for Inference in Possibilistic DLs

In this section, we give algorithms for implementing possibilistic inference in
possibilistic DLs and analyze the computational complexity of the algorithms.

Algorithm 1 computes the inconsistency degree of a possibilistic DL knowl-
edge base using a binary search. The function Asc takes a finite set of numbers
in (0, 1] as input and returns a vector which contains those distinct numbers in
the set in an ascending order. For example, Asc(0.2, 0.3, 0.3, 0.1) = (0.1, 0.2, 0.3).
Let W = (β1, ..., βn) is a vector consisting of n distinct numbers, then W (i) de-
notes βi. If the returned inconsistency degree is 0, that is W (−1) = 0, it shows
the ontology to be queried is consistent.

Since Algorithm 1 is based on binary search, to compute the inconsistency
degree, it is easy to check that the algorithm requires plog2nq+1 satisfiability
checks using a DL reasoner in the worst case.

Algorithm 2 returns the necessity degree of an axiom inferred from a possi-
bilistic DL knowledge base w.r.t the possibilistic inference. We compute the in-
consistency degree of the input ontology. If the axiom is a plausible consequence
of a possibilistic DL knowledge base, then we compute its necessity degree using
a binary search (see the first “if” condition). Otherwise, its necessity degree is
0, i.e., the default value given to w. Note that our algorithm is different from
the algorithm given in [15] for computing the necessity of a formula in possibilis-
tic logic (this algorithm needs to compute the negation of a formula, which is
computationally hard in DLs according to [9]). We consider only subsumption
checking here. However, the algorithm can be easily extended to reduce instance
checking as well.



Algorithm 1: Compute the inconsistency degree
Data: B = 〈T ,A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}, where n is

the number of axioms in the testing ontology B;
Result: The inconsistency degree d
begin

b := 0 // b is the begin pointer of the binary search
m := 0 // m is the middle pointer of the binary search
d := 0.0 // The initial value of inconsistency degree d is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0 // The special element −1 of W is set to be 0.0
e := |W | − 1 // e is the end pointer of the binary search
if B≥W (0) is consistent then

d:=0.0

else
while b ≤ e do

if b = e then
return b

m := p(b + e)/2q
if B≥W (m) is consistent then

e := m− 1

else
b := m + 1

d := W (b)

end

Proposition 2. Let B be a possibilistic DL knowledge base and φ be a DL ax-
iom. Deciding whether B |=P φ requires plog2nq+1 satisfiability check using a
DL reasoner, where n is the number of distinct certainty degrees in B. Further-
more, deciding whether B |=π (φ, α) requires at most plog2nq+plog2n − lq+1
satisfiability check using a DL reasoner, where where n is the number of distinct
certainty degrees in B and l is the inconsistency degree of B.

5 Conclusions and Future Work

We gave a possibilistic extension of description logics in this paper. Two kinds
of inference services were considered: one is a plausible consequence relation and
the other is a possibilistic consequence relation. Algorithms were given to check
the inference services and we implemented the algorithms in Java using KAON2
3 as the basic reference service. The source codes and some ontologies used for
testing can be downloaded from

http://radon.ontoware.org/incoquery.zip

To represent the weight for each axiom, we use an annotation property “Rat-
ing” to associate one value with the class defined. Thus the axioms starting
3 http://kaon2.semanticweb.org/



Algorithm 2: Possibilistic inference with certainty degrees
Data: B = 〈T ,A〉, where T ∪ A = {(φi, αi) : αi ∈ (0, 1], i = 1, ..., n}; a DL

axiom φ.
Result: The certainty degree w associated with a query φ
begin

m := 0
w := 0.0 // The initial certainty degree of φ is set to be 0.0
W = Asc(α1, ..., αn)
W (−1) = 0.0
e := |W | − 1
compute l such that W (l) = Inc(B) //Inc(B) is computed by Algorithm 1
b := l + 1
if B≥W (b) |= φ then

while b ≤ e do
if b = e then

return b
m := p(b + e)/2q
if B≥W (m) 6|=φ then

e := m− 1

else
b := m + 1

w := W (b)

end

with this class also have the same value as their weights. Take the following
code as an example. The axioms Messaging v ¬Kerberos and Messaging v
¬GeneralReliabilityUsernamePolicy will have the same weight 0.345.

<owl:Class rdf:about="#Messaging">
<Rating rdf:datatype="http://www.w3.org/2001/XMLSchema#double">0.345
</Rating>
<owl:disjointWith rdf:resource="#Kerberos"/>
<owl:disjointWith rdf:resource="#GeneralReliabilityUsernamePolicy"/>

</owl:Class>

The advantage of this way to represent confidence values is that confidence
values and the ontology can be kept in the same owl file. So far, we only support
some simple queries like instance checking A(a) and subsumption A v B, where
a is an instance and A, B are concepts.

Possibilistic inference has been criticized for the “drowning problem”, i.e.,
all the axioms whose necessity degrees which are less than or equal to the in-
consistency degree of the possibilistic DL knowledge base do not contribute to
the inference. Several variants of possibilistic inference have been proposed in
classical logic to solve the drowning problem [2]. We plan to implement these
approaches in our future work.
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