
2

The Impact of Refactoring on Maintability of Java Code:
A Preliminary Review
MITJA GRADIŠNIK, SAŠO KARAKATIČ, TINA BERANIČ and MARJAN HERIČKO, University of
Maribor
GORAN MAUŠA, University of Rijeka
TIHANA GALINAC GRBAC, Juraj Dobrila University of Pula

The preservation of a proper level of software systems quality is one in the cornerstones of making software evolution easier and

sustainable in the long run. A good design allows complex systems to evolve with little effort and in an economically efficient

way. When design deviations are detected, refactoring techniques are applied to eliminate or at least reduce the identified flaws.
A number of studies show that not all refactoring techniques contribute to improving the quality of different software systems

equally. Therefore, effective approaches to measuring the impact of refactoring on software quality are required. In this study,
we examine approaches to estimate the effect of applied refactoring techniques on the maintainability of Java based software

systems. Since refactoring primarily affects the system’s internal structure, maintainability was put in the focus of the study. We

conducted a brief literature review, limiting our study on quantitative metrics. The results show that researchers use different
approaches for evaluating the impact of refactoring on the observed Java based software systems. In some studies, researchers

measured the effect of refactoring on the internal structure attributes measured by software metrics, e.g. C&K metric suite but

the scope of our research was limited to the effects of refactoring on maintainability. In other studies, the effects of refactoring
are estimated through external quality attributes, e.g. maintainability, readability, and understandability. Additionally, some

researchers observed the impact of refactoring indirectly, e.g. through the defect proneness of classes of observed systems.

1. INTRODUCTION

Software quality is one of the most important issues in software engineering, drawing attention from
both practitioners and researchers [Alkharabsheh et al. 2018]. Insufficient quality leads to an unac-
ceptable product. Likewise, as the level of quality increases, the product becomes more useful, and
the highest levels of quality can give the product a competitive advantage. Although, higher product
quality decreases software evolution and maintenance costs, beyond a certain point the level of qual-
ity becomes excessive [Barney et al. 2012]. Thus, increasing the quality level of a software system
even further does not bring any additional competitive advantage. This is why, software quality should
maintain a balance between development velocity, efficiency and resources required to build a useful
software products that satisfies the expectations of stakeholders. As software quality is a complex and
multifaceted concept, user satisfaction is not its only aspect [Barney et al. 2012]. Software quality also

The authors acknowledge the project (An empirical comparison of machine learning based approaches for code smell detection,
BI-HR/18-19-036) which was supported financially by the Slovenian Research Agency and by Croatian Ministry of Science and
Education.
Author’s address: M. Gradišnik, S. Karakatič, T. Beranič, M. Heričko, Koroška cesta 46, 2000 Maribor, Slovenia; email:
{mitja.gradisnik, saso.karakatic, tina.beranic, marjan.hericko}@um.si; G. Mauša, Vukovarska 58, 51000 Rijeka, Croatia; email:
goran.mausa@riteh.hr; T. Galinac Grbac, Zagrebačka 30, 52100 Pula, Croatia; email: tihana.galinac.grbac@unipu.hr.

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Inter-
national (CC BY 4.0).
In: Z. Budimac and B. Koteska (eds.): Proceedings of the SQAMIA 2019: 8th Workshop on Software Quality, Analysis, Mon-
itoring, Improvement, and Applications, Ohrid, North Macedonia, 22–25. September 2019. Also published online by CEUR
Workshop Proceedings (http://ceur-ws.org, ISSN 1613-0073)



2:2 • Mitja Gradišnik et al.

includes non-functional attributes, such as reliability and maintainability [Gorla and Lin 2010]. Im-
proving maintainability is one of the cornerstones of making software evolution easier [Alkharabsheh
et al. 2018].

The design of a software system is one of the most influential factors in its quality, and a good de-
sign allows the system to evolve with little effort and less money [Stroggylos and Spinellis 2007]. Code
smells have become an established concept for patterns or aspects of software design that may cause
problems to further development and maintenance of the system [Yamashita and Leon 2013]. The term
code smells was first coined by [Riel 1996] and [Brown et al. 1998] to refer to any symptom for poorly
designed parts of code that can cause serious problems while maintaining the software [Lafi et al.
2019]. [Fowler 1999] provided subsequently a set of informal descriptions for twenty-two code smells.
Each code smell in the catalog is associated with a corresponding refactoring technique that can be
applied to remedy it. The main motivation for using code smells for system maintainability assess-
ment is that they constitute software features that are potentially easier to interpret than traditional
object-oriented software measures [Yamashita and Counsell 2013]. Refactoring is a valuable tool that
can be used to improve the design of software and consequently reduce thenegative effects of software
quality degradation. Our definition of refactoring comprises only those changes in the software sys-
tem’s program code that change its structure but do not add any additional functionalities. Although
there is a general belief among software developers that refactoring always leads to improved software
quality, research shows all refactoring techniques do not necessarily improve software quality nor do
they improve all aspects of software quality equally. Often, the improvement of one aspect of software
quality leads to deterioration in another aspect of software quality. Since we do not have a clear and
quantitative instrument for measuring software quality it is often hard to evaluate the benefits of such
quality improvement activities.

