
Investigating Developer Perception on Test Smells Using

Better Code Hub

- Work in Progress -

Martin Schvarcbacher1,2, Davide Spadini2,3, Magiel Bruntink2 and Ana Oprescu1

1University of Amsterdam
2Software Improvement Group
3Delft University of Technology

Abstract

Test smells can be found in test code using a
variety of tools. In this paper, we present our
integration of a test smell detection tool into
Better Code Hub (BCH), an online environ-
ment for monitoring code quality and identi-
fying problems in it. We extended BCH with
test smell detection and observe how develop-
ers react to various instances of test smells. By
integrating this detection into BCH, we gain
access to a wide range of developers working
on both open-source and commercial projects
using their own code. We study whether de-
velopers consider these test smells important
and what they do with them in future code
changes. From our preliminary results, we
found out a high test smell detection accu-
racy for most test smells; however, developers
are only willing to remove a small portion of
them.

1 Introduction

The majority of the developer focus is spent on writ-
ing and improving production code quality, while test
code quality is often not prioritized [14]. This can

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

lead to the creation of so called test smells [3], which
can make the tests hard to modify and can decrease
their effectiveness. Test smells can be hard to detect
by manual inspection [14], which means that we have
to rely on automatic test smell detection to find such
instances. Removing test smells can have a positive
impact on the test suite quality, reduce the test flaki-
ness and discover bugs not previously covered by these
faulty unit tests [9].

SIG, a consultancy company with the headquar-
ter in Amsterdam (NL), developed a tool to ana-
lyze GitHub repositories code quality called Better
Code Hub (BCH)1. BCH checks the GitHub codebase
against 10 easy to follow software engineering guide-
lines. Currently the guideline for test quality in BCH
only include assertions density and test code LOC. We
extended the existing test quality metrics with test
smell detection and integrated it into BCH to do our
research on test smells.

Existing research on test smells focuses on detection
of test smells [8, 12, 13, 2, 5] with detection accuracy
and recall often surpassing 95%. The impact of test
smells on code maintainability and test effectiveness
was studied in [2, 11].

We aim to answer the following research questions:
RQ1: What is the perception of developers on test

smells in their codebase?
RQ2: Which test smells developers consider to be

important?
Our research on test smells is different in the fol-

lowing aspects: (1) we investigate all instances of test
smells on code the developers have previously inter-
acted with; (2) by using Better Code Hub, we can

1https://bettercodehub.com/

1

https://bettercodehub.com/


cover more projects and users to gain a more diverse
data set; (3) by giving developers concrete examples
from their own codebase, we expect the developers to
be aware of the context in which both the produc-
tion and test code was developed and how the test
smell was created. Furthermore, for each detected test
smell in the code base, we ask the developers (through
a survey) their opinion on the importance of the de-
tected smell. Because the survey is integrated directly
in BCH, we are able to invite users outside of SIG
to take part in the survey and also analyze their own
code.

After conducting our experiment, we found that de-
velopers recognize test smell instances once they are
presented to them with high accuracy. However, de-
pending on the test smell, they are less willing to refac-
tor the test suite to remove this test smell even for test
smells which are rated as having an high impact on
software maintainability.

The paper is structured as follows: section 2 con-
tains the related works on test smell research, section 3
presents the research questions and experiment design,
section 4 provides the results followed by section 5 with
an analysis of the results, followed by our future plans
in section 6 and concludes with section 7.

2 Background and Related Work

The concept of test smells originates from the work of
van Deursen et al. [3] and test smells have been ex-
panded with several other instances [10, 7]. Garousi
et al. [4] performed a study on the existing litera-
ture and categorized all of the published test smells
and their detection methods. We aim to study test
smells in both open-source and closed-source projects,
as there might be differences in how these two projects
are developed and maintained [16]. Most of the exist-
ing research on test smells involves using open-source
projects and the evaluation is often performed by peo-
ple not involved with the project, such as [11, 6].

Currently there is ongoing research into the discov-
ery and classification of test code smells and their im-
pact on software quality and reliability [1, 15, 9]. Being
able to detect test code smells and point those out to
the developers can help them refactor the test suite to
be less flaky and catch more defects. Currently there
are many tools to detect test smells [8, 12, 13, 2, 5];
however, none of them are integrated into a modern
tool used by developers.

