
Intersection Types for the Computational
λ-Calculus

Extended Abstract

Ugo de’Liguoro and Riccardo Treglia

Dipartimento di Informatica, Università degli Studi di Torino, Corso Svizzera 185,
10149 Torino, Italy

ugo.deliguoro@unito.it riccardo.treglia@unito.it

The computational λ-calculus was introduced by Moggi [5,6] as a meta-
language to describe non functional effects in programming languages via an
incremental approach. The basic idea is to distinguish among values of some
type D and computations over such values, the latter having type TD. Seman-
tically T is a monad, endowing D with a richer structure such that operations
over computations can be seen as algebras of T . Any D is embedded into TD
and there is a universal way to extend any morphism in D → TE to a morphism
in TD → TE.

In Wadler’s formulation [7], at the ground of Haskell implementation, a
monad is a triple (T, unit, ?) where T is a type constructor, and for all types
D,E, unitD : D → TD and ?D,E : TD × (D → TE) → TE are such that
(omitting subscripts and writing ? as an infix operator):

(unit d) ? f = f d, a ? unit = a, (a ? f) ? g = a ? λλ d.(f d ? g).

Instances of monads are partiality, exceptions, input/output, store, non deter-
minism, continuations.

Aim of our work is to investigate the monadic approach to effectfull functional
languages in the untyped case. Much as the untyped λ-calculus can be seen as a
calculus with a single type D/D → D, which is interpreted by a reflexive object
in a suitable category, the untyped computational λ-calculus λuc has two types:
the type of values D and the type of computations TD. The type D is a retract
of D → TD, which is the call-by-value analogous of the reflexive object (see [5],
sec. 5). This leads to the following definition:

Definition 1 (The untyped computational λ-calculus). The untyped com-
putational λ-calculus, shortly λuc , is a calculus of two sorts of expressions:

Val : V,W ::= x | λx.M (values)

Com : M,N ::= unit V |M ? V (computations)

where x ranges over a denumerable set Var of variables.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

2 U. de’Liguoro, R. Treglia

A reduction relation −→ ⊆ Com× Com is defined as follows:

(βc) unit V ? (λx.M)→M [V/x]

(?− red) M −→M ′ ⇒M ? V −→M ′ ? V

where M [V/x] denotes the capture avoiding substitution of V for all free occur-
rences of x in M .

Terms of the calculus can be interpreted into any D ' D → TD (where we
restrict to extensional models for simplicity) via the mappings [[V]]Dρ ∈ D and

[[M]]TDρ ∈ TD, where ρ ∈ EnvD = Var→ D by:

[[x]]Dρ = ρ(x) [[unit V]]TDρ = unit [[V]]Dρ

[[λx.M]]Dρ = λλ d ∈ D. [[M]]TDρ[x 7→d] [[M ? V]]TDρ = [[M]]TDρ ? [[V]]Dρ

where ρ[x 7→ d](y) = ρ(y) if y 6≡ x, it is equal to d otherwise. We therefore dub
(extensional) T -model in a cartesian closed category D a tuple (D,T, Φ, Ψ) such
that T is a monad over D and D ' D → TD via the morphisms Φ, Ψ = Φ−1.

Proposition 1. If M −→ N then [[M]]TDρ = [[N]]TDρ for any T -model D and
ρ ∈ EnvD.

An intersection type system for λu
c

To study T -models we use intersection types, because they are at the same
time a formal system to reason on terms and a tool to bridge reduction and
operational semantics of the calculus to its models. As shown in [3] reasoning
over generic monads is challenging, and indeed a major issue of the present
work is to complement Dal Lago’s and others contributions by Coppo-Dezani
approach to the study of Scott’s D∞ models of the untyped λ-calculus.

Let TypeVar be a countable set of type variables, ranged over by α; then we
define the following languages of types via the grammar:

ValType : δ ::= α | δ → τ | δ ∧ δ | ωV (value types)

ComType : τ ::= Tδ | τ ∧ τ | ωC (computation types)

Over types we consider the preorders ≤V and ≤C making ∧ into a meet operator
and such that:

δ ≤V ωV (δ → τ) ∧ (δ → τ ′) ≤V δ → (τ ∧ τ ′)
δ′ ≤V δ τ ≤C τ

′

δ → τ ≤V δ
′ → τ ′

τ ≤C ωC Tδ ∧ Tδ′ ≤C T (δ ∧ δ′)
δ ≤V δ

′

Tδ ≤C Tδ
′

ωV ≤V ωV → ωC

Now we are ready to define the intersection type assignment for λuc and the
generic monad T :

Intersection Types for the Computational λ-Calculus Extended Abstract 3

Definition 2 (Type assignment). A basis is a finite set of typings Γ =
{x1 : δ1, . . . xn : δn} with pairwise distinct variables xi, whose domain is the
set dom (Γ) = {x1, . . . , xn}. A basis determines a function from variables to
types such that Γ (x) = δ if x : δ ∈ Γ , Γ (x) = ωV otherwise.

