
Using Matrix Decompositions in Formal Concept 
Analysis 

Vaclav Snasel1, Petr Gajdos1, Hussam M. Dahwa Abdulla1, Martin Polovincak1 

 
1 Dept. of Computer Science, Faculty of Electrical Engineering and Computer Science, 

VŠB-Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33, Czech Republic 
{vaclav.snasel, petr.gajdos, hussamdahwa, martin.polovincak.fei}@vsb.cz 

Abstract. One of the main problems connected with the formal concept 
analysis and lattice construction is the high complexity of algorithms which 
plays a significant role when computing all concepts from a huge incidence 
matrix. In some cases, we only need to compute some of them to test for 
common attributes. In our research we try to modify an incidence matrix using 
matrix decompositions, creating a new matrix with fewer dimensions as an 
input for some known algorithms for lattice construction. In this paper, we want 
to describe  methods of matrix decompositions and their influence on the 
concept lattice. 
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1   Introduction 

We are dealing with possible uses of matrix decompositions for reduction of 
concept lattice. These methods are well known in the area of information retrieval 
under the name Latent Semantic Indexing (LSI) or Latent Semantic Analysis (LSA) 
[2], [3]. LSI and LSA have been used for discovery of latent dependencies between 
terms (or documents). We would like to apply this approach in the area of formal 
concept analysis (FCA) [5]. First, we will introduce basic terms of Formal Concept 
Analysis (FCA) and then we will describe the rank-k SVD decomposition and the LSI 
method. Because the SVD decomposition presents some difficulty connected with the 
setting of its parameters, we will introduce a different approach based on semi-
discrete lattice decomposition. 

Small examples will illustrate our approaches. We hope that this is the way to use 
FCA on large data collections and visualize a data structure via concept lattice. Note 
that usage of this method depends on concrete application, because it makes some 
noise in the lattice structure to make it simpler. 
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2   Background 

In the following paragraphs we would like to introduce important basic terms of 
formal concept analysis, singular value decomposition and semi-discrete value 
decomposition. Pros and cons of matrix decompositions will be discussed later. 

2.1   Formal Concept Analysis 

Definition 1. [9] A formal context C = G, M , I( ) consists of two sets; G and M, I is a 
subset of GxM. The elements of G are defined as objects and the elements of M are 
defined as attributes of the context. In order to express that an object g ∈ G  is 
related to I with the attribute m M∈ , we record it as gIm or g,m( )∈ I  and read it as 
“the object g has the attribute m”. I is also defined as the context incidence relation. 

Definition 2. [9] For A ⊂ G  as set of objects we use the definition 
′ A = m ∈ M gIm for all g ∈ A{ } (the set of attributes common to the objects in A). 

Correspondingly, for B attributes we use the definition 
′ B = g ∈ G gIm for all m ∈ B{ }  (the set of objects which have all attributes in B). 

Definition 3. [9] A formal concept of the context (G, M, I) is the pair (A, B) 
with A ⊆ G , B ⊆ M , and ′ B = A. We call A the extent and B the intent of the concept 
(A, B). β(G, M, I) denotes the set of all concepts of context (G, M, I). 

Definition 4. [9] The concept lattice β (G,M, I) is a complete lattice in which infimum 
and supremum are given by 
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2.2   Singular Value Decomposition 

Singular value decomposition (SVD) is well known because of its application in 
information retrieval as LSI. SVD is especially suitable in its variant for sparse 
matrices. [3] 

Theorem 1. (Singular Value Decomposition) Let A be an m × n  rank-r matrix. Be 

  σ1Kσ r  eigenvalues of a matrix AAT . There exist orthogonal matrices 
U =  (u1,  . . . ,  ur )  and V =  (v1,  . . . ,  vr ) , whose column vectors are orthonormal, 
and diagonal matrix ∑ = diag σ 1 , ..., σ r( ) . The decomposition A = UΣV T  is referred to 
as a singular value decomposition of matrix A and numbers  σ1Kσ r  are singular 
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values of the matrix A. Columns of U (or V) are referred to as left (or right) singular 
vectors of matrix A. 

Now we have a decomposition of the original matrix A. Needless to say, the left 
and right singular vectors are not sparse. We have at most r nonzero singular 
numbers, where rank-r is the min(m,n). Because the singular values usually decrease 
quickly, we only need to take k greatest singular values and corresponding singular 
vector coordinates and create a k-reduced singular decomposition of matrix A. 

Definition 5.  Let us have k, 0 < k < r and singular value decomposition of A 

A = UΣV T = (UKU0)
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A = UkΣkVk
T is referred to as a k-reduced singular value decomposition (k-rank SVD). 

 
In information retrieval, if every document is relevant to only one topic, we obtain 

a latent semantics – semantically related words and documents will have similar 
vectors in the reduced space. For an illustration of rank-k SVD see < 1, the grey areas 
determine first k coordinates from singular vectors, which are being used. 
 