Therefore, the general research field looking at the impact of refactoring due to code smells on soft-
ware quality is not yet entirely clear. The goal of this paper is to study which approaches to the quan-
titative measurement of changes in software quality have been used in recent studies by researchers
who are studing the effect of refactoring techniques on software quality attributes. Since refactoring
primarily affects the maintainability, the study was focused on maintainability and its related exter-
nal attributes, such as reusability, analyzability, and modifiability. To answer our research goal, we
performed a brief literature review. We only considered studies published within the last five years.

The main objective of this paper is to review measurement approaches used to evaluate improve-
ments in software design achieved by refactoring techniques. Hence, we conducted a brief literature
review of the last five years and extracted approaches for evaluating the change in maintainability of
two observed software versions.

This paper is structured as follows. The introduction establishes the scope and purpose of the paper
and gives the necessary background information relevant to the research. Following the introduction,
a second section explains the procedure of the literature review. In sections 3 and 4, refactoring and
maintainability are defined using definitions provided by the authors of the analyzed studies. Section
5 outlines the key approaches in measuring the effects of refactoring on maintainability. Finally, we
summarize our research and give concluding remarks in the last section.

2. METHOD

The main research goal of this paper is to explore the measures used to quantify the refactoring impact.
In addition, we looked at how refactoring is defined in the literature and searched for the reason that
guided the refactoring activities. Since we focused our study on maintainability, our aim was to detect
different measures related to maintainability and to summarize all the tools used for measuring these
measures. To answer these questions and gather available research contributions, a preliminary review



The Impact of Refactoring on Maintability of Java Code: A Preliminary Review • 2:3

Table I. Papers on measuring the impact of refactoring on software maintainability from 2015 to 2019.

Research Digital Library URL No. of Results No. of Selected Studies
(based on abstract and title)

No. of Relevant
Studies

IEEE Xplore Digital Library ieeexplore.ieee.org 38 12 9
ScienceDirect sciencedirect.com 22 8 3
ACM Digital Library dl.acm.org 28 12 8
arXiv (all repositories) arxiv.org 20 4 2
Google Scholar A,B scholar.google.com 50 3 1

A “-Elsevier -IEEE“ was added to the search query, to prevent the duplication of results.
B Only 50 of the most relevant papers were taken into account.

was done using five digital libraries and research search engines: IEEE Xplore, ScienceDirect, ACM
Digital Library, arXiv, and Google Scholar. The selection of the relevant papers is based on the title
and the abstract relevance. We only considered papers published between 2015 and 2019. The search
was done using the following search query: refactoring AND maintainability AND software. The results
obtained from digital libraries are shown in Table I. In our research, we only included studies available
in the selected digital libraries and written in the English language. The search was conducted for both
journal and conference papers and all of the studies used in our paper were published in the software
engineering domain. In total, more than 158 (and many more from Google Scholar, which were not
relevant) results were obtained from five research digital libraries. Based on the title and the abstract
39 papers were read and the final set of 27 papers was formed which served as the basis for this
research. There is a rising trend in the number of published relevant papers, whereas the conferences
still constitute the most popular medium for publishing papers on the topic.

3. REFACTORING

The definition of refactoring as an activity of software quality assurance is unanimous among re-
searchers, mainly taken from [Fowler et al. 1999]. They all agree that refactoring is basically the re-
structuring of source code used to improve existing code [Fontana et al. 2015], i.e. the internal structure
of software systems [Kádár et al. 2016; Rathee and Chhabra 2017], thereby improving its understand-
ability and readability [Tarwani and Chug 2016] while preserving their external behavior [Fontana
et al. 2015; Malhotra et al. 2015; Ouni et al. 2016; Vidal et al. 2018; Szőke et al. 2017; Kannangara and
Wijayanayake 2013; Hegedűs et al. 2018; Gatrell and Counsell 2015; Bashir et al. 2017], or more gen-
erally, to reduce technical debt [Kouros et al. 2019]. Another view on refactoring, from the developers’
perspective, was given by [Szőke et al. 2017]. They rely on findings by [Kim et al. 2012], supported by
their own research [Szőke et al. 2014], that developers’ use refactoring primarily to fix coding issues
and not for the refactoring of code smells or antipaterns. A different definition was given by [Kaur and
Singh 2017] where the authors described refactoring as an approach that decreases the complexity of
software by fixing errors or appending new features. For [Mens and Tourwé 2004] the aim of refactor-
ing, adopted by [Mehta et al. 2018], is to redistribute classes, variables, and methods across a class
hierarchy in order to facilitate future adaptations and extensions. Refactoring activities may include
operations like [Ouni et al. 2017; Szőke et al. 2017; Steidl and Deissenboeck 2015]: (1) class - level:
move, inline, rename, extract class, subclass, superclass or interface, (2) method - level: move, pull up,
push down, extract, rename, parameter change and (3) field - level: move, pull up, push down.

