
Towards Automatically Identifying Potential
Sustainability Effects of Requirements

Iris Groher
Johannes Kepler University

Linz, Austria
iris.groher@jku.at

Norbert Seyff
FHNW

Windisch, Switzerland
University of Zurich
Zurich, Switzerland

norbert.seyff@fhnw.ch

Tahira Iqbal
fortiss GmbH

Munich, Germany
iqbal@fortiss.org

Abstract—Software developers are gradually becoming
aware that their systems have effects on sustainability. The
identification of potential effects software-intensive systems can
have on different sustainability dimensions over time is yet in its
infancy. Researchers are currently exploring approaches which
strongly make use of expert knowledge to identify potential
effects. In this work in progress paper, we are looking at the
problem from a different angle: we report on the exploration of
a machine learning-based approach to identify potential effects.
Such an approach allows to save time and costs but increases
the risk that potential effects are overseen. First results of
applying the machine learning-based approach in the domain of
home automation systems are promising, but also indicate that
further research is needed before our approach can be applied
in practice. Furthermore, we have learned that even providing
the ground truth for training the algorithms is a challenging task.

Index Terms—Sustainability, Analysis, Requirements, Machine
Learning.

I. INTRODUCTION

Software-intensive systems do not operate in isolation but in
complex socio-technical contexts. Therefore, they have an im-
pact on this context, manifesting itself in different dimensions
such as the environmental, economic, social, individual, and
technical dimension [1]. As effects can occur over time, we
can also identify three different orders of effects [2] [3]. The
cumulative positive and negative effects a software-intensive
system has on its context define its sustainability.

In previous research [4], we have learned that practitioners
are not aware of the fact that software-intensive systems have
an impact on sustainability and that raising awareness is an
essential step towards the development of sustainable software-
intensive systems. Furthermore, the complexity of this matter
and the lack of adequate methods and tools supporting the
identification of potential effects are hurdles for practitioners
who are already aware of their responsibility to build sustain-
able systems.

Requirements are the key to sustainability [1], which indi-
cates that the identification of potential sustainability effects
needs to start before systems are actually built or when

Copyright 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

certain aspects of a system are modified in the context of
system evolution. This, in part, also makes the identification
of potential effects a hypothetical endeavour, which often
needs to be based on expert opinions rather than facts. Only
after development, when the system is used in its application
context, one can eventually validate its effects on the different
sustainability dimensions over time.

Researchers have started to build methods and tools to
support the identification of sustainability effects [5] [6] [7].
Although such approaches can be successfully applied to
identify potential sustainability effects, it appears that they
require a significant time investment of companies, which
might prevent their adoption.

In this work in progress paper, we follow a current trend in
software and requirements engineering and propose the use of
Machine Learning (ML) for the early identification of potential
sustainability effects. In this paper, we present this idea in
more detail and also report on a first application experiment in
the home automation domain. Based on requirements for home
automation systems, we have identified potential sustainability
effects and have used these results as ground truth for training
our algorithms. Early results indicate that using ML for the
identification of sustainability effects is promising, which
motivates us to continue with this research.

In Section 2 we discuss existing approaches for identifying
sustainability effects in requirements. In Section 3 we present
our ML-based approach and report on a first experiment we
conducted in Section 4. In Section 5 we conclude the paper
and present an outlook on next steps we plan.

II. EXISTING SUSTAINABILITY EFFECT IDENTIFICATION
APPROACHES AND TOOLS

The work presented in this paper is motivated by research in
the field of requirements engineering, where researchers aim
at identifying potential sustainability effects.

In previous work on tailoring requirements negotiation to
sustainability [5], an extension of the WinWin negotiation
model was proposed. This approach incorporates sustainability
so that the negotiation is used to identify potential effects of
requirements on sustainability. For requirements which might
have negative effects, alternative requirements options are



discussed to minimize these negative effects. This method
was applied in an exploratory industrial case study, where
it allowed practitioners to reflect on requirements and their
effects on sustainability.

Recent work presents a question-based framework for rais-
ing awareness of the potential effects of software systems on
sustainability [6]. The Sustainability Awareness Framework
(SusAF) was used by students to carry out interviews for a
software system of their choice to identify potential effects of
these systems on sustainability and in particular even identify
potential chain of effects. Results from this feasibility study
indicate that SusAF stimulates the discussion about potential
effects of software systems on sustainably.