Fig. 1. k-reduced singular value decomposition 
 

Theorem 2. (Eckart-Young). Among all m×n matrices C of rank at most k, Ak is the 
one that minimizes || Ak − A ||F

2 = (Ai, j − Cw, j )
2

i, j
∑ . 

Because rank-k SVD is the best rank-k approximation of original matrix A, any 
other decomposition will increase the sum of squares of matrix A − Ak.  

The SVD is hard to compute and once computed, it reflects only the decomposition 
of the original matrix. The recalculation of SVD is expensive, so it is impossible to 
recalculate SVD every time new rows or columns are inserted. The SVD-Updating is 
a partial solution, but since the error increases slightly with inserted rows and 
columns when updates occur frequently, the recalculation of SVD may be needed.  

Note: From now on, we will assume rank-k singular value decomposition when 
speaking about SVD. 

2.2   Semi Discrete Matrix Decomposition (SDD) 

We have used another alternative decomposition in our research, semi discrete 
decomposition (SDD). For equal data set and incidence matrix, the SDD does as well 
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as the SVD and uses less than one-tenth the storage space. In this section, we briefly 
overview SDD and then we will describe its purpose. 

Semi discrete decomposition approximates a matrix as a weighted sum of outer 
product formed by vectors with entries constrained to be in the set S = {−1, 0, 1}. 
O’Leary and Peleg introduced the SDD in the context of image compression [8], and 
Kolda and O’Leary used the SDD for latent semantic indexing LSI in information 
retrieval [6], [7]. 

The primary advantage of the SDD over other types of matrix decompositions such 
as the truncated SVD is that it typically provides a more accurate approximation for 
far less storage. An SDD of an m × n matrix A as a decomposition is shown in 
figure 2. Here each xi is an m − vector with entries from the set S = {−1, 0, 1}, each yi
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Fig. 2. k-reduced semi discrete decomposition 
 
 

is an n−vector with entries from the set S, and each di is a positive scalar. We call this 
k − term SDD. 

Note: From now on, we will assume rank-k semi discrete decomposition when 
speaking about SDD. 

2.4   Nonnegative Matrix Factorization (NMF) 

Nonnegative matrix factorization differs from other rank reduction methods for 
vector space models in text mining, e.g. principal component analysis (PCA) or vector 
quantization (VQ) due to use of constraints that produce nonnegative basis vectors, 
which make possible the concept of a parts-based representation. 

Lee and Seung [11] first introduced the notion of parts-based representations for 
problems in image analysis or text mining that occupies nonnegative subspaces in a 
vector-space model. Techniques like PCA and VQ also generate basis vectors various 
additive and subtractive combinations of which can be used to reconstruct the original 
space. But the basis vectors for PCA and VQ contain negative entries and cannot be 
directly related to the original vector space to derive meaningful interpretations. In the 
case of NMF, the basis vectors contain no negative entries, allowing only additive 
combinations of the vectors to reproduce the original. So the perception of the whole, 
be it an image or a document in a collection, becomes a combination of its parts 
represented by these basis vectors. In text mining, the vectors represent or identify 
semantic features, i.e. a set of words denoting a particular concept or topic. If a 
document is viewed as a combination of basis vectors, then it can be categorized as 
belonging to the topic represented by its principal vector. Thus, NMF can be used to 
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organize text collections into partitioned structures or clusters directly derived from 
the nonnegative factors [10]. 

3   Our Experiment 

3.1   Input Data 

Data from the Ostrava Mass Transit Authority was used in this experiment. We can 
describe data in a graph. Rows represent tram stops, columns represent tram lines. Let 
1 represent a tram stopping at a tram stop in the appropriate row and column crossing, 
otherwise zero. This data was chosen because we can easily see if the SVD is 
working. Many tram lines share the same tram stops. These parts of tram lines should 
be minimized with SVD and it should also be visible in the lattice after using SVD. 

 

 
Fig. 3. Original lattice 

3.2   Steps of Our Experiment 

Our experiment included several steps. The first step was to read and transform 
data into adjacency matrix. After transforming and computing (using SVD) three new 
matrixes were obtained as results from SVD A = U Σ V T . After choosing rank-k, a 
new matrix was computed. 

3.3   Reading and Transforming Data 

Data was obtained from tram timetables. The first ten tram lines and their tram 
stops were chosen. The transformed matrix had 92 rows and 10 columns. 
Transformation was simple. If a tram stops at a particular tram stop, the number 1 
appeared in the appropriate row and column crossing, otherwise zero. The matrix is 
also an incidence matrix and was used in SVD, NMF and FCA computations. 



