
Structural and Behavioral Taxonomies of Design Pattern

Grime

Clemente Izurieta
Montana State University

Bozeman, MT 59717
clemente.izurieta@montana.edu

Derek Reimanis
Montana State University

Bozeman, MT 59717
derek.reimanis@msu.montana.edu

Isaac Griffith
Idaho State University

Pocatello, ID 83209
grifisaa@isu.edu

Travis Schanz
Fast Enterprises LLC

South Burlington, VT 05403
tschanz@gentax.com

Abstract

Design Patterns represent the encapsulation
of good design experiences and agreed upon
solutions to common problems; however, as
they evolve, they tend to develop grime –non-
pattern related design components. Grime is
a form of software decay that obfuscates the
realization of a pattern and has decisively neg-
ative consequences on quality attributes of the
pattern and consequently its embedding soft-
ware. Grime comes in structural and behav-
ioral forms. In this paper we synthesize a se-
ries of grime classifications that today form a
general taxonomy. The taxonomy represents
a validated and peer reviewed accumulation of
knowledge that is continually evolving.

1 Introduction

The evolution of design patterns represents the evolu-
tion of concepts that capture domain experience. Pat-
terns were introduced and adopted widely by the ob-
ject oriented community, and this can be traced to a
marquee event when the Gang of Four book [Gam95]
was adopted by academics and practitioners alike. As

Copyright c© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0)

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

systems evolve however; the pressures to release early,
the experience and turn over of software engineers, and
the complexities of designs all contribute to the decay
of software systems. The measurement of such de-
cay is complex and our contribution has focused on
design patterns. We can think of design patterns as
micro-architectures that are embedded in larger sys-
tems. Because their structure and behavior can be de-
scribed by meta-modeling languages such as the Role
Based Modeling Language (RBML) [Fra02], this al-
lows us to compare realizations of patterns extracted
from source code against their intended architecture;
thus we have an ability to measure their drift as the
pattern realization evolves over time.

The drift of a design pattern from its original in-
tent can be described as rot or grime [Izu09] [Izu07].
Design pattern rot is the breakdown of a design pat-
tern such that a critical element in the pattern ceases
to exist. Thus, a realization of a pattern that expe-
riences rot is no longer a representation of its micro-
architecture. Rot is difficult to find because as the re-
alization evolves, it becomes harder to identify. Design
pattern grime is the buildup of unrelated artifacts in
classes that play roles in a design pattern realization.
These artifacts do not contribute to the intended role
of a design pattern. Over time the pattern realization
becomes hidden from practitioners.

The manuscript described herein provides a detailed
description of a taxonomy for design pattern grime.
Each subsection describes one aspect of the taxonomy.
At the highest level we differentiate between structural
and behavioral categories.

1



2 Related Work

2.1 Software Evolution

Although a comprehensive summation of software evo-
lution is beyond the scope of this paper, it is important
to highlight key contributions that influenced the de-
velopment of this taxonomy.

The earliest contributions and seminal work can be
attributed to Lehman’s revised laws of software evo-
lution [Leh97]. Although controversial for their sub-
jectivity, Lehman established a platform from which
operational approaches to software evolution measure-
ments could be derived. The common trends proposed
by the laws in software growth required validation that
have been the subject of many studies.

Studies associated with software aging that influ-
enced this work include the early insights of Parnas
[Par94]; which uses an analogy between software sys-
tems and medical systems to describe software aging.
He uses medical terms, which equate refactoring to
major surgery. Parnas also applies the notion of sec-
ond opinions and describes the cost associated with
preventative measures. Eick et al. [Eic01] use a num-
ber of generic code decay indices (CDIs) to analyze
the change history of a telephone switching system to
investigate decay.

Recent work in design pattern grime evolution has
been performed by Feitosa et al. [Fei17]. They found
that design pattern grime has a tendency to accumu-
late linearly, suggesting the quality of a pattern wors-
ens as the grime of that pattern increases over subse-
quent releases.

It is also important to note that although evolu-
tion studies of design patterns continue to grow, little
research has been performed outside the open source
community. Further, the evolution of error propaga-
tion and uncertainty of measurements, although ad-
dressed by [Izu13] remains an under studied compo-
nent.