A judgment is an expression of either shapes Γ ` V : δ or Γ ` M : τ . It is
derivable if it is the conclusion of a derivation according to the rules:

x : δ ∈ Γ

Γ ` x : δ

Γ, x : δ `M : τ

Γ ` λx.M : δ → τ

Γ ` V : δ

Γ ` unit V : Tδ

Γ `M : Tδ Γ ` V : δ → τ

Γ `M ? V : τ

where Γ, x : δ = Γ ∪ {x : δ} with x : δ 6∈ Γ , and the rules:

Γ ` P : ω

Γ ` P : σ Γ ` P : σ′

Γ ` P : σ ∧ σ′
Γ ` P : σ σ ≤ σ′

Γ ` P : σ′

where either P ∈ Val , ω ≡ ωV, σ, σ′ ∈ ValType and ≤=≤V or P ∈ Com,
ω ≡ ωC, σ, σ′ ∈ ComType and ≤=≤C.

Then by a standard technique, that is by proving suitable Generation and
Substitution Lemmas, we establish:

Theorem 1 (Subject reduction). Γ `M : τ & M −→ N ⇒ Γ ` N : τ .

Type assignment and T -models

As a first step we interpret types as certain subsets of D and TD, according to
the sorts ValType and ComType respectively. Let (D,T, Φ, Ψ) be a T -model and
d, d′ ∈ D; we abbreviate d · d′ = Φ(d)(d′). Let ξ ∈ TypeEnvD = TypeVar → 2D;
then the followings are natural requirements for the type interpretation mappings
[[·]]D : ValType× TypeEnvD → 2D and [[·]]TD : ComType× TypeEnvD → 2TD:

[[α]]Dξ = ξ(α) [[δ → τ]]Dξ = {d ∈ D | ∀d′ ∈ [[δ]]Dξ d · d′ ∈ [[τ]]TDξ }

[[ωV]]Dξ = D [[δ ∧ δ′]]Dξ = [[δ]]Dξ ∩ [[δ′]]Dξ

[[ωC]]TDξ = TD [[τ ∧ τ ′]]TDξ = [[τ]]TDξ ∩ [[τ ′]]TDξ

Further we call these interpretations monadic if [[Tδ]]TDξ satisfies:

1. d ∈ [[δ]]Dξ ⇒ unit d ∈ [[Tδ]]TDξ
2. d ∈ [[δ′ → Tδ]]Dξ & a ∈ [[Tδ′]]TDξ ⇒ a ? d ∈ [[Tδ]]TDξ

The main problem with monadic interpretations is that the clauses above are
not inductive, as they would be if we had types ωV =V ωV → TωV and TωV only.
However, working in a category of domains and with an ω-continuous monad T
we can build a T -model D∞ = lim←Dn, where D0 is some fixed domain, and
Dn+1 = [Dn → TDn] is such that for all n, Dn / Dn+1 is an embedding. As a
consequence we have D∞ ' [D∞ → TD∞]. We say that D∞ is a limit T -model.

More importantly with such a T -model we can stratify the above clauses by
means of approximate type interpretations [[δ]]Dn

ξ ⊆ Dn and [[τ]]TDn

ξ ⊆ TDn,
that now can be defined by induction over n ∈ N.

4 U. de’Liguoro, R. Treglia

Theorem 2. The mappings [[δ]]D∞ξ = lim←[[δ]]Dn

ξ and [[τ]]TD∞ξ = lim←[[τ]]TDn

ξ

are monadic type interpretations. In particular for any ξ ∈ EnvD∞ :

1. [[δ → τ]]D∞ξ = {d ∈ D∞ | ∀d′ ∈ [[δ]]D∞ξ d(d′) ∈ [[τ]]TD∞ξ }

2. [[Tδ]]TD∞ξ =
{unit d ∈ TD∞ | d ∈ [[δ]]D∞ξ } ∪
{a ? d ∈ TD∞ | ∃δ′. d ∈ [[δ′ → Tδ]]D∞ξ & a ∈ [[Tδ′]]TD∞ξ }

Now, writing ρ, ξ |=D Γ if ρ(x) ∈ [[Γ (x)]]Dξ for all x ∈ dom (Γ), we may set

Γ |=D V : δ (Γ |=D M : τ) if ρ, ξ |=D Γ implies [[V]]Dρ ∈ [[δ]]Dξ ([[M]]TDρ ∈ [[τ]]TDξ).

Also for any class C of T -models we write Γ |=C V : δ (Γ |= M : τ) if Γ |=D V : δ
(Γ |=D M : τ) for all D ∈ C.

Theorem 3 (Soundness). If [[δ]]Dξ and [[τ]]TDξ are monadic w.r.t. any T -model
D ∈ C then

Γ ` V : δ ⇒ Γ |=C V : δ and Γ `M : τ ⇒ Γ |=C M : τ.

In particular, by Theorem 2, we may take C as the set of limit T -models.

