CEUR-WS.org/Vol-2504/paper2l.pdf

Intersection Types for the Computational
A-Calculus

Extended Abstract

Ugo de’Liguoro and Riccardo Treglia

Dipartimento di Informatica, Universita degli Studi di Torino, Corso Svizzera 185,
10149 Torino, Italy
ugo.deliguoro@unito.it riccardo.treglia@unito.it

The computational A-calculus was introduced by Moggi [5,6] as a meta-
language to describe non functional effects in programming languages via an
incremental approach. The basic idea is to distinguish among values of some
type D and computations over such values, the latter having type T'D. Seman-
tically T' is a monad, endowing D with a richer structure such that operations
over computations can be seen as algebras of T. Any D is embedded into T'D
and there is a universal way to extend any morphism in D — TFE to a morphism
inTD —TE.

In Wadler’s formulation [7], at the ground of Haskell implementation, a
monad is a triple (T, unit, x) where T is a type constructor, and for all types
D.,E, unitp : D — TD and xp g : TD x (D — TE) — TE are such that
(omitting subscripts and writing x as an infix operator):

(unit d) = f = fd, ax unit = a, (axf)xg=axNd.(fd*g).

Instances of monads are partiality, exceptions, input/output, store, non deter-
minism, continuations.

Aim of our work is to investigate the monadic approach to effectfull functional
languages in the untyped case. Much as the untyped A-calculus can be seen as a
calculus with a single type D< D — D, which is interpreted by a reflexive object
in a suitable category, the untyped computational A-calculus A¥ has two types:
the type of values D and the type of computations T'D. The type D is a retract
of D — T'D, which is the call-by-value analogous of the reflexive object (see [5],
sec. 5). This leads to the following definition:

Definition 1 (The untyped computational A-calculus). The untyped com-

putational A-calculus, shortly A\¥, is a calculus of two sorts of expressions:

Val : VW =z | \e.M (values)
Com : M,N = unitV | MV (computations)

where x ranges over a denumerable set Var of variables.

Copyright (© 2019 for this paper by its authors. Use permitted under Creative Com-

mons License Attribution 4.0 International (CC BY 4.0)

2 U. de’Liguoro, R. Treglia

A reduction relation — C Com x Com is defined as follows:
(Be) unitV* (Axe.M) — M[V/x]
(x — red) M—M=MxV—MxV

where M [V /x| denotes the capture avoiding substitution of V' for all free occur-
rences of x in M.

Terms of the calculus can be interpreted into any D ~ D — T'D (where we
restrict to extensional models for simplicity) via the mappings [V]Y € D and
[M]ZP € TD, where p € Envp = Var — D by:

[[:c]]l’)3 = p(z) [unit V]]ZD = unit [[V]]f?
[[/\x.M]]E =Nd e D.[M]%P [[M*V]]ZD = [[M]]ED * [V]2

pl—d] P

where plx — d](y) = p(y) if y # z, it is equal to d otherwise. We therefore dub
(extensional) T-model in a cartesian closed category D a tuple (D, T,®,¥) such
that T is a monad over D and D ~ D — T'D via the morphisms &, ¥ = &1,

Proposition 1. If M — N then [M]" = [N]T? for any T-model D and
p € Envp.

An intersection type system for A¥

To study T-models we use intersection types, because they are at the same
time a formal system to reason on terms and a tool to bridge reduction and
operational semantics of the calculus to its models. As shown in [3] reasoning
over generic monads is challenging, and indeed a major issue of the present
work is to complement Dal Lago’s and others contributions by Coppo-Dezani
approach to the study of Scott’s D, models of the untyped A-calculus.

Let TypeVar be a countable set of type variables, ranged over by «; then we
define the following languages of types via the grammar:

ValType : du=al|d—=T|0Nd|wy (value types)
ComType : Tu=T6 | TAT | wc (computation types)

Over types we consider the preorders <y and <¢ making A into a meet operator
and such that:

¥ <yé 17<cT

0 <y wy =)A= T)<vd—= (TAT)
(5—)7'Sv(5l—>7'/
5 <y
T <c wc TOANTS <cT(BN) =
T§ <c T¢

wy <y wy = we

Now we are ready to define the intersection type assignment for A\Y and the
generic monad T

Intersection Types for the Computational A-Calculus Extended Abstract

Definition 2 (Type assignment). A basis is a finite set of typings I' =
{z1 : 01,... 2 : Op} with pairwise distinct variables x;, whose domain is the
set dom (I') = {z1,...,x,}. A basis determines a function from variables to
types such that I'(x) =3d ifx: § € I', I'(x) = wy otherwise.