Taxonomies represent a natural progression of ev-
idence collected from multiple empirical studies as-
sociated with the evolution of design patterns, and
is essential. ”A taxonomy promotes the classifica-
tion of grime into ordered groups that are disjoint
and complete while preserving natural relationships be-
tween categories” [Sch10]. The classification, descrip-
tion and naming of various forms of grime as appli-
cable to each individual design pattern have evolved
since circa 2010.

2.2 Role Based Modeling Language

RBML is a visually oriented language defined in terms
of a specialization of the UML metamodel that is used
to verify and specify generic or domain specific de-

sign patterns. Kim et al. [Kim04] and France et al.
[Fra02] introduced the Role-Based Metamodeling Lan-
guage (RBML) for characterizing generic and domain-
specific design patterns. RBML is based upon UML
and uses the same syntax as UML. It consists of a
number of behavioral and structural diagrams with
each one describing different parts of the design pat-
tern. A design pattern specification consists of two
sub-specifications, the Structural Pattern Specification
(SPS) and the Interaction Pattern Specification (IPS).
An SPS characterizes the structural elements of a pat-
tern, including the class members, attributes, opera-
tion signatures, and relationships. An IPS character-
izes the behavioral elements of a pattern, and details
the flow of information that occurs as a design pattern
is in operation, i.e., at program run-time. SPSes are
analogous to UML class diagrams, whereas IPSes are
analogous to UML sequence diagrams. Both diagrams
exist at a meta-level that describes design specifica-
tions, which is referred to as the M2 level [Fra02].

3 Taxonomy

We divide the taxonomy of design pattern grime
into two major categories: structural and behavioral.
Structural refers to the changes observed via static
analysis of source code or the designs; which are ex-
tracted into UML [UML97] class diagrams. UML class
diagrams of design pattern realizations can be mea-
sured for compliance against the structural RBML
meta-model that characterizes (potentially) an infinite
number of UML models of design patterns. Behavioral
refers to the deviations observed from a flow of infor-
mation perspective that captures the operational side
of a design pattern at run time. UML sequence dia-
grams can also be characterized by RBML, and we can
measure an extracted UML sequence diagram of a de-
sign pattern realization against its RBML meta-model.
Figure 1 shows the highest level of the hierarchy.

Figure 1: Design Pattern Grime Taxonomy

The following subsections describe structural and
behavioral grime respectively. The description repre-
sents an abridged high level overview. Formal math-
ematical descriptions of each grime classification are
available for modular grime [Sch10]. A full definition
in currently under development.

2



3.1 Structural Grime

Structural grime is classified into three main cate-
gories: modular, class, and organizational. Modular
grime is indicated by increases in the coupling of the
pattern as a whole, by tracking the number of relation-
ships (generalizations, realizations, associations, de-
pendencies) pattern classes have with external classes.
Class grime is associated with the classes that play a
role in the design pattern and grime is indicated by
increases in the number of ancestors of the class, the
number of public attributes, and lack of cohesion. Or-
ganizational grime refers to the distribution and or-
ganization of the files and namespaces that make up
a pattern. Figure 2 shows the first level of structural
grime.

Figure 2: Structural Grime

3.1.1 Modular Grime

Modular grime was further developed and validated
by [Sch10] and strength, scope and direction were used
to classify it at its highest level. Figure 3 shows the
hierarchy where the left most column displays the di-
mensions and classification.

Coupling can be classified on an ordinal scale ac-
cording to strength [Bie04]. Strength is determined
by the difficulty of removing the coupling relationship.
Persistent and temporary coupling are the most com-
mon forms in object oriented systems. The Strength
of the relationship can be measured by afferent (Ca)
and efferent (Ce) coupling to refer to the direction of
a coupling relationship [Mar94]. The afferent coupling
or fan-in is the count of in-bound relationships and the
efferent coupling or fan-out is the count of out-bound
relationships of a set of classes. Finally, the Scope
refers to the boundary of a coupling relationship and
can be either internal or external. A class belonging
to a design pattern develops a relationship with exter-
nal scope if another class (not in the design pattern) is
coupled with the former. A relationship has internal
scope if the coupling involves two classes belonging to
the same realization of a design pattern.