On the other hand, a study done by [Shatnawi and Li 2011] identified a different subset of ten
refactoring techniques with the highest impact: Introduce Local Extension, Duplicate Observed Data,
Replace Type Code with Subclasses, Replace Type Code with State/Strategy, Replace Conditional with
Polymorphism, Introduce Null Object, Extract Subclass, Extract Interface, Form Template Method,
and Push Down Method.



2:4 • Mitja Gradišnik et al.

Code Smells are thought to be the primary technique for identifying refactoring opportunities [Fontana
et al. 2015; Kádár et al. 2016; Rathee and Chhabra 2017] and refactoring depends solely on our ability
to identify them [Rathee and Chhabra 2017], which may be done by tools based on predefined metrics
[Steidl and Deissenboeck 2015]. Code smells are defined as symptoms of problems at the code or design
level [Fontana et al. 2015], specific types of design flaws [Kouros et al. 2019] or certain structures which
violate the design principles [Malhotra et al. 2015] that originated from poor design choices applied
by programmers during the development of a software project [Palomba et al. 2018]. Although code
smells do not always represent direct problems to a software system (faults or defects) [Fontana et al.
2015], they are known to degrade quality, and impact the legibility, maintainability, and evolution of
the system [Vidal et al. 2018], thus motivateing developers to remove them through refactoring.

The identification of refactoring may be done by self-reported refactorings by programmers [Nayebi
et al. 2018] or by looking into manual refactoring, but the support of a static source code analyzer
tool like SourceMeter is found to be helpful for developers [Szőke et al. 2017]. However, the dominant
approach is to use different tools to detect the refactoring. [Hegedűs et al. 2018] searched for refactor-
ings done in seven open-source Java systems with RefFinder [Kim et al. 2010], a tool for refactoring
extraction. The same tool was also used by [Kaur and Singh 2017] to extract refactoring tasks from
the source code of four versions of the open-source Junit project. On the other hand [Gatrell and Coun-
sell 2015] used the automated tool Bespoke to detect the occurrence of 15 types of refactoring in C#
programming language.

4. MEASUREMENT OF MAINTAINABILITY

Within the performed review, we focused on software maintainability since it represents an impor-
tant aspect within source code refactoring. Maintainability can be understood differently. For exam-
ple, maintainability is one of the characteristics defined in the ISO 25010 [ISO/IEC 25010 2011] that
presents a software product quality model, ”the degree of effectiveness and efficiency with which a
product or system can be modified to improve it, correct it or adapt it to changes in the environ-
ment, and in the requirements”. This is not the only definition used in the literature. The definition
of maintainability can also be found within ColumbusQM quality model [Bakota et al. 2011] and oth-
ers individual definitions are frequently found. Additionally, in the software product quality model,
maintainability is composed of more subcharacteristics defined and measured in a prescribed way. To
unify the understanding of maintainability, the definition of the investigated attribute and possible
subattributes within each work is crucial.

[Tarwani and Chug 2016] define software maintainability as the ease, with which software can be
modified, corrected or updated. To measure software maintainability, the authors relied on the relation
between metrics and software maintainability by using the definition proposed by [Dubey and Rana
2011], which states that the relation between metrics and software maintainability is always inversed.
[Malhotra and Chug 2016] adopt the term maintainability by [Aggarwal et al. 2006], who define it as
the ease with which software can be modified. It is measured in terms of Line of Code (LOC) added,
deleted and modified in the maintenance phase of SDLC. [Bashir et al. 2017] define software main-
tainability as the level of ease in extension, fixing bugs and preforming certain maintenance-related
activities. [Szőke et al. 2017] and [Hegedűs et al. 2018] adopt the definition of maintainability provided
in the ColumbusQM probabilistic quality model [Bakota et al. 2011], which is based on ISO/IEC 25010
quality characteristics and reduces software quality to one single value.

Still, the majority of researchers [Steidl and Deissenboeck 2015; Ouni et al. 2017; Nayebi et al.
2018; Kannangara and Wijayanayake 2013; Kádár et al. 2016; Ouni et al. 2016; Vidal et al. 2018],
did not provide the definition of the maintainability or targeted subcharacteristic. A special case was
the paper by [Gatrell and Counsell 2015], since the main focus of their paper was not in measuring



The Impact of Refactoring on Maintability of Java Code: A Preliminary Review • 2:5

the maintainability but following the change and fault proneness of classes. In the paper by [Kaur
and Singh 2017] the explicit definition of software maintainability is not provided, but they refer to
software metrics as a measure of software maintainability of observed software projects.