A judgment is an expression of either shapes 'V :§ or ' M : 7. It is
derivable if it is the conclusion of a derivation according to the rules:

x:0el’ Tx:6FM:71 r=v:s I'EM:T§6 I'FV:d—>T
I''txz:0 T'FXM:0—-7 I'kFunitV:T§ I't-MxV:r
where Iyx : § =T'U{x : 6} withx : 6 & I', and the rules:
I'+P:¢g TTHFP:¢ TI'FP:o o<o
I'FP:w I'-P:oAno I'+-P:o

where either P € Val, w = wy, 0,0/ € ValType and <=<y or P € Com,
w=wc, 0,0 € ComType and < = <c.

Then by a standard technique, that is by proving suitable Generation and
Substitution Lemmas, we establish:

Theorem 1 (Subject reduction). '-M :7 & M — N=1T+ N :T.

Type assignment and T-models

As a first step we interpret types as certain subsets of D and T'D, according to
the sorts ValType and ComType respectively. Let (D, T, ®,¥) be a T-model and
d,d' € D; we abbreviate d - d' = &(d)(d'). Let & € TypeEnvy, = TypeVar — 27;
then the followings are natural requirements for the type interpretation mappings
[-17 : ValType x TypeEnvy, — 2P and [-]7P : ComType x TypeEnv, — 270:

[a]? = &(@) [0 =7]f ={deD|vd e[d]f d-d <[r]{"}
[wv]g =D [6 A 812 =018 N[0T
[[wc]]gD =TD [T A T’]]?D = [[T]]?D N [[T/]]?D

Further we call these interpretations monadic if [[T(S]]?D satisfies:

1. de [[(5]]? = unitd € [[T(S]]?D
2. de [0 = TP & ac[T¥iP = axde[To]{P

The main problem with monadic interpretations is that the clauses above are
not inductive, as they would be if we had types wy =y wy — Twy and Twy only.
However, working in a category of domains and with an w-continuous monad T’
we can build a T-model Do, = lim_ D,,, where Dy is some fixed domain, and
Dyy1 = [D,, — TD,] is such that for all n, D,, < D,,+1 is an embedding. As a
consequence we have Dy, ~ [Do, — T'Doo]. We say that Do, is a limit T-model.

More importantly with such a T-model we can stratify the above clauses by
means of approximate type interpretations [d] ? " C D, and [[T]]?D " C TD,,
that now can be defined by induction over n € IN.

4 U. de’Liguoro, R. Treglia

Theorem 2. The mappings [[5]]?‘” = lim, [[(5]]?" and [[T}]?D” = lim, [[T]]?D”
are monadic type interpretations. In particular for any £ € Envp_,:

1. [6 = 7]f= ={d € D | Vd' € [6]7= d(d) € [7]{ P~}
 A{unitd € TDy | d € [5]7~} U

2. [T8]; P> =
7ol {axd € TDy |36'.d € [0 = TS]P> & a€[T5]{P=}

Now, writing p, & =P I if p(z) € [[F(x)]]? for all € dom (I"), we may set
FEPV S (IEP M:7)if p,& =P T implies [V]] € [6]2 ([M]]P € [7]EP).
Also for any class C of T-models we write I' =€ V : 6 (I'l= M :7)if ' =P V2§

(I'EP M :7) for all D €C.

Theorem 3 (Soundness). If [6]F and [7]{P are monadic w.r.t. any T-model
D € C then

I'cv:6 = I'Ev:s and 'FM:7 = I'=M:1.

In particular, by Theorem 2, we may take C as the set of limit T-models.