3 Experiment Design

3.1 Tools used

We first modified Better Code Hub2 (BCH) using a
Chrome extension to display different metrics for test
code quality than the current production build. The
“Automate Tests” metric results were modified to in-
clude the detected test smells in the analyzed source
code along with the test smell type. The modification
is shown in Figure 1. The user can then click on the in-
dividual smelly method and see the source code. There
is a possibility to submit their feedback on whether the
test code segment is, according to their opinion, a valid
instance of the test smell. This feedback can be given
for each found test smell. A sample view of the code
view and feedback form is in Figure 2. We also mod-
ified the guideline explanation in the sidebar to have
a brief explanation of all of the detected test smells to
ensure that the users are aware of how the test smell
classification was performed.

We selected the open-source tool tsDetect [10] to
use for finding test smells in the code base. The tool
works on Java JUnit projects and has support for JU-
nit 4 annotations. It also has a published accuracy
rating along with classified test smell data. We in-
tegrated tsDetect into a service which analyzes a
repository stored in GitHub as part of the main anal-
ysis performed by BCH. The main advantage of this
tool is that it is open source, uses AST-based detection
of test smells and supports adding new test smells. In
our case, we selected only a subset of the test smells
(discussed in subsection 3.2) by restricting the analysis
performed on each test file to only these test smells.

3.2 Selection of Test Smells to Evaluate

The tool tsDetect can detect multiple test smells;
however, for the purpose of this study we restricted
our analysis to the following test smells: conditional
test logic; mystery guest; redundant assertion; sen-
sitive equality; verbose test; sleepy test; eager test
and resource optimism. The following test smells are
not part of the original test smells proposed by van
Deursen et al. [3], but are part of the tsDetect tool:
conditional test logic, redundant assertion, verbose
test; sleepy test. Based on testing done on a man-
ually selected dataset, the tsDetect tool is highly
reliable at detecting instances of these test smells [10].
Additionally we evaluated the detection accuracy of
the subset of these test smells on two Java projects to
confirm these results. The advantage of selecting this
specific test smell subset is that each of them does not
require viewing the full test source code to understand
whether the given test method contains an instance of

2https://bettercodehub.com

2

https://bettercodehub.com


Figure 1: Overview of found test smells in BCH analyzed repository

the test smell or not. Test smells such as general fix-
ture require viewing the entire test code to evaluate,
which takes additional time of the developers when
compared to analyzing only a single method.

3.3 Survey Design

We created the survey to be integrated into BCH for
each test smell based on the following criteria: (1)
ability to evaluate if given test smell instance is valid
in the project context, (2) option to classify test smell
instances as something to fix (refactoring candidate)
or as something which will take too much time and
effort to fix (technical debt), and (3) at the same time
allow developers to rate the subjective importance of
the found test smell on the project’s maintainability.
The first part of the survey helps us answer RQ1, while
the second scale rating helps us answer RQ2.

3.4 Participant Selection

Our participants were selected from a pool of Java de-
velopers with at least two years of development ex-
perience within the host company. Each of them was
asked to evaluate parts of the codebase written in Java
they were actively working on, while using BCH for the
evaluation.

4 Preliminary Results

This preliminary study was done to determine the vi-
ability of using BCH as a platform for test smell per-
ception in developers outside of the host organization
to gain a larger sample size. We asked 4 developers

to use our modified tool and then interviewed them
afterwards. The results are summarized in Figures 3
and 4. After a separate interview session with the de-
velopers, we were able to obtain additional results not
covered by the BCH survey. From the results we can
see that the majority of the observed test smells are
considered as refactoring candidates. Sensitive Equal-
ity shows that the majority of the instances found were
false positives, and those which were not considered
false positives were ignored. The conditional test logic
is evenly split between marking as a refactoring can-
didate and taking no action.

5 Discussion

The test smell rated as the one which developers de-
cided to ignore the most is conditional testing logic,
where the threshold was more than 1 branch state-
ment per test case. During the interviews, developers
have repeatedly identified that rewriting the test cases
to not use conditions would be either impossible or
take too much effort with no additional gain for test
maintainability. A similar view was held for eager test,
where for certain test cases it was deemed desirable to
call multiple production methods in a row before doing
an assert. The alternative would be to move the first
production call to another method which sets up the
test; however, this method might only be used by the
one specific test case, negating any benefits of moving
to a separate function. Sensitive equality was deemed
the most as a false positive or no action item. This
was primarily due to limitations of tsDetect and

3



Figure 2: Source code of test with found test smells with user feedback form

some parts of the code working with parsers, where
toString() was required to evaluate the output. Other
test smells were primarily rated as refactoring candi-
dates. These test smells could then be used as a metric
for evaluating the quality of the unit tests, as these are
the smells developers are willing to remove. From the
rankings of test smell presence on maintainability, we
can see that the highest impact is sleepy test and re-
dundant assertion. Due to the high false positive rate
for sensitive equality, the developers ranked the issue
as not severe or hard to avoid.