Alharthi et al. [7] present the SuSoftPro tool, which supports
the analysis of the impact of requirements on different sustain-
ability dimensions via a Fuzzy Rating Scale method. This tool-
supported approach allows for different visualization option of
the results (e.g., a bar graph that illustrates the sustainability
level).

We conclude that researchers have identified the need
for identifying sustainability effects and that first promising
methods and even tool-supported approaches are appearing.
However, all presented methods strongly depend on human
involvement and might require time-intensive discussions, the
involvement of experts or a large number of people to derive
results. The quality of the produced results might further vary
a lot depending on different factors such as the complexity of
the domain and the level of expertise of the people involved.
Nevertheless, bespoke methods can raise awareness and can
help, at least in part, to improve the sustainability of software-
intensive systems.

III. MACHINE LEARNING-BASED EFFECT IDENTIFICATION

The goal of our ongoing research is to automate the iden-
tification of potential sustainability effects by analysing the
requirements of a software-intensive system. In contrast to
existing methods in place, we expect that such an approach
will result in the significant reduction of the effort needed
for the analysis. However, we also see the risks that such an
approach might result in overlooking potential effects.

A. ML in Software and Requirements Engineering

To achieve this goal, we follow a recent trend in software
and requirements engineering and explore the application of
ML [8] [9]. ML has already been successfully used to clas-
sify software requirements into functional and non-functional
requirements [10] [11]. The analysis of a large number of
user feedback from multiple sources such as the app store
and Twitter has been automated by applying ML [12] [13].
This analysis helps to identify useful information such as bug
reports and feature requests to support software evolution. For
validating requirements, automated analysis of requirement
traceability with the help of natural language processing and
ML has been studied [14] [15]. ML has also been applied
in requirements management such as visualizing requirements

on different levels of granularity and prioritizing requirements
[16] [17].

B. ML Application Overview
To automatically identify the impact of requirements on

sustainability we follow the ML workflow [18], as shown in
Fig. 1.

The first key step is data preprocessing that helps to avoid
data incompleteness and inconsistency issues. This data is
used as an input for the ML algorithm, which means that the
ML algorithm learns from existing data. On the basis of this
learning, a learning model is produced as output, which can
be used to make predictions on a different dataset than the one
used for training. The learning model can be evaluated based
on its performance. For measuring the performance, we use
well-known ML parameters such as precision, recall, accuracy,
and F-score.

In the next section, we will describe how we have performed
the above discussed steps in our experiment.

IV. A FIRST EXPERIMENT

We performed a first experiment in the domain of home
automation systems to evaluate our ML-based approach. In
the next subsection, we describe the setup of our experiment
and in the subsequent subsection we present our preliminary
results.

A. Setup
Data: The dataset used for training and evaluating our ML-

based approach is comprised of publicly available smart home
requirements1. The requirements were collected as part of
research on crowd-RE [19].

In a first step, three annotators manually classified 200
randomly selected requirements from the total set of avail-
able requirements (around 2900). All three annotators had
proficient knowledge and expertise for sustainable systems in
software engineering. For each requirement, each annotator
independently marked which sustainability dimension(s) it had
an effect on. To support this classification, a literature review
has been performed on sustainability dimensions and created
a classification guideline based on the results of this analysis.
The guideline contained for each dimension a set of influence
factors and for each factor a description, rational, example
requirements, and literature references for further reading.
Table I shows an example influence factor in the environmental
dimension.

The annotators used the guideline as a reference during the
manual classification of the 200 smart home requirements.
Each requirement was independently classified according to
its influence on the five dimensions of software sustainability
as positive, negative, or neutral. The plus sign (+) was assigned
for positive influence, a minus sign (-) for negative influence,
and no sign for indicating no influence as shown in Table II.
The ratings were merged and cases in which the researchers
did not agree were discussed until consensus was reached.

