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1 Introduction

In this paper we study conjunctive query answering in the description logics éfihe
family [2, 3, 7, 6, 5], in particular we consider the DE€, ELH, ELT, andELTT. The
EL family has been recently defined in order to identify DLs both having interesting
expressive abilities and allowing for tractable reasoning. While the standard reasoning
tasks (like concept subsumption and instance checking) have been analyzed in the past
for such logics, almost no result is known about answering conjunctive queries in the
logics of theg £ family, with the exception of the lower complexity bounds which are
immediate consequence of the results in [8] (and of the characterization of instance
checking in [7, 3]).

More specifically, we present the following results:

1. we define a query-rewriting-based technique for answering unions of conjunctive
queries i€ L. More precisely, we present an algorithm based on the idea of reduc-
ing query answering id £ to answering recursive Datalog queries. We also show
that this technique can be easily extended to deal &difi KBs;

2. based on the above technigue, we prove that answering unions of conjunctive
queries in€L andELH is PTIME-complete with respect to both data complex-
ity (i.e., with respect to the size of the ABox) and knowledge base complexity (i.e.,
with respect to the size of the knowledge base) and is NP-complete with respect to
combined complexity (i.e., with respect to the size of both the knowledge base and
the query);

3. conversely, we prove that answering conjunctive queries is undecidable in both
ELT andELTT.

As an immediate consequence of the above results, it turns out that if, besides the
standard reasoning tasks in DL, also conjunctive query answering is of interest, then
EL and& LH still exhibit a nice computational behaviour, since they allow for tractable
query answering, while the two extensiafi§™ and££™ " do not show the same be-
haviour, since conjunctive query answering is undecidable in such DLs. Consequently,
ELT and£LTT do not appear well-suited for applications requiring the full power of
conjunctive gueries.

2 Preliminaries

In this section we briefly recall the logics in tlde family, in particular the DL L,
ELT, and£LTT, and introduce query answering over knowledge bases expressed in
such description logics.



EL and its extensions& L [2] is the DL whose abstract syntax for concept expressions
is the following:C ::= A | 3R.C' | C; N Cy | T, whereA is a concept nameR is a
role name, and the TBox is a set of concept inclusion assertions of thefpmm Cs.
ELH [7,6] extends£ L by also allowing in the TBox simple role inclusion assertions
of the formR; C R,, whereR; and R, are role namesS L™ [5] extendsE L by also
allowing in the TBox role inclusion assertions of the foRno---oR,, C R, 1, Where
eachR; is a role name. Finaly¢ £ [3] extends€ L™ by allowing the new concept
expressiond., {a} and the concrete domain constructdfi, . .., f»)-

As usual in DLs, a knowledge base (KB)is a pair(7, .A) where the TBox is a set
of concept inclusions and role inclusions, and the ABbis a set of instance assertions
of the form A(a), R(a,b) whereA is a concept nameR is a role name, and, b are
constant (individual) names. Notice that in all the DLs considefethay contain cyclic
concept inclusions (GCls) (as well as cyclic role inclusion§ 4, E£* andEL ™).

The semantics of concept and role constructs is well-known [5]. The semantics of a
KB is defined as usual, based on the interpretation of concept and role expressions [4].
We point out that we do not impose the unique name assumption (UNA) on constant
names: however, our results also hold under the UNA.

As shown in [3],££" TBoxes admit a normal form, i.e., we can assume without
loss of generality that every concept inclusion in the TBox is in one of the following
forms: A; C Ay, A1 MMA; T Ag, A; C JR.Ay, dR.A; C Ay, where eacd, A,,

Ajs is either a concept name or the concépfR is a role name, and every role inclusion
is of the formR; C R, or Ry o Ry C R3, whereR;, Ry, R3 are role names.

Unions of conjunctive queries.We now briefly recall conjunctive queries and unions
of conjunctive queries. To simplify the notation in the next sections, we use a Datalog-
like notation for such queries.

A Datalog rule is an expression of the form— body, in which the heady is an
atom (i.e., an expression of the fogtt,, . .., t,) in which each; is either a constant
or a variable) andody is a set of atoms, such that each variable occurring aiso
occurs in some atom ibody.

A conjunctive query (CQ) over a DL-KK is a Datalog rule using a special pred-
icate name, (i.e., p, does not belong to the set of concept and role names occurring
in K) in the head of the rule, and whose body is a set of atoms whose predicates are
concept and role names occurringlinnotice that the predicafe, cannot occur in the
body of the rule). The arity of is defined as the arity qf,. A Boolean CQ is a CQ
whose arity is zero. For a C@ we denote bybody(q) the body of the Datalog rule
corresponding tg. A union of conjunctive queries (UC@) over is a set of CQs of
the same arity which use the same predigajén the head of every rule.