Completeness and computational adequacy

Toward completeness, we first concentrate on the category D of ω-algebraic
lattices, whose objects are known to be presentable as the poset of filters over
a meet-semilattice, or equivalently over a preorder whose quotient is such; the
ω in the name means that the Scott topology of a domain in D has a countable
basis, formed by the upward cones of compact points. Then any axiomatization
Th = (T ,≤Th) of a preorder over a language T of intersection types making ∧
into the meet and ω the top, will generate such a domain, and vice versa: we
call DTh = F(Th) the domain of filters w.r.t. ≤Th ordered by subset inclusion,
and ThD the theory of the restriction of the order in D to the compacts K(D).
Therefore DThD

= F(ThD) ' D which we abbreviate by FD and identify with
D itself.

Let ThV = (ValType,≤V) and ThC = (ComType,≤C) and set D∗ = DThV
and

TD∗ = DThC
: then ThV is a continuous EATS (see e.g. [1] ch. 3, where continuity

is expressed by condition (Frefl) of Prop. 3.3.18), hence the space of continuous
functions D∗ → TD∗ is representable in D∗, and actually isomorphic to it. On
the other hand the theory ThC is parametric in ThV. More precisely given a type
theory Th we can use the axioms of ThC to form a new theory we call T (Th);
then we can define a mapping T among objects of D by TD = DT (Th) where
Th = ThD.

Theorem 4. Define unitFD : FD → FTD and ?FD,E : FTD×FD→TE → FTE by:

unitFD d = ↑{Tδ ∈ TTD | δ ∈ d} t?FD,E e = ↑{τ ∈ TTE | ∃ δ → τ ∈ e. T δ ∈ t}

Then (T, unit F , ?F) is a monad over D. Hence D∗ is a T -model.

Strictly speaking to enforce extensionality of the filter model, ThV must be extended
to the theory ThηV by adding suitable axioms: see [4] for the precise treatment.

Intersection Types for the Computational λ-Calculus Extended Abstract 5

By stratifying types according to the rank map: r(α) = r(ωV) = r(ωC) = 0,
r(σ∧σ′) = max(r(σ), r(σ′)), r(δ → τ) = max(r(δ)+1, r(τ)) and r(Tδ) = r(δ)+1,
and taking ≤n=≤�{σ | r(σ) ≤ n} (for both ≤V and ≤C) we obtain theories Thn
and a chain of domains Dn = F(Thn) such that D∗ = lim←Dn is a limit T -
model. Consequently, we can extend the proof in [2] to our calculus obtaining:

Theorem 5 (Completeness). Let C be the class of limit T -models. Then

Γ |=C V : δ ⇒ Γ ` V : δ and Γ |=C M : τ ⇒ Γ `M : τ.

Corollary 1 (Subject expansion). If Γ `M : τ and N −→M then Γ ` N :
τ .

Finally let Term0 = Val 0 ∪ Com0 be the set of closed terms.

Definition 3. Let ⇓ ⊆ Com0 ×Val 0 be the smallest relation satisfying:

unit V ⇓ V

M ⇓ V N [V/x] ⇓W

M ? λx.N ⇓W

Then it is easily seen that M ⇓ V if and only if M
∗−→ unit V . We abbreviate

M ⇓ ⇔ ∃V. M ⇓ V .
We say that τ ∈ ComType is non trivial if ωC 6≤C τ . Then by adapting Tait’s

computability technique, we eventually have:

Theorem 6. For all M ∈ Com0 we have:

M ⇓ ⇔ ∃τ non trivial . `M : τ

Corollary 2 (Computational Adequacy). In the model D∗ we have that

M ⇓ ⇔ [[M]]TD∗ 6= ⊥TD∗

From the proof of Theorem 6 we learn that the fact that TωV is not equated to
ωC in ThC is an essential ingredient; indeed this corresponds to the fact that the
generic monad T is assumed to be non trivial (hence not the identity monad), so
that TD 6' D. This supports the intuition that a T -model equating computations
to (the image of) values is not computationally adequate w.r.t. weak normal
forms.

For details we refer the reader to the full paper [4].

6 U. de’Liguoro, R. Treglia

References

1. Amadio, R., Curien, P.L.: Domains and lambda-calculi. Cambridge University Press
(1998)

2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. Journal of Symbolic Logic 48(4), 931–940 (1983)

3. Dal Lago, U., Gavazzo, F., Levy, P.B.: Effectful applicative bisimilarity: Monads,
relators, and howe’s method. In: Proc. of Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017. pp. 1–12 (2017)

4. de’Liguoro, U., Treglia, R.: Intersection Types for the Computational lambda-
Calculus (Jul 2019), https://arxiv.org/abs/1907.05706, unpublished

5. Moggi, E.: Computational Lambda-calculus and Monads. Report ECS-LFCS-88-66,
University of Edinburgh, Edinburgh, Scotland (Oct 1988)

6. Moggi, E.: Notions of Computation and Monads. Information and Computation 93,
55–92 (1991)

7. Wadler, P.: Monads for Functional Programming. In: Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text. Lecture Notes in Computer Science, vol. 925, pp. 24–52.
Springer-Verlag (1995)