Only a small number of papers look into the subcharacteristics of maintainability. For example,
[Kannangara and Wijayanayake 2013] measured the analysability, changeability, resource utilization
and time behavior for each participant in their experiment doing the refactoring. They also measured
the maintainability index, cyclomatic complexity, depth of inheritance, class coupling, and lines of code
for refactored code and code without refactoring. [Nayebi et al. 2018] used two metrics to measure soft-
ware quality, especially the maintainability. First, the decoupling level by Mo et al. [Mo et al. 2016],
which says how well a software system is decoupled into independent modules, using Baldwin and
Clark’s design rule theory as the underlying theoretical foundation: the more active, independent, and
small modules there are, the more option values can be produced. They also used the propagation
cost proposed by [MacCormack et al. 2006] to measure how tightly coupled a system is, based on the
dependencies among files. They also identified the following design flaws and architecture smells in ac-
cordance with [Mo et al. 2015]: package cycles, improper inheritance, modularity violations, crossings,
and unstable interfaces. They combined this with the DRSpace tool [Xiao et al. 2014] which identifies
most error-prone files.

5. EVALUATING THE CHANGE IN MAINTAINABILITY

Researchers agree that once refactoring is applied, the developer should assess its effects in terms of
software complexity, understandability, and maintainability or in terms of productivity, cost, and effort
for the undertaken process [Ouni et al. 2016; Vidal et al. 2018]. This could be done, for example, by
looking at different software metrics to measure the attributes of coupling, complexity, cohesion, or
other aspects of the system, before and after refactoring [Vidal et al. 2018]. Some of the established
software metrics used later in the paper with abbreviations are summed up in Table II.

5.1 Assessment of the internal design

In some studies, the assessment of the change in maintainability relies on the software’s internal de-
sign. For instance, to assess a change in maintainability of software products, researchers [Chug and
Tarwani 2017] measured nine software metrics, namely CBO, LCOM, RFC, WMC, NOC, DIT, Ocavg,
AHF, and MHF. According to the authors’ understanding of maintainability adopted by [Dubey and
Rana 2011], maintainability is in inverse relation to the values of the measured software metrics, i.e.
an increase in value of the metrics results in a decrease in the maintainability value. An identical
set of metrics was also used by researchers [Tarwani and Chug 2016], who acquired the metric mea-
surements using the IntelliJ IDEA metrics plug-in. Furthermore, a similar approach was taken by
the researchers [Malhotra and Chug 2016]. The researchers refer to the work of [Singh and Malhotra
2012] which states that the metrics of the C&K suite are negatively correlated with maintainability.
In the study, the researchers empirically evaluated the repercussions of refactoring on maintainability
with the help of their measurable effects on the internal quality attributes as well as the external
quality attributes. While internal attributes were assessed using the C&K metric suite, the external
attributes of observed software projects were assessed through expert opinion. The researchers [Kaur
and Singh 2017] estimated the internal structure of software products by measuring its complexity.
According to researchers, complexity can be efficiently estimated via an assessment of size (TLLOC,
and TNOS), coupling (RFC, and NOI), clone (CI), complexity (WMC) and comment (TCLOC) of soft-
ware products. To measure the required code metrics for the complexity estimation, the authors used
the Halstead Metrics tool. Furthermore, [Ouni et al. 2017] measured the number of code smells, num-
ber of design patterns and the hierarchical model of evaluating software with 11 low level metrics by



2:6 • Mitja Gradišnik et al.

[Bansiya and Davis 2002]: design size in classes, number of hierarchies, average number of ancestors,
data access metric, direct class coupling, cohesion among methods of class, measure of aggregation,
measure of functional abstraction, number of polymorphic methods, class interface size, and number
of methods. The authors of the study did not provide the information on which tool was used to measure
the metrics.

Table II. List of metrics and their descriptions.
Metric name Metric description Metric name Metric description
AHF Attribute Hiding Factor NC Number of Classes
CBO Coupling Between Objects NGen Number of Generalizations
CI Clone Index NGenH Number of Generalization Hierarchies
Connectivity Connectivity NOC Number of Children
DIT Depth of Inheritance Tree NOI Number of Incoming Invocations
EPM Entity Placement metric OCavg Cyclomatic Complexity of a Class
LCOM Lack of cohesion of methods RFC Response For Class
maxDIT Maximum DIT TCLOC Total Comment Lines of Code
MHF Method Hiding Factor TLLOC Total Logical Lines of Code
MI Maintainability Index TNOS Total Number of Statements
MPC Message Passing Coupling WMC Weighted Methods for Class
NAggH Number of Aggregation Hierarchies

[Kannangara and Wijayanayake 2013] also focused on the internal attributes of studied software
products while estimating a change in software maintainability after refactoring the project’s code.
The authors of the study did an experiment with students of computer science, where they split the
students into two groups: the control group with C# without the refactoring and the experimental
group of students which got the refactored C# code. They measured the students’ performance on
fixing bugs and answering questions about the code. An analysis of the internal metrics showed that
there was improvement in the maintainability index, while other metrics (cyclomatic complexity, Dept
of Inheritance, Class Coupling and Lines of Code) stayed the same.

In their study, researchers [Steidl and Deissenboeck 2015] used a simplified model to estimate the
change in the software quality of studied software by measuring the change in code size. The re-
searchers did use a change in lines of code of observed method as a metric (measured by their own
tools), besides their own ıgrowth quotient, which showed how methods got bigger. According to the
quality model used in the research, longer methods mean less maintainable program code.