For ease of exposition, and without loss of generality, from now on we only con-
sider Boolean queries, and theery entailmenproblem. It is well-known thatuery
answeringof an arbitrary (non-Boolean) query can be reduced to query entailment.

The semantics of (Boolean) UCQs over DL-KBs is the usual one (see, e.g., [8]).

In the following, we study complexity of query entailment over DL-KBs. In partic-
ular, we considedata complexityi.e., the complexity with respect to the size of the
ABox, KB complexityi.e., the complexity with respect to the size of both the ABox
and the TBox, andombined complexity.e., the complexity with respect to the size of
both the KB and the query.



3 Answering unions of conjunctive queries i€ L and ELH

We now present an algorithm for answering unions of conjunctive queries posed to
EL-KBs. We start by introducing the auxiliary procedutésify, Roll-up, Normalize
RenameRules and0-Rules

The procedure Unify. Given a UCQQ, Unify(Q) returns a UCQ obtained by adding

to @ all the possible unifications of terms for every conjunctive qugry Q.

The procedureRoll-up. Given a UCQQ’, Roll-up(Q’) returns a rewriting of the query

()’ obtained by expressing subtrees in the query thrdfjltoncept expressions. For-
mally, we defineRoll-up(Q’) = U, Roll-up(q) whereRoll-up(q) returns the CQ
obtained from the C@Q by exhaustively applying the following rewriting rules to the
atoms inbody(q):

1. if variabley only occurs in a binary atom of the for®(¢, y), then replaceR(t, y)
with the unary atoniR.T (¢)

2. ifvariabley only occurs in unary atoms of the forf (y), . . ., C,(y), then replace
the above atoms with the O-ary atd@; r1...MC,)%
3. if variabley only occurs in unary atoms of the ford, (y),...,C,(y) and in a

single binary atonR(¢, y), then replace all the above atoms in whicbccurs with
the unary atonf3R.C M...MC,)(1);

4. if y is a variable which only occurs in an atom of the foRy, z) wherez is a
variable different fromy, and there is another atom of the fof(t, z) in body(q),
then deleteR(y, z).

Notice that the query returned B3oll-up is not exactly a UCQ according to the
definition given in Section 2, since arbitrary concept expressionsy occur as (both
unary and 0-ary) predicate symbols in the body of the CQs of the returned query. So we
call such a query aaxtendedJCQ.

The procedure Normalize Given an £L£ TBox 7 and an extended UCQ’,
Normalizé7 , Q') returns an€L TBox 7’ in normal form which: (i) is a conserva-
tive extension of7’; (ii) defines all concept expressions occurringjhand7”; (iii) is
closed with respect to the entailed concept inclusions. More preciseig,such that:

— for every concept expressidati such that7’ contains a concept inclusion of the
form C' C D or D C C, there exists a concept nar@é such that7’ = C’ = C;

— for every concept expressidfi such thatQ)’ contains either a unary atom of the
form C(¢) or a O-ary atom of the formiC)?, there exists a concept nar6é such
that7’ = C' = C.

— 7' is closed with respect to the entailment of simple concept inclusions, i.e., for
every pair of distinct concept namels, A, occurring in7’, if 7/ = A; C A,
thenAd, C A, € T'.

From the existence of a linear normalization procedur€iKBs and from the results
on entailment of concept inclusionsdiC shown in [7], it follows that it is possible to
compute a TBoxXZ ' satisfying the above conditions in polynomial time with respect to
the size of7 andQ'.

The procedure Rename Given an extended UCQ’ and a normalized £ TBox 77,
Renam@R’, 7') returns the UCQ obtained fro)’ by replacing each complex concept



expressiorC (i.e., such that’ is not a concept name) occurring @i with the corre-
sponding concept nan@ in 7" (i.e., the concept nam@’ such that7’ = C' = C).

Since the presence of complex concept expressions is eliminated from the query re-
turned byRenamé&Q’, 7’), such a query corresponds to a set of ordinary Datalog rules.