5.1 RQ1

Based on the results, we can see that developers con-
sider most test smells to have a negative effect on the
codebase and should be removed by refactoring. For
test smells which are detected reliably, the developers
consider the best course of action to take is refactoring
the test method to remove the test smell instance. For
eager test, the developers expressed that refactoring
the test would be difficult and not improve the overall
test suite quality. Conditional test logic was the test
smell most considered as one to keep (take no action).
This can be because the developers consider the test

smell hard to remove in the presented cases. Gaining
more data about sensitive equality would require using
a different tool with a lower false positive rate.

5.2 RQ2

Verbose test was rated always as a refactoring can-
didate, despite on average being rated as having a
low impact. On inspection of the found test smell in-
stances, we found that the tests often contained sev-
eral blocks with comments and were repeatedly test-
ing the same methods with different values, indicat-
ing a co-occurence with lazy test. Sleepy test was
rated as having both the highest impact and was al-
ways rated as a refactoring candidate, indicating that
the removal of dependency on threading in unit tests
is perceived as high priority. Resource optimism is
considered medium severity and always a refactoring
candidate, indicating that this test smell can be easily
refactored by adding the extra file existence checks.
Nonetheless, if the test fails due to a file not being
found, it is easy to detect. Eager test was rated on av-
erage as below medium severity and primarily a refac-
toring candidate, indicating that it is not perceived
as a problem. Constructor initialization was rated as

4



Figure 3: Preliminary results showing the percentage
of actions to take for each test smell

Figure 4: Preliminary results ranking test smell and
impact on code maintainability, where 1 is low impact
and 5 is highest impact

not severe problem and could be refactored into setup
methods.

6 Future Work

The internal preliminary study shows promising re-
sults to deploy this modified version of BCH to the
general public. This will enable us to analyze multi-
ple projects, both open and closed source from their
developers. We plan to determine if there is a rela-
tionship between the test smell perception and project
experience (in terms of time and commits) and the fa-
miliarity with the file where the test smell resides by
the commit history.

7 Conclusion

We extended Better Code Hub with test smell detec-
tion and ran a preliminary study. In this study, we

investigated the developer perception of test smells us-
ing a sample of developers from the host company on
a codebase they were working on. The results show
that the tool can be deployed for the general public
and used to gather a larger sample size from the users.

Acknowledgements

We would like to thank the developers at Software Im-
provement Group for taking part in this study.

References

[1] Gabriele Bavota et al. “Are test smells really
harmful? An empirical study”. In: Empirical
Software Engineering 20 (2014), pp. 1052–1094.

[2] Gabriele Bavota et al. “Are test smells re-
ally harmful? An empirical study”. In: Empir-
ical Software Engineering 20.4 (Aug. 1, 2015),
pp. 1052–1094. issn: 1573-7616. doi: 10.1007/
s10664 - 014 - 9313 - 0. url: https : / / doi .

org/10.1007/s10664- 014- 9313- 0 (visited
on 01/15/2019).

[3] Arie van Deursen et al. “Refactoring Test Code”.
In: Proceedings of the 2nd International Con-
ference on Extreme Programming and Flexible
Processes in Software Engineering (XP). 2001,
pp. 92–95.

[4] Vahid Garousi and Barış Küçük. “Smells in soft-
ware test code: A survey of knowledge in indus-
try and academia”. In: Journal of Systems and
Software 138 (Apr. 2018), pp. 52–81. issn: 0164-
1212. doi: 10.1016/j.jss.2017.12.013. url:
http://www.sciencedirect.com/science/

article/pii/S0164121217303060.

[5] M. Greiler, A. van Deursen, and M. Storey.
“Automated Detection of Test Fixture Strate-
gies and Smells”. In: Verification and Valida-
tion 2013 IEEE Sixth International Conference
on Software Testing. Verification and Validation
2013 IEEE Sixth International Conference on
Software Testing. Mar. 2013, pp. 322–331. doi:
10.1109/ICST.2013.45.