3.1.2 Class Grime

Class grime was identified by Griffith and Izurieta
[Gri14]. The class grime category was extended us-

ing the properties of class cohesion. Cohesion [Bri98]
is used to describe the integrity of the construction of
a class. High cohesion in a class indicates close align-
ment of the internal components towards a common
goal. In design pattern realizations, classes should
have distinct responsibilities and if implemented cor-
rectly, then the specification will have high cohesion.
Thus, cohesion provides a basis to determine whether a
design pattern realization has been afflicted with class
grime. Figure 4 shows the hierarchy of class grime.
Strength is indicated by the method in which attributes
are locally accessed by the methods of a class. The
method of access can be either direct (attributes are
directly accessed by methods) or indirect (attribute ac-
cess through the use of an accessor/mutator methods).
Direct attribute access provides a stronger and quicker
but brittle relationship between a method and an at-
tribute. Indirect attribute access implies a more flex-
ible and weaker relationship between the method and
attribute, but one which is more amenable to refac-
toring because it is also considered good use of design.
Scope can either be internal or external. Internal scope
refers to attribute access by local methods. External
scope refers to attribute access by at least one local
method that is not defined by the pattern specifica-
tion. Finally, Direction (or Context) refers to the types
of relationships used by surrogate metrics to measure
cohesion. The majority of cohesion metrics take one
of two perspectives: single-method use or method pair
use of attributes [Bri98]. Two metrics capture this di-
mension: Tight Class Cohesion (TCC) [Bie95] which
measures the cohesion of a class by looking at pairs
of methods with attributes in common, and the Ratio
of Cohesive Interactions (RCI) [Bri93] metric which
measures the cohesion of a class by looking at how
individual methods use attributes.

3.1.3 Organizational Grime

Organizational grime was developed by Griffith
[Gri19]. Figure 5 depicts the classification according
to this taxonomy. Organizational grime refers to the
distribution and organization of the files, packages and
namespaces that make up a design pattern. The de-
velopment of the organizational grime hierarchy comes
from the following design principles [Mar03]:

• The Acyclic Dependencies Principle (ADP): De-
pendencies between packages should not form cy-
cles

• The Stable Dependencies Principle (SDP): De-
pend in the direction of stability

• The Stable Abstractions Principle (SAP): Ab-
stractness should increase with stability

3



Figure 3: Modular Structural Grime

Figure 4: Class Structural Grime

4



• The Common Closure Principle (CCP): Classes in
a package should be closed to the same kinds of
changes

• The Common Reuse Principle (CRP): Classes in
the same package should be reused together

These principles describe the coupling between
packages and the cohesion within a package. Using the
properties of package coupling and cohesion we have
divided package grime into twelve specific subtypes.

Package coupling is used to develop the modular
subtype of organizational grime. We consider three
properties of coupling between packages. The first is
the Strength, which can be either Persistent or Tempo-
rary. Persistent couplings are those created by inher-
itance, realization, and associations. Temporary cou-
plings include use dependencies. Scope can be either
Internal or External. Internal couplings are those that
are caused by classes within the same pattern realiza-
tion but spread across packages. External couplings
are relationships between packages that are caused by
external classes interacting with pattern classes across
packages. The final property is Direction. This dimen-
sion refers to how the coupling affects cyclic dependen-
cies between packages; which we label as cyclical, and
the flow of stability between packages; which we la-
bel as unstable. When we consider whether the new
dependency causes cycles between packages we are in
the cyclical context, and when we consider the flow
of dependencies towards stability, then we are in the
unstable context. Together these concepts are used to
form the modular branch of organizational grime.

Package cohesion is used to develop the package
subtype of organizational grime. We consider only the
Scope and Context dimensions. Scope can be either In-
ternal or External, both referring to the addition of a
new class or type to a package. If the new class or type
is also a member of the pattern under consideration,
then its scope is internal, otherwise it is external. Con-
text takes the form of either Closure or Reuse. Closure
indicates whether a new class or type fits within the
package by being closed to similar changes as the other
classes. Reuse indicates that we are concerned with
how well a class integrates into its containing package
based on how tightly it couples with the remaining
classes. Together these concepts are used to form the
package branch of organizational grime.

3.2 Behavioral Grime

Behavioral grime refers to the behavioral elements em-
bedded in a design pattern. Behavior is encapsulated
in the constructors and the operations of the design
pattern. Reimanis and Izurieta [Rei15] state that
”structural grime is incapable of capturing whether or

not a design pattern is behaving as intended. A pat-
tern instance may have no structural grime, but the
runtime execution of the pattern may not match the
expected runtime execution of the pattern.” Reimanis
and Izurieta [Rei16] identify two specific types of er-
rant behaviors: Excessive Actions and Improper Order
of Sequences. Both of these behaviors were applied to
the modular grime taxonomy [Rei19], to help gener-
ate a taxonomy of behavioral grime, which is shown in
figure 6.