1Smarthome Crowd Requirements Dataset,
https://crowdre.github.io/murukannaiah-smarthome-requirements-dataset/



Fig. 1. Basic ML workflow steps

TABLE I
EXAMPLE INFLUENCE FACTOR

Dimension Environment
Factor Recycling
Description Process of converting waste mate-

rials into new materials and objects
Influence/Rational Strong positive influence on the en-

vironment as not only the amount
of waste is reduced but also the
farming of natural resources to cre-
ate new products is decreased.

Example If a device needs to be removed
from the system, the system should
provide information on how to dis-
pose it properly.

B. Application

Pre-processing: We applied natural language processing
techniques on our data before applying the different ML algo-
rithms. First, we applied text tokenization on each requirement.
Then we eliminated all stop words and converted the text into
small characters. We applied stemming as our next step. As
the last step, we converted pre-processed text as a vector space
model using Term Frequency-Inverse Document Frequency
(TF-ID or TF-IDF) as a weighting scheme:

tfidf(t, d) = tf(t, d) ∗ idf (1)

Here t is a term in a vector and d is a requirement in a
collection of requirements [20].

Classification: For the automated classification of sustain-
ability requirements and their dimensions, we trained our
model using the annotated requirements dataset. We imple-
mented Nave Bayes (NB), k-Nearest Neighbor (KNN), De-
cision trees (DT), Support Vector Machine (SVM), Logistic
regression (LR), and Neural Network (NN) algorithms and
also trained our classifier with and without stemming the data,
as discussed in [2]. The results were quite similar with a minor
difference and we used stemmed data for final analysis. We
used tenfold cross-validation for evaluating our results.

C. Results

The results for six different classifiers from our experiments
are shown in Table III. For choosing the best classifier, we
evaluated the performance of all these classifiers on the
basis of commonly used ML metrics i.e., accuracy, precision,
recall, and F1-score. These metrics can be calculated using
the following formulae:

Accuracy = TP + TN/TP + FP + FN + TN (2)

Precision = TP/(TP + FP ) (3)

Recall = TP/(TP + FN) (4)

F1− score = Precision/Recall (5)

Here, TP (True Positive) is the number of requirements
correctly classified as belonging to a category. TN (True
Negative) is the number of requirements that are correctly
classified as not belonging to a category. FP (False Positive) is
the number of requirements incorrectly classified as belonging
to a category, and FN (False Negative) is the number of
requirements that are incorrectly classified as not belonging
to a category.

In simple words, accuracy is the ratio of correctly classified
data over total data. This helps to predict the model perfor-
mance whereas high accuracy results in a better performance
of the model. However, data can be asymmetric and thus
parameters other than accuracy need to be evaluated. The
precision metric refers to the ratio of correctly predicted
positive values to the total number of predicted positive values.
On the other hand, recall is the ratio of total predicted positive
values to the actual number of positive values. It is not possible
to maximize both recall and precision metrics at the same time,
as one comes at the cost of another. To consider both, F1-score
is used which is the harmonic mean of precision and recall.

The highest accuracy and F1-score decide which algorithm
is the best among others. We achieved the highest accuracy
with DT classifier (70% precision) followed by SVM (69%
precision). Our dataset was not balanced, meaning that the
five different sustainability dimensions were not equally rep-
resented in the dataset (see Fig. 2). The economic, environ-
mental, and social dimensions were almost equally repre-
sented. The individual dimension had high occurrences and
the technical dimension was almost inexistent. To overcome
this problem, we used the weighting technique by assigning
more weight to fewer data. After applying this setting, we
achieved the highest accuracy for SVM (75%), as shown in
column SVM (b) of Table III. Recall and precision are 63%
and 57% respectively, which is acceptable according to our
accuracy. We also calculated the F1-scores, and the highest
value was achieved with SVM (60%).

The results from this initial experiment can be improved
further as we observed some issues that are impacting our
results. The structure of our dataset varied with respect to
the length of the textual requirements. For example, one
requirement consisted of 20 words, and another one consisted
of 200 words. Due to the significant difference regarding their
length, our ML classifier features were sparse, which might
have lead to an underfitted model.