5.2 Assessment of external software attributes

In contrast to the approaches that estimate a change in software maintainability through a change of
values of internal attributes, in some studies the estimation of external attributes of software products
is applied. [Kouros et al. 2019] argued that metrics are not reliable indicators of software quality when
comparing different products or even different versions of the same system and that quality can be
objectively assessed only by measures that evaluate a design against the optimum design that could
be achieved for a particular context. Hence, they used the Entity Placement metric from [Tsantalis and
Chatzigeorgiou 2009] which encompases interclass coupling in the numerator and intra-class cohesion
in the denominator, making it a suitable fitness function for their search-based approach to propose
activities like refactoring to achieve an optimal architecture and thus reduce technical debt. In the
literature, it is common to assess the maintainability of a software system by calculating its maintain-
ability index (MI). One of the works that focuses on the maintainability index, is a study performed
by [Mehta et al. 2018]. The authors of the study proposed an approach to improving software quality
by removing relevant code smells from the source code of observed software systems. The effectiveness



The Impact of Refactoring on Maintability of Java Code: A Preliminary Review • 2:7

of the proposed approach is demonstrated by measuring the Maintainability Index and Relative logi-
cal complexity, first measured by the JHawk tool and subsequently measured by the Eclipse Metrics
plug-in. To reduce maintainability measures to a single assessment value the authors introduced the
Maintainability Complexity Index (MCI), calculated according to the formula MCI = MI ∗ RLC. Ac-
cording to the authors, the combination of MI and RLC does better at estimating the maintainability
of a software system than the maintainability index itself.

[Bashir et al. 2017] adopted the MOMOOD quality model, proposed by [W. A. Rizvi and Khan 2010].
The model defines maintainability through the following formula: Maintainability = −0.126 + 0.645 ∗
understandability + 0.502 ∗Modifiability, where understandability is calculated via the formula:
Understandability = 1.166 + 0.256 ∗NC–0.394 ∗NGenH, and modifiability is calculated via the formula:
Modifiability = 0.629 + 0.471 ∗ NC–0.173 ∗ NGen − 0.616 ∗ NaggH–0.696 ∗ NGenH + 0.396–MaxDIT .
The authors do not state how the metrics required for maintainability assessment were measured.
Furthermore, [Szőke et al. 2017] measured the effect of refactoring on the software projects by the
Columbus QM probabilistic software maintainability model [Bakota et al. 2011] which is based on the
quality characteristics defined by the ISO/IEC 25010 standard. The maintainability of the software
project was measured by SourceMeter, a tool developed by the authors of the study. The same tool,
QualityGate SourceAudit, was used by [Hegedűs et al. 2018], within which the Relative Maintainabil-
ity Index (RMI) is measured. RMI expresses the maintainability of a code element and is by calculated
using dynamic thresholds from a benchmark database istead of fixed formulas [Hegedűs et al. 2018].
In a similar study, [Szőke et al. 2017] identified refactoring commits based on the tickets and ana-
lyzed the maintainability of the revision before and after the commit. The measurement was done
with QualityGate SourceAudit 1. The effect of refactoring is measured as: MaintainabilityChange =
Maintainability(t(i))− Maintainability(t(i)− 1). [Hegedűs et al. 2018] did not deal with maintainabil-
ity change itself, but researched the differences in relative maintainability index between refactored
and non-refactored elements. [Kádár et al. 2016] used a metric named the Relative Maintainability In-
dices of source code elements, calculated by the QualityGate, an implementation of the ColumbusQM
quality model. Like the well-known maintainability index, the Relative Maintainability Indices re-
flects the maintainability of a software module, but is calculated using dynamic thresholds from a
benchmark database and not via a fixed formula. Thus, it expresses the relative maintainability of a
software module compared to the maintainability of other elements in the benchmark.

Similarly, [Han and Cha 2018] propose a two-phase assessment approach for refactoring identifica-
tion based on the calculation of the delta value in maintainability. The authors took into consideration
several aspects that can affect maintainability. To assess maintainability as accurately as possible
the metric values of the Entity Placement Metric (EPM), Connectivity and message Passing Coupling
(MPC) were calculated. There are also novel measures used for this purpose. For example, [Malhotra
et al. 2015] defined the measure Quality Depreciation Index Rule (QDIR) that is calculated by consid-
ering both bad smells and the C&K Suite of Metric, while [Rathee and Chhabra 2017] focused on im-
proving the cohesion of different classes of object-oriented software using a newly proposed similarity
metric based on frequent usage patterns. Ouni et al. [Ouni et al. 2017] measured the gain in different
QMOOD quality factors (reusability, flexibility, understandability, effectiveness, functionality and ex-
tendibility) ratio changed as defined by [Bansiya and Davis 2002]. Also, they used Ph.D. students to
evaluate the refactoring and compare the results of their approach to professional recommendations.