The dimensions of the behavioral grime taxonomy
are as follows: Strength refers to a relationship be-
tween two UML members where Persistent Strength
refers to a UML association while Temporary Strength
refers to a UML use-dependency. Scope refers to the
context of the relationship between two UML mem-
bers; Internal Scope refers to a relationship between
two pattern members, and External Scope refers to
a relationship between one pattern member and one
non-pattern member. Direction refers to the direc-
tion of the relationships. Afferent Direction refers to
fan-in while Efferent Direction refers to a fan-out rela-
tionship. The Classification row at the bottom of the
figure refers to the acronym that captures the type of
behavioral grime; for example, the TIO classification
is an acronym for Temporary-Internal-Order grime.

The dimensions and corresponding levels of the be-
havioral grime taxonomy closely mirror the modular
grime taxonomy dimensions and levels because there
is an inherent relationship between modular and be-
havioral grime. Modular grime dictates the unwanted
presence of relationships between two UML members,
which includes all combinations of pattern members
and non-pattern members. Because of this, modu-
lar grime provides a high-level constraint on undesired
pattern behaviors. However, the behavioral grime tax-
onomy does not mirror the modular grime taxonomy
identically; specifically, the External-Efferent levels of
Order Behavioral grime are missing. This is because
those levels are nonsensical for Order grime. External-
Efferent Order grime corresponds to a behavior from
a pattern member to a non-pattern member that is
out of order. Proper pattern order is dictated by pat-
tern members calling each other in the correct order,
and this definition does not include non-pattern mem-
bers. Thus, the External-Efferent level of the behav-
ioral grime taxonomy is missing.

4 Operationalization of Grime Evolu-
tion

In order to validate the taxonomy, we submit one oper-
ationalization approach. Tracking drift of design pat-
tern realizations in-situ from their intended design re-
quires multiple steps including detection, compliance

5



Figure 5: Organization Structural Grime

Figure 6: Behavioral grime taxonomy. Dimensions of behavioral grime are listed on the left, and corresponding
characterizations are shown in the taxonomy tree

.

6



checking, and tracking drift over multiple releases.
Detection is a difficult problem that has been tack-

led by many researchers. We have leveraged many
tools to help with the detection of the pattern real-
izations we track. They range from the simplest tools
[DP1] that traverse your code and provide hints as
to the location of potential realizations, to the more
involved tools that build internal representations of
graphs where nodes represent software classes and
edges represent different types of relationships between
nodes [Tsa06].

Once a design pattern realization is identified in the
source code, we extract a UML class and a UML se-
quence diagram from the realization. These diagrams
are used as representations of individual design pat-
tern realizations that can be compared against the
RBML characterization of the pattern to check for
compliance. The RBML represents an abstraction of
a pattern solution that can be thought of as the or-
acle for the pattern. The realization pattern’s corre-
sponding UML diagrams can be compared against the
pattern’s RBML to provide a quantifiable way of mea-
suring drift, and thus, grime.

Implementations of design pattern realizations in a
software project exists at the design level, which is
referred to as the M1 level. The process of checking
conformance for a pattern instance entails mapping
the patterns members that exist at its M1 level imple-
mentation to its corresponding pattern roles, captured
with an SPS and IPS, at its respective M2 level pat-
tern definition. Figure 7 exemplifies the process of con-
formance checking from design pattern realizations to
their corresponding characterizations in RBML. The
diagram at the top depicts the structural conformance
of a simple Observer pattern realization extracted from
source code against its RBML SPS, and the picture
at the bottom depicts the corresponding conformance
check of the behavior from a UML sequence diagram
against the RBML IPS.

Conformance checking of the algorithm depicted
in figure 7 has been implemented by Strasser et al.
[Str11]. To compare an RBML specification and a
UML diagram, the authors use a divide-and-conquer
algorithm developed by Kim and Shen [Kim08], and
works by breaking the RBML and UML diagrams into
blocks, which are defined as any two classes or classi-
fiers (classes and interfaces in UML) which have a re-
lationship between them. Three kinds of relationships
define three kinds of block types: association blocks,
generalization blocks, and dependency blocks. The al-
gorithm implemented by Strasser et al. only focuses
on the structural components.