[6] Michaela Greiler et al. “Strategies for avoiding
text fixture smells during software evolution”.
In: 2013 10th Working Conference on Mining
Software Repositories (MSR). 2013 10th IEEE
Working Conference on Mining Software Repos-
itories (MSR 2013). San Francisco, CA, USA:
IEEE, May 2013, pp. 387–396. doi: 10.1109/
MSR.2013.6624053. url: http://ieeexplore.
ieee . org / document / 6624053/ (visited on
01/28/2019).

5

https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1016/j.jss.2017.12.013
http://www.sciencedirect.com/science/article/pii/S0164121217303060
http://www.sciencedirect.com/science/article/pii/S0164121217303060
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/MSR.2013.6624053
https://doi.org/10.1109/MSR.2013.6624053
http://ieeexplore.ieee.org/document/6624053/
http://ieeexplore.ieee.org/document/6624053/


[7] Gerard Meszaros. xUnit test patterns: Refactor-
ing test code. Pearson Education, 2007.

[8] F. Palomba, A. Zaidman, and A. De Lucia. “Au-
tomatic Test Smell Detection Using Information
Retrieval Techniques”. In: 2018 IEEE Interna-
tional Conference on Software Maintenance and
Evolution (ICSME). 2018 IEEE International
Conference on Software Maintenance and Evo-
lution (ICSME). Sept. 2018, pp. 311–322. doi:
10.1109/ICSME.2018.00040.

[9] Fabio Palomba and Andy Zaidman. “Does
Refactoring of Test Smells Induce Fixing Flaky
Tests?” In: 2017 IEEE International Conference
on Software Maintenance and Evolution (IC-
SME) (2017), pp. 1–12.

[10] Anthony Peruma et al. Software Unit Test
Smells. Software Unit Test Smells. 2018. url:
https://testsmells.github.io/index.html

(visited on 04/25/2019).

[11] B. V. Rompaey, B. D. Bois, and S. De-
meyer. “Characterizing the Relative Significance
of a Test Smell”. In: 2006 22nd IEEE Inter-
national Conference on Software Maintenance.
2006 22nd IEEE International Conference on
Software Maintenance. Sept. 2006, pp. 391–400.
doi: 10.1109/ICSM.2006.18.

[12] B. Van Rompaey et al. “On The Detection of
Test Smells: A Metrics-Based Approach for Gen-
eral Fixture and Eager Test”. In: IEEE Transac-
tions on Software Engineering 33.12 (Dec. 2007),
pp. 800–817. issn: 0098-5589. doi: 10 . 1109 /

TSE.2007.70745.

[13] Abdus Satter, Nadia Nahar, and Kazi Sakib.
“Automatically Identifying Dead Fields in Test
Code by Resolving Method Call and Field De-
pendency”. In: (2017), p. 8.

[14] D. Spadini et al. “On the Relation of Test Smells
to Software Code Quality”. In: 2018 IEEE Inter-
national Conference on Software Maintenance
and Evolution (ICSME). 2018 IEEE Interna-
tional Conference on Software Maintenance and
Evolution (ICSME). Sept. 2018, pp. 1–12. doi:
10.1109/ICSME.2018.00010.

[15] Michele Tufano et al. “An empirical investiga-
tion into the nature of test smells”. In: 2016
31st IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2016),
pp. 4–15.

[16] Hyrum K. Wright, Miryung Kim, and De-
wayne E. Perry. “Validity Concerns in Soft-
ware Engineering Research”. In: Proceedings of
the FSE/SDP Workshop on Future of Software
Engineering Research. FoSER ’10. event-place:
Santa Fe, New Mexico, USA. New York, NY,
USA: ACM, 2010, pp. 411–414. isbn: 978-1-
4503-0427-6. doi: 10.1145/1882362.1882446.
url: http://doi.acm.org/10.1145/1882362.
1882446 (visited on 04/30/2019).

6

https://doi.org/10.1109/ICSME.2018.00040
https://testsmells.github.io/index.html
https://doi.org/10.1109/ICSM.2006.18
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1145/1882362.1882446
http://doi.acm.org/10.1145/1882362.1882446
http://doi.acm.org/10.1145/1882362.1882446

	Introduction
	Background and Related Work
	Experiment Design
	Tools used
	Selection of Test Smells to Evaluate
	Survey Design
	Participant Selection

	Preliminary Results
	Discussion
	RQ1
	RQ2

	Future Work
	Conclusion