TABLE II
MANUALLY CLASSIFIED SMART HOME REQUIREMENTS

ID Req T I S Ec En
1 Music should be available throughout the house - + - -
2 Temperature in the house should be adjusted based on the weather outside + + +
3 The lights shut be shut off in the rooms with nobody in them + + +
4 The garage door should be opened when it senses my vehicle arriving outside of it +

Fig. 2. Distribution of sustainability dimensions

TABLE III
SCORES FOR THE DIFFERENT CLASSIFIERS

NB KNN DT LR SVM SVM (b) NN
Accuracy 0.58 0.65 0.7 (0.03) 0.62 0.67 0.75 0.69
Precision 0.46 0.51 0.46 0.57 0.5 0.57 0.44
Recall 0.43 0.56 0.56 0.54 0.48 0.63 0.47
F-score 0.44 0.53 0.51 0.56 0.48 0.60 0.45

Moreover, our negative and positive influence values on the
sustainability dimensions were also not equally distributed.
Our data only contained 12 requirements with negative in-
fluence, the rest were positive influences.

V. CONCLUSION AND NEXT STEPS

The goal of our ongoing research is the automation of the
identification of requirements, which potentially have effects
on the sustainability of a software-intensive system.

In this paper, we present the application of a state-of-the-art
ML approach to support effect identification. Our first results
indicate that ML can be successfully used for the identification
of potential sustainability effects. However, we have learned
that the results from our first experiment can be improved
further. This starts with the dataset. The current dataset can
be improved to generate a more suitable learning model for
the classifiers.

As a next step, we plan to increase the size of our dataset.
We have already designed a web-based solution where experts
can update the categorized requirements and add additional
requirements. This web-based tool will help us to improve
our labeling and support us in getting more data. It will also
allow us to provide a more balanced dataset.

Our current results indicate that there is the risk of overlook-
ing requirements which have potential effects. As a next step,
we plan to focus on optimizing recall to minimize this risk. We
envision that our approach could be used to complement exist-
ing methods. Instead of discussing each requirement manually,
our approach could provide a list of relevant requirements,
which should be discussed further by human stakeholders.
High recall might result in lower precision, which means that
human stakeholders are confronted with a larger number of
false positives. However, we expect that providing a reduced
set of requirements for discussion will enable practitioners to
save time compared to a full manual analysis.



Similar to other work in this field, we have also experienced
that manually identifying potential effects can lead to different
opinions amongst the annotators. Although, the three annota-
tors were able to agree on a ground truth used for training our
classifier, we would like to highlight that our results might
reflect a rather subjective viewpoint of the annotators.

Overall, we would like to explore how we can integrate our
work into existing studies for requirements classification. In
particular, we envision to use our approach within planned
work on crowd-focused semi-automated requirements engi-
neering for evolution towards sustainability [21]. This would
also allow us to use our approach for other domains than
smart homes, which might also result in datasets with different
characteristics allowing us to further improve the classification
results.

ACKNOWLEDGEMENT

The authors would like to thank Robert Ördög for im-
plementing the tool support for our ML-based approach and
for conducting the experiment presented in this paper. This
research was partially funded by the European Unions Hori-
zon 2020 research and innovation program under the Marie
Skodowska-Curie grant agreement No. 674875.

REFERENCES

[1] Christoph Becker, Stefanie Betz, Ruzanna Chitchyan, Leticia Duboc,
Steve Easterbrook, Birgit Penzenstadler, Norbert Seyff, and Colin C.
Venters. Requirements: The key to sustainability. IEEE Software,
33(1):56–65, Jan 2016.

[2] Christoph Becker, Ruzanna Chitchyan, Leticia Duboc, Steve East-
erbrook, Birgit Penzenstadler, Norbert Seyff, and Colin C. Venters.
Sustainability design and software: The karlskrona manifesto. In Pro-
ceedings of the 37th International Conference on Software Engineering -
Volume 2, ICSE ’15, pages 467–476, Piscataway, NJ, USA, 2015. IEEE
Press.

[3] Jeremy L Caradonna. Sustainability: A history. Oxford University Press,
2014.

[4] Ruzanna Chitchyan, Christoph Becker, Stefanie Betz, Leticia Duboc,
Birgit Penzenstadler, Norbert Seyff, and Colin C. Venters. Sustainability
design in requirements engineering: State of practice. In Proceedings of
the 38th International Conference on Software Engineering Companion,
ICSE ’16, pages 533–542, New York, NY, USA, 2016. ACM.