An algorithm for asserting behavioral conformance
was designed by Kim [Kim03] and later formalized by
Lu and Kim [Lu11]. This algorithm begins by estab-

lishing structural conformance via the algorithm pre-
sented by Kim and Shen [Kim08]. If structural confor-
mance is not reached, behavioral conformance cannot
be reached. After structural conformance has been
established, the algorithm evaluates the presence of
expected behaviors, which we refer to as stack-calls,
mapping expected stack-calls to their respective mem-
ber in the RBML behavioral specification. A pat-
tern realization is said to conform to a RBML spec-
ification when all members of the RBML specification
have at least one mapping from the pattern realiza-
tion. Though the pattern realization may have stack-
calls that do not have a mapping to the respective
behavioral specification; such stack-calls are an indi-
cation of a pattern’s flexibility. A pattern’s character-
ization allows for full behavioral conformance even if
other non-necessary stack-calls are included. However,
these non-necessary stack-calls may constitute behav-
ioral grime if they negatively impact the qualities of
the design pattern. Therefore, after evaluating behav-
ioral conformance, we evaluate the order and repeti-
tion of all stack-calls that are mapped to at least one
RBML behavioral member. If a stack-call appears out
of the expected order or is repeated unnecessarily, it is
labelled as behavioral grime, the specific form of which
is found based on its UML properties.

5 Tool Support

To exemplify the conformance checking and evolution
of distinct modular grime types we describe two tools
developed by the Software Engineering Laboratories
(SEL) at Montana State University.

Using the algorithm described in section 4, Strasser
et al. [Str11] developed a scoring function that can be
visualized using a tool 1 that automatically compares
the structural RBML SPS against UML diagrams ex-
tracted from source code that represent design pattern
realizations. The tool reports whether or not the dia-
grams match, the score, if there were any errors, and
displays the two diagrams. Figure 8 is a screen shot
that show how a realization of a Visitor pattern (bot-
tom of the screen) is checked for conformance against
its RBML.

On the Diagram Selection section of the pane, the
user has access to drop down menus for choosing the
RBML and UML diagrams to compare. In the middle
panes RBML/UML Diagram Image, both diagrams
are displayed (the RBML diagram is displayed on top
and the UML diagram is displayed immediately be-
low). The results of running the algorithm (c.f. section
4) are displayed on the right hand side screen. Errors
are labeled and displayed in the Error Log pane. The
tool reports problems that the algorithm found, such

1https://code.google.com/archive/p/rbml-uml-visualizer/

7



Figure 7: RBML Compliance checking of design pattern realizations

8



Figure 8: RBML tool to perform structural compliance checking of design pattern realizations

as mismatches between UML and RBML artifacts. Di-
rectly below in the box labeled Pass or Fail, the tool
reports whether there was a UML diagram found that
conforms to the RBML diagram. Immediately to the
right is the score calculated using the scoring equation
described above.

To visualize the evolution of design patterns Schanz
and Izurieta [Sch10] developed a prototype to visual-
ize grime. It allows the user control over the level of
importance (i.e. a weight) for a desired pattern grime.
These controls provide flexibility when exploring the
evolution of a design pattern realization over its his-
tory. Figure 9 shows the evolution of pattern grime for
a realization of the Singleton pattern where all forms
of grime are given equal weights.

Figure 9: Singleton grime growth

Figure 10 shows the evolution of a realization of the
Observer pattern where the user is mostly interested
in the evolution of Permanent External Afferent Grime
(PEAG), and with a 0.5 weight, also shows slight inter-
est in Temporary External Afferent Grime (TEAG).

Figure 10: Observer grime growth

6 Motivation and Contribution Discus-
sion

Although the usage of design patterns is promoted as
being consistent with good design principles that help
with maintainability and extensibility of software sys-
tems; practitioners often indicate that design patterns
do not evolve as intended. Early results by the au-
thors indicated that this was consistent with practi-
tioner’s observations, yet the decay observed in specific
instances of design patterns could not be categorized
due to a lack of taxonomy. To better understand if
specific types of grime rot were more likely to occur
than others, we set out to investigate how grime oc-
curs and to categorize the different types. This allows
researchers to compare and contrast the types of grime
that are more likely to occur, and which design pat-
terns are more succeptible to such grime.

Although the obfuscation of design pattern in-
stances is mainly due to couplings that elements of

9



the pattern develop over time, we also found that the
strength, direction and scope of couplings help refine
the taxonomy. We found that not all couplings are
equal in terms of the contribution to decay. Further,
we found that cohesion of classes that are part of a
design pattern played an important role in contribut-
ing to decay. Finally, the behavioral aspects of grime
required that we adjust the dimensions to fit the dy-
namic (i.e. runtime) definitions.