The procedure Rules Given a normalized £ TBox 7', Ruleg7") returns the set of
Datalog rules corresponding '. More preciselyRuleg7”) is the following set of
Datalog rules:

— the ruleAs(x) i— A («) for each conceptinclusioA; C A, in 77, whereA, A
are concept names;

— the ruleAs(z) :— Ay (z), As(x) for eachA; M As T Az in 77, whereA;, As, As
are concept names;

— the ruleAs(x) i— R(z,y), A1 (y) for each3R.A; C A, in 7', whereA;, A, are
concept names.

Notice that concept inclusions of the formy C 3R. A, are not actually considered in
the computation oRuleg7"”).

The procedure 0-Rules Finally, to correctly handle 0-ary atoms in the query, we have
to define entailment of inclusions between 0-ary predicates with respect to the TBox
7’. In particular, for every pair of concept namés, A, occurring in7”’, we want to
decide whether the first-order existential sentefieed; (x) — Jy.As(y) is satisfied

by every model of7’. Actually, entailment of such sentences can be decided in a way
very similar to entailment of concept inclusions. More precisely, we define inductively
the following relation-=-, between concept names occurrindif

— A3, Afor every concept namg occurring in7”;
—if A "3/ Ay andA, C A3 eT’ thenA; "g—/ Ag,
—if Ay '_T’ Ay andA, C E'RAg ceT’, thenA; "?—/ A3.

Based on the fact thaf’ is closed with respect to entailment of inclusions between
atomic concepts, it can be shown that, for every pair of concept ndmes, occurring
in 77, the sentenc8x. A, (z) — Jy.Ax(y) is satisfied by every model af’ iff A; -3,
As.

Then, based on the relatioff-,, we define the procedu@eRule$7 ), which returns
the following set of Datalog rules:

- A% :— AY for each pair of concept namels, A» such thatd; 3, As;
— A" :— A(x) for each concept namé.

The algorithm computeRewriting. We are now ready to define the algorithm
computeRewriting which, given an€£ TBox 7 and a Boolean UC@), computes a
Datalog progran® by making use of the procedures previously defined.

Algorithm computeRewriting(Q, T)
Input: Boolean union of conjunctive queriés £L TBox T
Output: Datalog progranP

Q" = Unify(Q);

Q' :=Roll-up(Q’);

7' :=Normalizé7,Q’);

Q' :=Renamé&y’,7");

P :=Q URuleg7T’) UO-RulegT");

return P



The algorithm computeQueryEntailment. The Datalog progran? computed by
computeRewriting(Q, 7') can be used to decide entailment of the qu@nyith respect

to every£L-KB, as shown by the algorithromputeQueryEntailment(Q, KC) defined

below. In the following,T (.A) denotes the set of fac{S () | a is a constant occurring
in A}, while M M (P) denotes the minimal model of a Datalog progr&m

Algorithm computeQueryEntailment(Q, KC)
Input: Boolean UCQQ (with head predicatgg), EL-KB K = (7, A)
Output: true if K = Q, false otherwise

P := computeRewriting(Q, 7 );

if MM(PUAUT(A)) = po

then return true else return false

In practice, the above algorithm simply evaluates the Datalog progtaver the
ABox A (remember thatd is a set of ground atoms, hengeU A is a Datalog pro-
gram) in order to decide whethé)is entailed byK. The addition of the factS (A) is
necessary in order to correctly handle the presence of the condaghe query (more
precisely, in the evaluation of the Datalog program we considas a concept name,
i.e., an EDB predicate).

Correctness.We now show correctness of the algoritlitmputeQueryEntailment.

Theorem 1. Let € = (7, A) be an€L-KB and letQ be a UCQ. Thenk = Q iff
computeQueryEntailment(Q, K) returnstrue.

Proof (sketch). The proof of soundness of the technique is immediate. The proof of
completeness is based on the construction of a canonical model for a norngalized
KB K through the definition of thehaseof K. The chase ok (denoted bychase(K))

is a function which returns a generally infinite ABox and is inductively defined starting
from the initial ABox.4 and adding facts tel based on the followinghase rules

— chase-rule-1if A(a) € chase(K) andA C B € T andB(a) ¢ chase(K) then
addB(a) to chase(K);

— chase-rule-2if A;(a) € chase(K) andAz(a) € chase(K)andA MA; C Be T
andB(a) ¢ chase(K) thenB(a) € chase(K);

— chase-rule-3if R(a,b) € chase(K) andA(a) € chase(K)andIRAC B e T
andB(a) & chase(K) thenB(a) € chase(K);

— chase-rule-4if A(a) € chase(K) andA C 3R.B € T and there is né such that
both R(a,b) € chase(K) andB(b) € chase(K) then addR(a,n) and B(n) to
chase(KC), wheren is a constant that does not occur already/inse(KC);

— chase-rule-5if a is a constant occurring ighase(KC) and T (a) ¢ chase(K) then
addT (a) to chase(K).