Completeness and computational adequacy

Toward completeness, we first concentrate on the category D of w-algebraic
lattices, whose objects are known to be presentable as the poset of filters over
a meet-semilattice, or equivalently over a preorder whose quotient is such; the
w in the name means that the Scott topology of a domain in D has a countable
basis, formed by the upward cones of compact points. Then any axiomatization
Th = (T,<ty) of a preorder over a language T of intersection types making A
into the meet and w the top, will generate such a domain, and vice versa: we
call Dpy, = F(Th) the domain of filters w.r.t. <y, ordered by subset inclusion,
and Thp the theory of the restriction of the order in D to the compacts (D).
Therefore Dy, = F(Thp) ~ D which we abbreviate by Fp and identify with
D itself.

Let Thy = (ValType, <v) and Thc = (ComType, <c) and set D, = Dy, and
TD, = Dy then Thy is a continuous EATS (see e.g. [1] ch. 3, where continuity
is expressed by condition (Frefl) of Prop. 3.3.18), hence the space of continuous
functions D, — T'D, is representable in D,, and actually isomorphic to it. On
the other hand the theory Thc¢ is parametric in Thy. More precisely given a type
theory Th we can use the axioms of Thc to form a new theory we call T'(Th);
then we can define a mapping T among objects of D by TD = Dp(ry) where
Th= Thp.

Theorem 4. Define unit}, : Fp — Frp and *JE,E : Frp X Fpte — FrE by:
unith d=1{T6 € Trp |6 €d} txppe=1{r€Trp|Id—>1ce TSt}
Then (T, unit *,x7) is a monad over D. Hence D, is a T-model.

Strictly speaking to enforce extensionality of the filter model, Thy must be extended
to the theory Th{ by adding suitable axioms: see [4] for the precise treatment.

Intersection Types for the Computational A-Calculus Extended Abstract

By stratifying types according to the rank map: r(a) = r(wy) = r(wc) = 0,
r(oAc’) = max(r(o),r(o’)), (6 — 7) = max(r(0)+1,r(7)) and r(T9) = r()+1,
and taking <,,=<[{o | r(c) < n} (for both <y and <c¢) we obtain theories Th,,
and a chain of domains D,, = F(Th,,) such that D, = lim. D, is a limit 7-
model. Consequently, we can extend the proof in [2] to our calculus obtaining:

Theorem 5 (Completeness). Let C be the class of limit T-models. Then
I=v:6 = I'tv:6 and I'="M:7 = I'M:T.

Corollary 1 (Subject expansion). If ' M : 7 and N — M then I' - N :
T.

Finally let Term® = Val® U Com® be the set of closed terms.
Definition 3. Let || € Com® x Val® be the smallest relation satisfying:

MYV N[V/z] | W
unitV{§ V MxMx.N | W

Then it is easily seen that M |} V if and only if M — unit V. We abbreviate
M| & 3IV.M | V.

We say that 7 € ComType is non trivial if wc £c 7. Then by adapting Tait’s
computability technique, we eventually have:

Theorem 6. For all M € Com® we have:
M < 3t non trivial . - M : T
Corollary 2 (Computational Adequacy). In the model D, we have that
My & [M]"P+ # Lrp,

From the proof of Theorem 6 we learn that the fact that Twy is not equated to
wc in Thc is an essential ingredient; indeed this corresponds to the fact that the
generic monad T is assumed to be non trivial (hence not the identity monad), so
that TD % D. This supports the intuition that a T-model equating computations
to (the image of) values is not computationally adequate w.r.t. weak normal
forms.

For details we refer the reader to the full paper [4].

U. de’Liguoro, R. Treglia

References

. Amadio, R., Curien, P.L.: Domains and lambda-calculi. Cambridge University Press
(1998)

. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. Journal of Symbolic Logic 48(4), 931-940 (1983)
. Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads,
relators, and howe’s method. In: Proc. of Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017. pp. 1-12 (2017)

. de’Liguoro, U., Treglia, R.: Intersection Types for the Computational lambda-
Calculus (Jul 2019), https://arxiv.org/abs/1907.05706, unpublished

. Moggi, E.: Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66,
University of Edinburgh, Edinburgh, Scotland (Oct 1988)

. Moggi, E.: Notions of Computation and Monads. Information and Computation 93,
55-92 (1991)

. Wadler, P.: Monads for Functional Programming. In: Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text. Lecture Notes in Computer Science, vol. 925, pp. 24-52.
Springer-Verlag (1995)