[5] Norbert Seyff, Stefanie Betz, Leticia Duboc, Colin Venters, Christoph
Becker, Ruzanna Chitchyan, Birgit Penzenstadler, and Markus Nöbauer.
Tailoring requirements negotiation to sustainability. In 2018 IEEE 26th
International Requirements Engineering Conference (RE), pages 304–
314. IEEE, 2018.

[6] Leticia Duboc, Stefanie Betz, Birgit Penzenstadler, Sedef Akinli Kocak,
Ruzanna Chitchyan, Ola Leifler, Jari Porras, Norbert Seyff, and Colin C
Venters. Do we really know what we are building? raising awareness
of potential sustainability effects of software systems in requirements
engineering. In 27th IEEE International Requirements Engineering
Conference, 2019.

[7] Ahmed D Alharthi, Maria Spichkova, and Margaret Hamilton. Su-
softpro: Sustainability profiling for software. In 2018 IEEE 26th
International Requirements Engineering Conference (RE), pages 500–
501. IEEE, 2018.

[8] T. Iqbal, P. Elahidoost, and L. Lcio. A bird’s eye view on requirements
engineering and machine learning. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC), pages 11–20, Dec 2018.

[9] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark
Harman. A survey of app store analysis for software engineering. IEEE
transactions on software engineering, 43(9):817–847, 2016.

[10] Zijad Kurtanović and Walid Maalej. Automatically classifying functional
and non-functional requirements using supervised machine learning. In
2017 IEEE 25th International Requirements Engineering Conference
(RE), pages 490–495. IEEE, 2017.

[11] Douglas S Lange. Text classification and machine learning support for
requirements analysis using blogs. In Monterey Workshop, pages 182–
195. Springer, 2007.

[12] Grant Williams and Anas Mahmoud. Mining twitter feeds for software
user requirements. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 1–10. IEEE, 2017.

[13] Walid Maalej and Hadeer Nabil. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In 2015 IEEE 23rd
international requirements engineering conference (RE), pages 116–125.
IEEE, 2015.

[14] Sandeep Reddivari, Zhangji Chen, and Nan Niu. Recvisu: A tool for
clustering-based visual exploration of requirements. In 2012 20th IEEE
International Requirements Engineering Conference (RE), pages 327–
328. IEEE, 2012.

[15] Hakim Sultanov and Jane Huffman Hayes. Application of reinforcement
learning to requirements engineering: requirements tracing. In 2013 21st
IEEE International Requirements Engineering Conference (RE), pages
52–61. IEEE, 2013.

[16] Vincenzo Gervasi and Didar Zowghi. Mining requirements links.
In International Working Conference on Requirements Engineering:
Foundation for Software Quality, pages 196–201. Springer, 2011.

[17] Paolo Avesani, Anna Perini, Alberto Siena, and Angelo Susi. Goals at
risk? machine learning at support of early assessment. In 2015 IEEE
23rd International Requirements Engineering Conference (RE), pages
252–255. IEEE, 2015.

[18] Moussa Amrani, Levi Lúcio, and Adrien Bibal. Ml+ fv=? a survey
on the application of machine learning to formal verification. arxiv:
1806.03600, 2018.

[19] Pradeep K Murukannaiah, Nirav Ajmeri, and Munindar P Singh. Acquir-
ing creative requirements from the crowd: Understanding the influences
of personality and creative potential in crowd re. In 2016 IEEE 24th
International Requirements Engineering Conference (RE), pages 176–
185. IEEE, 2016.

[20] Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 133–142. Piscataway, NJ, 2003.

[21] Norbert Seyff, Stefanie Betz, Iris Groher, Melanie Stade, Ruzanna
Chitchyan, Letı́cia Duboc, Birgit Penzenstadler, Colin Venters, and
Christoph Becker. Crowd-focused semi-automated requirements en-
gineering for evolution towards sustainability. In 2018 IEEE 26th
International Requirements Engineering Conference (RE), pages 370–
375. IEEE, 2018.


	Introduction
	Existing Sustainability Effect Identification Approaches and Tools
	Machine Learning-Based Effect Identification
	ML in Software and Requirements Engineering
	ML Application Overview

	A First Experiment
	Setup
	Application
	Results

	Conclusion and Next Steps
	References