V. Snasel, P. Gajdos, H. M. Dahwa Abdulla and M. Polovincak 
 

126 

3.4   Using SVD 

SVD computations were made by SVDLIBC-fix software. This software is free 
and is written in C language. An incidence matrix acts as the input. Software can 
compute all three matrixes - U and Σ and VT. k-rank was chosen k = 4, that is mean, 
matrixes will be U(92x10), Σ(10x10) and VT(10x10). 

3.5   Computing Concept Lattices 

Both incidence matrix and product of SVD computing were used to compute 
concept lattice. Both matrixes passed as input for Concept Lattice software developed 
at VSB–TU Ostrava. The Concept Lattice software produced a concept lattice. The 
view of these concept lattices were completed with GraphPlace software. 
GraphPlace’s output is a Postscript file that can be viewed in any postscript viewer.  

Concept lattice was computed from the output matrix. Man can see the difference 
between the concept lattice computed from the original matrix and the concept lattice 
computed from the output matrix using SVD. 

 
Fig. 4. Lattice after using SVD 
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Fig. 5. Example 1 

Example 1. Node 11 (figure 5): Node 11 has attributes (e, g, h) in line 69 of the 
original matrix. Attribute (e) disappears from line 69 after SVD. Attribute (e) is a 
shared attribute and exists only in this node at this level. When an attribute is lost the 
connection between node 11 and node 10 is lost too. The other attributes in node 11 
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(g, h) appear in the other nodes at the same level. For that node 11 is lost with node 
10, which has lost all connections with other nodes. 
Example 3. Node 34 (figure 7): Node 34 has attributes (a, i) in lines (8, 9, 11, 16, 17, 
18, 19, 20, 21). After the SVD attribute (i) from lines (16, 17, 18, 19, 20, 21) is lost 
and only attribute (a) remains. Attribute (a) appears in other nodes at the same level 
(node 38), and lines (8, 9, 11) appear in other nodes at the same level (node 38). 
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Fig. 6. Example 3 

 
 
Also, node 8 has attributes (f, i) in lines (8,9,11,79), after SVD we lose the attribute 

(i) from line (79) and only attribute (f) remains, that appears in other node at the same 
level (node 38), and lines (8,9,11) appear in other node at the same level (node 38). 
For these nodes 34 and 8 are after SVD lost. Loosing nodes (34 and 8) means also 
loosing connection with node 1 who has attribute (i), and we loose also node 1. 

5.   Conclusion 

Every node in the concept has a distinct set of attributes. That means that two nodes 
can not be found with the same set of attributes. Experiment consists in finding 
changes of objects and their set of attributes after using SVD. SVD reduces some 
attributes from the original matrix because these attributes do not appear in many 
objects. Attributes are not primary and they can be lost without any problem. 

References 

[1] 1. G. Battista, P. Eades, R. Tamassia, and I. Tollis, “Algorithms for drawing 
graphs, an annotated bibiliography”, Computational Geometry, Theory and 
Applications, vol. 4, 1994, pp. 235–282. 

[2] M. Berry and M. Browne. “Understanding Search Engines”, Mathematical 
Modeling and Text Retrieval, Siam, 1999. 



V. Snasel, P. Gajdos, H. M. Dahwa Abdulla and M. Polovincak 
 

128 

[3] M. Berry, S. Dumais, and T.Letsche. “Computation Methods for Intelligent 
Information Access”, Proceedings of the 1995 ACM/IEEE Supercomputing 
Conference, 1995. 

[4] P.Gajdoš and P.Moravec, “Concept lattice generation by singular value 
decomposition”, CLA 2004, 2004, pp. 13–22. 

[5] B. Ganter and R. Wille, Formal Concept Analysis. Springer-Verlag Berlin 
Heidelberg, 1999. 

[6] T. G. Kolda and D. P. O’Leary, Computation and uses of the semidiscrete 
matrix decomposition, Technical Report CS-TR-4012, Oak Ridge National 
Laboratory, 1999, pp. 8-16. 

[7] T.G.Kolda and D.P.O’Leary, “A semidiscrete matrix decomposition for latent 
semantic indexing information retrieval”, ACM Transactions on Information 
Systems 16(4), 1998, pp. 322–346. 

[8] D.P.O’Leary and S.Peleg, “Digital image compression by outer product 
expansion”, IEEE Transactions on Communications 31, 1983, pp. 441–444. 

[9] R. Wille, Lattices in data analysis: How to draw them with a computer, 
Algorithms and Order, 1989, pp. 33–58. 

[10] Farial Shahnaz, Michael W. Berry, V. Paul Pauca, Robert J. Plemmons, 
Document clustering using nonnegative matrix factorization. Inf. Process. 
Manage. 42(2): 373-386 2006. 

[11] Lee, D., Seung, “H. Algorithms for non-negative matrix factorization”, 
Advances in Neural Information Processing Systems, 2001, pp. 556-562. 

[12] G.Young and C.Eckart, The approximation of one matrix by another of lower 
rank, Psychometrika 1, 1936, pp. 211–218. 