Over the last ten years, our investigations have in-
crementally added to the formation of the taxonomy
presented herein. Further, the aggregation of each as-
pect of the taxonomy into a cohesive hierarchy repre-
sents a contribution to the body of knowledge in this
space.

To aid in comparing how different types of grime
evolve over time, we developed visualization tech-
niques and tools that allow users to focus on specific
types of grime observed. Specifically, the tools allow
users to parameterize weights (i.e., coefficients) asso-
ciated with variables representing different types of
grime from the taxonomy.

7 Conclusion

Research provides ample evidence that suggests that
as design patterns age, the realizations of patterns re-
main and grime builds up. Such grime buildup can
have negative and adverse consequences on many qual-
ities of designs. Although the design pattern realiza-
tions seem to survive as systems evolve, they become
obfuscated, thus making them difficult to detect, main-
tain and refactor –”the original realization of design
patterns remain, and the decay is measured around the
grime that grows around the pattern realization over a
period of time.”

These studies helped provide the necessary moti-
vation to investigate the specifics of grime buildup in
design pattern evolution; which lent itself to the devel-
opment of a taxonomy. Our motivation to explore the
taxonomy across three different dimensions, namely
Strength, Scope, and Direction is driven by the metrics
that can be used as surrogates to capture and quantify
change. Although other choices are possible, this ap-
proach facilitated the validation of the proposed work
through empirical analysis in open systems.

Two major classifications of design pattern grime
were found: structural, and behavioral. Each classifi-
cation is then subdivided into further sub categories.
For each category we developed synthetic examples to
help calibrate a formal definition represented in the
RBML meta-modeling language. The evolution of in-
dividual pattern realization’s grime change can now
be measured against its formal characterization and
tracked for each pattern as the system evolves.

8 Future Work

Although significant work had led to this point, we
continue to develop and refine the mathematical defi-
nitions of each form of grime (outside the scope of this
manuscript). Further, taxonomy is never complete,
and we suspect rare forms of change exist that may not
be fully captured by this taxonomy yet. Continued ef-
forts to define, calibrate, and empirically validate each
form of grime are on-going and we expect to expand
the research to not only include open source, but also
commercial systems.

References

[Gam95] Gamma, E., Helm, R., Johnson, R., Vlis-
sides, J. Design Patterns: Elements
of Reusable Object Oriented Software.
Addison-Wesley, Reading MA, 1995.

[Fra02] France,R.,Kim,D.,Song,E.,Ghosh,S.
Metarole-basedmodelinglanguage(rbml)
specification v1. 0. Tech. rep., 0. Tech-
nical Report 02-106. Computer Science
Department, 2002.

[Izu09] Izurieta C. Decay and grime buildup in evolv-
ing object oriented design patterns Colorado
State University, 2009.

[Izu07] Izurieta C., Bieman J. How Software De-
signs Decay: A Pilot Study of Pattern Evolu-
tion. First International Symposium in Em-
pirical Software Engineering and Measure-
ment, ESEM’07, Madrid, Spain, 2007.

[Leh97] Lehman M.M., Laws of Software Evolu-
tion Revisited. Proc of the 1996 European
Workshop on Software Process Technology
(EWSPT). France, 1996 Lecture Notes in
Computer Science 1149, pp. 108-124, 1997.

[Par94] Parnas D.L., Software Aging. Invited Ple-
nary Talk. 16th International Conference
ICSE 1994, pp. 279-287, May 1994.

[Eic01] Eick, S.G., Graves T.L., Karr A.F., Marron
J.S., Mockus A., Does Code Decay? Assess-
ing the Evidence from Change Management
Data. IEEE Transactions on Software Engi-
neering, 27(1):1-12, 2001.

[Fei17] Feitosa, D., Avgeriou, P., Ampatzoglou, A.,
Nakagawa, E.Y. The evolution of design
pattern grime: An industrial case study.
Intl. Conference on Product-Focused Soft-
ware Process Improvement, pp. 165-181,
Springer, 2017.

10



[Izu13] Izurieta C., Griffith I., Reimanis D., Luhr
R. On the Uncertainty of Technical Debt
Measurements. IEEE ICISA 2013 Intl. Con-
ference on Information Science and Applica-
tions, Pattaya, Thailand, June 24-26, 2013.