The chase oK is a generally infinite ABox which is isomorphic tocanonical model
of IC, denoted bYZ ... (k). Such a model can be used to compute entailment of UCQs
in IC, which is formally stated by the following property:

Lemma 1. For every Boolean UC@, K = Q iff Zcpase(x) = Q-

Then, we use the chase to prove completeness of our algorithm. Let us consider
the first part of the algorithmomputeRewriting, which ends with the execution of
Renam@R’, 7'), With respect to this part of the rewriting, we prove the following:



Lemma 2. Let Q" be the UCQ returned by Renafd¥,7’) in the algorithm
computeRewriting(Q, 7). If Z j45¢(c) = Q" then there exists a CQ € Q" and a
homomorphisnd of body(q) in chase(K) such that, for every variable occurring in
q, H(x) is a constant occurring itd.

Although the above lemma might seem rather obscure, it implies the following cru-
cial property: answering the query computedi®gnamé?’, 7’) can actually be done
by first “grounding” the query (considering all the instantiations of the variables with
constants occurring i) and then considering each atom in a separate way. So, the
above lemma shows that the first part of the rewriting reduces entailment of a UCQ to
entailment of single atoms.

Then, we consider the second part of the rewriting, i.e., the set of Datalog rules
generated byRuleg7”’) and 0-Rule$7”). Here, we use the chase kfto prove that
the Datalog progran®’ returned byRule47"’) constitutes a correct encoding of the
entailment of unary and binary atoms (which correspond to standard instance checking
problems), in the sense that the minimal modeP6fJ A U T(A) contains all ground
unary atomsA(a) such thatC = A(a) and all ground binary atom&(a, b) such that
K E R(a,b); similarly, we prove that the Datalog program returnedObRule$7 ")
constitutes a correct encoding of the entailment of 0-ary atoms. Formally:

Lemma 3. Let K = (7,.A) be a normalized £-KB, let P’ be the Datalog program
returned by Rulgd’), and leta be either an atom of the form(a) where A is a
concept name or an atom of the fofia, b) whereR is a role named, b are constants
occurring in A). If K = A(a) thenM M (P' U AU T(A)) E a.

Lemmad4. LetK = (7, .A) be a normalized £-KB, let P’ be the Datalog program
returned by 0-Ruldg), and letA be a concept name occurring ih. If the sentence
Jz. A(x) is satisfied by every model féi, thenM M (P’ U AU T(A)) E A°.

From the above properties of the two parts of the rewriting, the thesis follovis.

Complexity results. Based on the above algorithm, we can characterize the computa-
tional properties of entailment of UCQs L.

Theorem 2. Entailment of UCQs irf L is: (i) PTIME-complete with respect to data
complexity; (i) PTIME-complete with respect to KB complexity; (iii) NP-complete with
respect to combined complexity.

Proof (sketch) PTIME-hardness with respect to data complexity has been proved in [8],
while NP-hardness with respect to combined complexity follows from NP-hardness of
simple database evaluation of a CQ [1]. Membership in PTIME with respect to KB
complexity follows from the fact that the procedufdsrmalize RenamgRules and
0-Rulesrun in time polynomial with respect to their input, which implies that the algo-
rithm computeRewriting runs in time polynomial with respect to the sizeDf Now,

since the Datalog prograf® returned bycomputeRewriting(Q, 7) has size polyno-
mial with respect tdZ, and the number of variables used in each rul®aloes not
depend oriC, it follows that the minimal model oP U . AU T (A) can be computed in
time polynomial in the size of, thus the algorithneomputeQueryEntailment(Q, K)

also runs in time polynomial in the size &f. Finally, membership in NP with re-
spect to combined complexity follows from the fact that all the procedures executed by



computeRewriting run in time polynomial with respect to their input, with the only ex-
ception of the procedurdnify, which runs in exponential time with respect to the size
of Q. However, if we consider a nondeterministic version of such a procedure, which
returns just one CQ’ obtained by choosing one CQn @ and one substitution which
is applied tog, then the whole algorithmomputeRewriting runs in time polynomial
with respect to the size of botg and7 . Then, in a way analogous to the above proof
of PTIME-membership for KB complexity, it follows that this nondeterministic version
of the algorithmcomputeQueryEntailment(Q, K) also runs in time polynomial in the
size of @ and/C, which implies the thesis. ad

We remark that the above characterization with respect to data complexity was al-
ready stated in [12].