While most researchers evaluated maintainability via metric measurements, the researchers [Mal-
hotra and Chug 2016] estimated understandability, level of abstraction, modifiability, extensibility, and
reusability through expert opinions.

1https://www.quality-gate.com/



2:8 • Mitja Gradišnik et al.

5.3 Indirect assessment of external quality attributes

Last but not least, in some studies researchers focused on the reliability of a software system in order
to assess a change in the software quality of an observed software system after refactoring had been
applied. A change in reliability can be detected by the increased frequency of defects that are rooted
in poor software’ design. However, the measure of quality is often expressed in terms of a number
of defects, before and after applying refactoring [Fontana et al. 2015; Ouni et al. 2016]. For example,
maintainability was not measured by [Gatrell and Counsell 2015], however, the researchers looked into
the change and fault proneness of classes, which is a commonly used predictor of a system’s reliability.

6. CONCLUSION

To maintain a proper level of software quality in the long run, the detection of deviations in a system’s
design should be responded by improvement actions, usually performed by refactoring the affected
part of the software system. Despite the liveliness of refactoring research field in the past, there is
no complete consensus about the definition of refactoring. The majority of researchers in the analyzed
studies understand refactoring as a restructuring of the code used to improve existing code, i.e. the
internal structure of software systems, its understandability and readability, while preserving their
internal behavior. Hence, refactoring improves the quality of the internal structure of the software,
without adding any extra functionalities. In general, refactoring can be understood as a set of corrective
activities that contribute to their longevity by improving the internal structure of software systems.

In existing studies, maintainability represents a software quality aspect of the software that is
mostly affected by source code refactoring. In general, maintainability can be best described as the
ease, with which software can be modified, corrected and updated. Researchers do not agree com-
pletely on when the maintenance phase start. For most of them, maintenance is a phase that starts
once the software is delivered to customers. Regardless of the interpretation of maintenance activity,
maintainability represents an important aspect of the quality of the software overall. Consequently, it
is also an important aspect of software quality models, i.e. ISO 25010 standard and ColumbusQM qual-
ity model. Despite the fact that maintainability is defined as a compound quality attribute in software
quality models, only a small number of papers look into the sub-characteristics of maintainability, e.g.
understandability, readability, and changeability.

The results of the study show that researchers use different approaches to evaluate the effects of
refactoring on observed software systems. In some studies, researchers are focused on measuring the
effect of refactoring on attributes of a system’s internal structure. According to the studies, a change
in the quality of the system’s internal structure can be detected by a set of software metrics or metric
suites. Often, the effect of refactoring on maintainability can also be estimated through the estima-
tion of some external quality attributes, e.g. maintainability, readability, and understandability. Last
but not least, some researchers observe the impact of refactoring indirectly, e.g. through the defect
proneness of the classes in the observed software systems.

A study of the effects of the defected anomalies in software’ design on software quality attributes
has remained a lively field of research over the last decade. One of the main objectives of the research
field is to objectively assess how improvements in software design achieved by refactoring techniques
contribute to higher software quality. The goal of this study was to review the literature of the last five
years and extract approaches for evaluating the changes in maintainability of two observed software
versions. In the literature, maintainability was most commonly associated with software’s internal
design. Therefore, this quality attribute was the focus of our study.

REFERENCES

K Aggarwal, Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra. 2006. Empirical Study of Object-Oriented Metrics. Journal



The Impact of Refactoring on Maintability of Java Code: A Preliminary Review • 2:9

of Object Technology 5 (01 2006), 149–173. DOI:http://dx.doi.org/10.5381/jot.2006.5.8.a5
Khalid Alkharabsheh, Yania Crespo, Esperanza Manso, and José A. Taboada. 2018. Software Design Smell Detection: a system-

atic mapping study. Software Quality Journal (2018).
T. Bakota, P. Hegedűs, P. Körtvélyesi, R. Ferenc, and T. Gyimóthy. 2011. A probabilistic software quality model. In 2011 27th

IEEE International Conference on Software Maintenance (ICSM). 243–252.
Jagdish Bansiya and Carl G. Davis. 2002. A hierarchical model for object-oriented design quality assessment. IEEE Transactions

on software engineering 28, 1 (2002), 4–17.
Sebastian Barney, Kai Petersen, Mikael Svahnberg, Aybüke Aurum, and Hamish Barney. 2012. Software quality trade-offs: A

systematic map. Information and Software Technology 54, 7 (2012), 651–662.
R. S. Bashir, S. P. Lee, C. C. Yung, K. A. Alam, and R. W. Ahmad. 2017. A Methodology for Impact Evaluation of Refactoring

on External Quality Attributes of a Software Design. In 2017 International Conference on Frontiers of Information Technology
(FIT). 183–188. DOI:http://dx.doi.org/10.1109/FIT.2017.00040

William H. Brown, Raphael C. Malveau, Hays W. ”Skip” McCormick, and Thomas J. Mowbray. 1998. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