[UML97] OMG The Object Management Group OMG
2.0 http://www.omg.org

[Sch10] Schanz T., Izurieta C. Object Oriented De-
sign Pattern Decay: A Taxonomy. 4th Inter-
national ACM-IEEE Symposium on Empiri-
cal Software Engineering and Measurement,
ESEM’10. Bolzano, Italy, 2010.

[Gri14] Griffith I., Izurieta C. Design Pattern De-
cay: The Case for Class Grime. 8th Inter-
national ACM-IEEE Symposium on Empiri-
cal Software Engineering and Measurement,
ESEM’14. Torino, Italy, 2014.

[Bri98] Briand, L.C., Daly, J.W., and Wust, J.K. A
unified framework for cohesion measurement
in object-oriented systems. Empirical Soft-
ware Engineering 3, 1, 65-117. 1998.

[Bie04] Bieman J., Wang H. Evaluating the Strength
and Impact of Design Pattern Coupling. Sub-
mitted manuscript IEEE Transactions on
Software Engineering, 2004.

[Bri93] Briand, L., Morasca, S., and Basili, V. Mea-
suring and assessing maintainability at the
end of high level design. In Proceedings of
IEEE Conference on Software Maintenance.
Montreal, Canada, pp. 88-87, 1993.

[Mar94] Martin R. OO Design Quality Metrics-
An Analysis of Dependencies. Proc. Work-
shop Pragmatic and Theoretical Directions
in Object-Oriented Software Metrics, OOP-
SLA, 1994.

[Bie95] Bieman, J.M. and Kang, B.K Cohesion and
reuse in an object-oriented system. Proceed-
ings of the ACM 2nd Symposium on Soft-
ware Reusability, WA, USA, New York, NY.
259-262. 1995

[Gri19] Griffith I. Design Pattern Decay A Study
of Design Pattern Grime and its Impact on
Quality and Technical Debt. PhD Disserta-
tion in progress.

[Mar03] Martin R. Agile software development: prin-
ciples, patterns, and practices. Prentice Hall
PTR, 2003.

[Rei15] Reimanis D., Izurieta C. A Research Plan to
Characterize, Evaluate and Predict the Im-
pacts of Behavioral Decay in Design Pat-
terns. IEEE, ACM IDoESE, 13th Inter-
national Doctoral Symposium on Empirical
Software Engineering, Beijing, China 2015.

[Rei16] Reimanis D., Izurieta C. Towards assessing
the technical debt of undesired software be-
haviors in design patterns.. IEEE 8th Inter-
national Workshop on Managing Technical
Debt (MTD), pp. 24-27, Raleigh, N.C. 2016.

[Rei19] Reimanis D., Izurieta C. Behavioral Evo-
lution of Design Patterns: Understanding
Software Reuse through the Evolution of Pat-
tern Behavior.. 18th International Confer-
ence on Software and Systems Reuse. ICSR,
Cincinnati, OH. 2019.

[DP1] Softpedia Design Pattern Finder
https://www.softpedia.com/ Accessed:
04, 2019.

[Tsa06] Tsantalis, N., Chatzigeorgiou, A.,
Stephanides, G., Halkidis, S.T. Design
pat- tern detection using similarity scoring
IEEE transactions on software engineering
32(11), pp. 896-909, 2006.

[Kim04] D.-K. Kim, R. France, and S. Ghosh A uml-
based language for specifying domain-specific
patterns. Journal of Visual Languages &
Computing, vol. 15, no. 3-4, pp. 265-289,
2004.

[Str11] Strasser S., Frederickson C., Fenger K.,
Izurieta C. An Automated Software Tool for
Validating Design Patterns. ISCA 24th In-
ternational Conference on Computer Appli-
cations in Industry and Engineering, CAINE
’11, Honolulu, HI, November 2011.

[Kim08] D.-K. Kim and W. Shen Evaluating pattern
conformance of uml models: a divide-and-
conquer approach and case studies. Software
Quality Control, vol. 16, pp. 329-359, 2008.

[Kim03] D.-K. Kim A meta-modeling approach to
specifying patterns. Ph.D. Disseration, 2003.

[Lu11] Lu, Lunjin and D.-K. Kim Required behavior
of sequence diagrams: Semantics and refine-
ment 16th IEEE International Conference on
Engineering of Complex Computer Systems,
pp. 127-136, 2011.

11