Extension to£LH. Finally, the above technique for deciding entailment of UCQs can
be easily extended in order to deal wilfH-KBs. The algorithm&omputeRewriting
and computeQueryEntailment are actually the same as before, the only differences
concern the proceduré®oll-up, Normalize andRules Specifically: (i) the procedure
Roll-up must take into account the presence of role assertions, since such inclusions
allow for additional eliminations of redundant binary atoms. More precisely, we add
to the previous definition oRoll-up the following rule: if R; and R, are distinct role
names,R; (t1,t2) and Ra(t1,t2) occur inbody(q), and7 = Ry C R,, then delete
Ry(t1,t2); (i) the procedureNormalizé€7, Q) must be modified in order to account
for the presence of simple role inclusions in the TBox. A procedure for deciding entail-
ment of concept and role inclusionsdiCH TBoxes has been presented in [7]: such a
procedure shows that entailment of such inclusions can still be computed in polynomial
time; (iii) the procedureRulesalso adds a Datalog rule for each role inclusion in the
ELH TBox. More precisely, in the case of &LH TBox, the previous definition of the
set of rules returned bRuleg7”) is modified by adding the following condition: add
the ruleRy(z,y) :— Ry (z,y) for each role inclusiolR, C Ry in 7.

The above extension demonstrates that the computational characterization of entail-
ment of UCQs provided by Theorem 2 extends to the casi6{-KB.

4 Undecidability of conjunctive query answering in€L™

We now show that the nice computational properties of answering conjunctive queries
in ££, shown in the previous section, do not extend b" and€ L1, since answering
conjunctive queries in such DLs is undecidable.

Theorem 3. Entailment of conjunctive queries #C* is undecidable.

Proof (sketch). We reduce the emptiness problem for intersection of context-free
languages, which is known to be undecidable [9], to conjunctive query entailment
in ££7. Consider two context-free grammafs = (NTy, Term, Sy, Py), Go =
(NT4, Term, Sa, Py), whereNT is the alphabet of nonterminal symbols®f, NT'»

is the alphabet of nonterminal symbols@§ (which is disjoint fromNT,), Term is

the alphabet of terminal symbols (which is the sameFpandGs and is disjoint from
NT{UNT5), S isthe axiom ofG, S is the axiom ofGG,, P; is the set of production
rules of G; and P, is the set of production rules @f,. W.l.0.g., we assume that no
production rule has an empty right-hand side. Now conside€ e KB K = (7, A),
which usesTerm U NT'y U NT'5 as the set of role names plus the concept némghe
TBox 7 is composed of: (i) the role inclusion assertions encoding the production rules



in P;: e.qg., if P; contains the production rul® — UV W, we add tdZ the role inclu-
sionU o V o W L X (ii) the role inclusion assertions encoding the production rules
in P,; (iii) the role inclusion assertio6®' C 3T;.C for everyT; € Term. Moreover, the
ABox A contains the only assertiafi(a). Finally, consider the Boolean conjunctive
querygq of the formp,, :— S1(a,y), S2(a, y), whereS; is the axiom of grammag; and
Ss is the axiom of grammafs.

We prove that the languag®&G,) N £(G2) is non-empty iff(7, A) = ¢. To this
aim, we make use of three auxiliary properties. Such properties make use of the notion
of chase of ar€£1-KB, which extends in a straightforward way the chase dd,
introduced in the proof of Theorem 1, by adding a chase rule for role inclusions.
Lemma 5. Letx andy be two terms irchase(KC). There is at most one path of terminal
symbols between and y in chase(K), i.e., a sequenc& (z1, z2), ..., Tr(2k, 2k+1)
with z; = z, zx+1 = y, and s.t. eacll;(z;, z;+1) € chase(K) and eachl; € Term.
Lemma 6. Letz andy be two terms irhase(K). Letr be the path of terminal symbols
betweenr andy in chase(K). Then, for every nonterminal symhdl € NT' (resp.,
foreveryN € NT3), N(z,y) € chase(K) iff N =g = (resp., iff N =¢, 7).
Lemma 7. For every wordl; ... Ty in Term™, there exists a pait, y such that there
exists the path of terminal symbdls. . . T}, between: andy in chase(K).

From the above properties, the thesis easily follows. O

Obviously, the above theorem also implies undecidability of conjunctive query en-
tailment (and thus of conjunctive query answeringgifi .

We point out that the above theorem has been independently proved by other authors
[11,10].
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