A. Chug and S. Tarwani. 2017. Determination of optimum refactoring sequence using A* algorithm after prioritization
of classes. In 2017 International Conference on Advances in Computing, Communications and Informatics. 1624–1630.
DOI:http://dx.doi.org/10.1109/ICACCI.2017.8126075

Sanjay Kumar Dubey and Ajay Rana. 2011. Assessment of Maintainability Metrics for Object-oriented Software System. SIG-
SOFT Softw. Eng. Notes 36, 5 (2011), 1–7. DOI:http://dx.doi.org/10.1145/2020976.2020983

Francesca Arcelli Fontana, Marco Mangiacavalli, Domenico Pochiero, and Marco Zanoni. 2015. On Experimenting Refactoring
Tools to Remove Code Smells. In Scientific Workshop Proceedings of the XP2015 (XP ’15 workshops). ACM, Article 7, 8 pages.
DOI:http://dx.doi.org/10.1145/2764979.2764986

Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-Wesley Professional.
M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the Design of Existing Code. Addison-

Wesley.
M. Gatrell and S. Counsell. 2015. The effect of refactoring on change and fault-proneness in commercial C# software. Science of

Computer Programming 102 (2015), 44 – 56.
Narasimhaiah Gorla and Shang-Che Lin. 2010. Determinants of software quality: A survey of information systems project

managers. Information and Software Technology 52, 6 (2010), 602–610.
A. Han and S. Cha. 2018. Two-Phase Assessment Approach to Improve the Efficiency of Refactoring Identification. IEEE

Transactions on Software Engineering 44, 10 (2018), 1001–1023. DOI:http://dx.doi.org/10.1109/TSE.2017.2731853
Péter Hegedűs, István Kádár, Rudolf Ferenc, and Tibor Gyimóthy. 2018. Empirical evaluation of software maintainability based

on a manually validated refactoring dataset. Information and Software Technology 95 (2018), 313 – 327.
ISO/IEC 25010. 2011. Systems and software engineering – Systems and software Quality Requirements and Evaluation

(SQuaRE) – System and software quality models. (2011).
István Kádár, Péter Hegedűs, Rudolf Ferenc, and Tibor Gyimóthy. 2016. A Manually Validated Code Refactoring Dataset

and Its Assessment Regarding Software Maintainability. In Proceedings of the The 12th International Conference on Predic-
tive Models and Data Analytics in Software Engineering (PROMISE 2016). ACM, New York, NY, USA, Article 10, 4 pages.
DOI:http://dx.doi.org/10.1145/2972958.2972962

SH Kannangara and WMJI Wijayanayake. 2013. Measuring the Impact of Refactoring on Code Quality Improvement Using
Internal Measures. In Proc. of the International Conference on Business & Information.

G. Kaur and B. Singh. 2017. Improving the quality of software by refactoring. In 2017 International Conference on Intelligent
Computing and Control Systems (ICICCS). 185–191. DOI:http://dx.doi.org/10.1109/ICCONS.2017.8250707

Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. 2010. Ref-finder: a refactoring reconstruction tool based on
logic query templates. In in Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering, ser. FSE ’10. 371–372.

Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A Field Study of Refactoring Challenges and Benefits.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. ACM, 50:1–
50:11.

Panagiotis Kouros, Theodore Chaikalis, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou, Apostolos Ampatzoglou, and
Theodoros Amanatidis. 2019. JCaliper: Search-based Technical Debt Management. In Proceedings of the 34th Symposium
on Applied Computing. ACM, 1721–1730. DOI:http://dx.doi.org/10.1145/3297280.3297448



2:10 • Mitja Gradišnik et al.

M. Lafi, J. W. Botros, H. Kafaween, A. B. Al-Dasoqi, and A. Al-Tamimi. 2019. Code Smells Analysis Mechanisms, Detection
Issues, and Effect on Software Maintainability. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering
and Information Technology (JEEIT). 663–666. DOI:http://dx.doi.org/10.1109/JEEIT.2019.8717457

Alan MacCormack, John Rusnak, and Carliss Y Baldwin. 2006. Exploring the structure of complex software designs: An empir-
ical study of open source and proprietary code. Management Science 52, 7 (2006), 1015–1030.

R. Malhotra and A. Chug. 2016. An empirical study to assess the effects of refactoring on software maintain-
ability. In 2016 International Conference on Advances in Computing, Communications and Informatics. 110–117.
DOI:http://dx.doi.org/10.1109/ICACCI.2016.7732033

Ruchika Malhotra, Anuradha Chug, and Priyanka Khosla. 2015. Prioritization of Classes for Refactoring: A Step Towards
Improvement in Software Quality. In Proceedings of the Third International Symposium on Women in Computing and Infor-
matics. ACM, 228–234. DOI:http://dx.doi.org/10.1145/2791405.2791463

Y. Mehta, P. Singh, and A. Sureka. 2018. Analyzing Code Smell Removal Sequences for Enhanced Soft-
ware Maintainability. In 2018 Conference on Information and Communication Technology (CICT). 1–6.
DOI:http://dx.doi.org/10.1109/INFOCOMTECH.2018.8722418

Tom Mens and Tom Tourwé. 2004. A Survey of Software Refactoring. IEEE Trans. Softw. Eng. 30, 2 (2004), 126–139.
DOI:http://dx.doi.org/10.1109/TSE.2004.1265817

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. 2015. Hotspot patterns: The formal definition and automatic detection of
architecture smells. In 2015 12th Working IEEE/IFIP Conference on Software Architecture. IEEE, 51–60.

Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. 2016. Decoupling level: a new metric for architectural mainte-
nance complexity. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE, 499–510.

Maleknaz Nayebi, Yuanfang Cai, Rick Kazman, Guenther Ruhe, Qiong Feng, Chris Carlson, and Francis Chew. 2018. A Longi-
tudinal Study of Identifying and Paying Down Architectural Debt. arXiv preprint arXiv:1811.12904 (2018).

Ali Ouni, Marouane Kessentini, Mel Ó Cinnéide, Houari Sahraoui, Kalyanmoy Deb, and Katsuro Inoue. 2017. MORE: A multi-
objective refactoring recommendation approach to introducing design patterns and fixing code smells. Journal of Software 29,
5 (2017), 18–43.

Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyanmoy Deb. 2016. Multi-Criteria Code Refactoring
Using Search-Based Software Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol. 25, 3, Article 23
(June 2016), 53 pages. DOI:http://dx.doi.org/10.1145/2932631

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco Oliveto, and Andrea De Lucia. 2018. On the
Diffuseness and the Impact on Maintainability of Code Smells: A Large Scale Empirical Investigation. In 40th Proceedings of
ICSE. ACM, 482–482. DOI:http://dx.doi.org/10.1145/3180155.3182532

Amit Rathee and Jitender Kumar Chhabra. 2017. Restructuring of Object-Oriented Software Through Cohe-
sion Improvement Using Frequent Usage Patterns. SIGSOFT Softw. Eng. Notes 42, 3 (Sept. 2017), 1–8.
DOI:http://dx.doi.org/10.1145/3127360.3127370

Arthur J. Riel. 1996. Object-Oriented Design Heuristics. Addison-Wesley Professional.
Raed Shatnawi and Wei Li. 2011. An empirical assessment of refactoring impact on software quality using a hierarchical quality

model. International Journal of Software Engineering and Its Applications 5, 4 (2011), 127–149.
Yogesh Singh and Ruchika Malhotra. 2012. Object oriented software engineering. PHI Learning Private Limited.
Daniela Steidl and Florian Deissenboeck. 2015. How do Java methods grow?. In 2015 IEEE 15th International Working Confer-

ence on Source Code Analysis and Manipulation (SCAM). IEEE, 151–160.
K. Stroggylos and D. Spinellis. 2007. Refactoring–Does It Improve Software Quality?. In Fifth International Workshop on

Software Quality (WoSQ’07: ICSE Workshops 2007).
Gábor Szőke, Gábor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2017. Empirical study on refactoring large-scale

industrial systems and its effects on maintainability. Journal of Systems and Software 129 (2017), 107–126.
Gábor Szőke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2014. A Case Study of Refactoring Large-Scale Industrial

Systems to Efficiently Improve Source Code Quality. In Computational Science and Its Applications – ICCSA 2014. 524–540.
S. Tarwani and A. Chug. 2016. Sequencing of refactoring techniques by Greedy algorithm for maximizing maintain-

ability. In 2016 International Conference on Advances in Computing, Communications and Informatics. 1397–1403.
DOI:http://dx.doi.org/10.1109/ICACCI.2016.7732243

Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identification of Move Method Refactoring Opportunities. IEEE Trans.
Softw. Eng. 35, 3 (May 2009), 347–367. DOI:http://dx.doi.org/10.1109/TSE.2009.1

Santiago Vidal, Iñaki berra, Santiago Zulliani, Claudia Marcos, and J. Andrés Dı́az Pace. 2018. Assessing the
Refactoring of Brain Methods. ACM Trans. Softw. Eng. Methodol. 27, 1, Article 2 (April 2018), 43 pages.
DOI:http://dx.doi.org/10.1145/3191314



The Impact of Refactoring on Maintability of Java Code: A Preliminary Review • 2:11

S W. A. Rizvi and Prof. Raees Khan. 2010. Maintainability Estimation Model for Object-Oriented Software in Design Phase
(MEMOOD). Journal of Computing 2, 4 (2010), 26–32.

Lu Xiao, Yuanfang Cai, and Rick Kazman. 2014. Design rule spaces: A new form of architecture insight. In Proceedings of the
36th International Conference on Software Engineering. ACM, 967–977.

Aiko Yamashita and Steve Counsell. 2013. Code smells as system-level indicators of maintainability: An empirical study. Journal
of Systems and Software 86, 10 (2013), 2639–2653.

Aiko Yamashita and Moonen. Leon. 2013. To what extent can maintenance problems be predicted by code smell detection? – An
empirical study. Information and Software Technology 55, 12 (2013), 2223–2242.


