
Healthcare NER Models Using Language Model Pretraining

Empirical Evaluation of Healthcare NER Model Performance with Limited Training Data

Amogh Kamat Tarcar *
 Persistent Systems Limited, Goa, India

 amogh_tarcar@persistent.com

Vineet Naique Dhaimodker
National Institute of Technology, Goa, India

abcdvineet27@gmail.com

Aashis Tiwari
 Persistent Systems Limited, Pune, India

 aashis_tiwari@persistent.com

Penjo Rebelo
National Institute of Technology, Goa, India

 rpenjo0007@gmail.com

Dattaraj Rao
 Persistent Systems Limited, Goa, India

 dattaraj_rao@persistent.com

Rahul Desai
National Institute of Technology, Goa, India

rahulgdesai1998@gmail.com

ABSTRACT

In this paper, we present our approach to extracting structured

information from unstructured Electronic Health Records (EHR)

[2] which can be used to, for example, study adverse drug reactions

in patients due to chemicals in their products. Our solution uses a

combination of Natural Language Processing (NLP) techniques

and a web-based annotation tool to optimize the performance of a

custom Named Entity Recognition (NER) [1] model trained on a

limited amount of EHR training data. This work was presented at

the first Health Search and Data Mining Workshop (HSDM 2020)

[26].

We showcase a combination of tools and techniques leveraging the

recent advancements in NLP aimed at targeting domain shifts by

applying transfer learning and language model pre-training

techniques [3]. We present a comparison of our technique to the

current popular approaches and show the effective increase in

performance of the NER model and the reduction in time to

annotate data.A key observation of the results presented is that the

F1 score of model (0.734) trained with our approach with just 50%

of available training data outperforms the F1 score of the blank

spaCy model without language model component (0.704) trained

with 100% of the available training data.

We also demonstrate an annotation tool to minimize domain expert

time and the manual effort required to generate such a training

dataset. Further, we plan to release the annotated dataset as well as

the pre-trained model to the community to further research in

medical health records.

KEYWORDS

Transfer Learning, Named Entity Recognition, Natural Language

Processing, Pre-Training, Language Modeling, Electronic Health

Records (EHR), Annotations.

ACM Reference format:

Amogh Kamat Tarcar, Aashis Tiwari, Dattaraj Rao, Vineet Naique

Dhaimodker, Penjo Rebelo and Rahul Desai. 2020. Healthcare NER Models

Using Language Model Pretraining: Empirical Evaluation of Healthcare

NER Model Performance with Limited Training Data. In Proceedings of

Health Search and Data Mining Workshop (HSDM 2020) in the 13th ACM

International WSDM Conference (WSDM 2020). ACM, Houston, TX, USA.

https://doi.org/10.1145/3336191.3371879

1. INTRODUCTION

Extracting structured information from unstructured text such as

EHRs and medical literature has always been a challenging task.

Recent advancements in machine learning take advantage of the

large text corpora available in scientific literature as well as medical

and pharmaceutical web sites and train systems which can be

leveraged for several NLP tasks ranging from text mining to

question answering. Along with progress in the research space,

there has been significant progress in the libraries and tools

available for industry use.

The specific problem we focused on was extracting adverse drug

reactions from EHRs using NER. The solution required us to

extract key entities such as prescribed drugs with dosage and the

symptoms and diseases mentioned in the EHRs. The extracted

entities would be processed further downstream to link the entities

and leverage dictionary-based techniques for flagging any

symptoms which could potentially be adverse drug reactions of the

prescribed medicines.

A crucial component in our devised solution employed a custom

NER model for extracting key entities from EHRs. The state-of-

the-art Named Entity Recognition models built using deep learning

techniques [13] extract entities from text sentences by not only

identifying the keywords or linguistic shape of entities, but also by

leveraging the context of the entity in the sentence. Furthermore,

with language model pre-trained embeddings, the NER models

leverage the proximity of other words which appear along with the

entity in domain specific literature.

*Corresponding Author

Presented at the first Health Search and Data Mining Workshop (HSDM 2020) in

the 13th ACM International WSDM Conference (WSDM 2020) held in Feb 2020

Houston, Texas, USA

Copyright © 2020 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

mailto:amogh_tarcar@persistent.com
mailto:abcdvineet27@gmail.com
mailto:aashis_tiwari@persistent.com
mailto:rpenjo0007@gmail.com
mailto:dattaraj_rao@persistent.com
mailto:rahulgdesai1998@gmail.com

HSDM 2020, Feb, 2020, Houston, Texas USA A.Tarcar et al.

One of the key challenges in training NLP based models is the

availability of reasonable-sized, high-quality annotated datasets.

Further, in a typical industrial setting, the relative difficulty in

garnering significant domain expert time, and the lack of tools and

techniques for effective annotation along with the ability to review

such annotations to minimize human errors , affects research and

benchmarking new learning techniques and algorithms.

Additionally, models like NER often need significant amount of

data to generalize well to a vocabulary and language domain. Such

vast amounts of training data are often unavailable or difficult to

manufacture or synthesize.To bridge the gap between academic

developments and industrial requirements, we designed a series of

experiments employing transfer learning from pre-trained models

while working with a comparatively smaller dataset.

Transfer learning techniques [3] are largely successful in the image

domain and are advancing steadily in natural language domain with

the availability of pre-trained language embeddings and pre-trained

models.

In this paper we present findings of our experiments to solve the

industrial problem of training NER models with limited data using

spaCy [7] , a state-of-the-art industrial strength natural language

processing package, along with the latest techniques in transfer

learning.

The paper is organized as follows. Section 2 describes the

motivation for our experiments followed by Section 3 discusses the

problem and our solution, both in algorithmic and implementation

terms, and evaluates the results produced by our solution. Section

4 discusses the results and Section 5 concludes and suggests

directions for future work.

2. MOTIVATION

Recent advancements in NLP also known as the ImageNet moment

in NLP [3], have shown significant improvements in many NLP

tasks using transfer learning. Language models like ELMo [4] and

BERT [5] have shown the effect of language model pre-training on

downstream NLP tasks. Language models are capable of adjusting

to changes in the textual domain with a process of fine-tuning. Also,

in this self-supervised learning scenario, there is an implicit

annotation in sentences, i.e. predicts the next token (word) given a

sequence of tokens appearing earlier in the sequence. Given all this,

we can adjust to a new domain-specific vocabulary with very little

training time and almost no supervision.

NER aimed at detecting and identifying entity classes in text can

help in extracting structured information and assisting upstream

user experiences. The applicability of NER models are widespread,

ranging from identifying dates and cities in chatbots to open

domain question answering.

Using task-specific annotation tools can minimize the time to

generate high-quality annotated datasets for training models. The

traditional process of annotating data is slow, but fundamental to

most NLP models. It often acts as a hindrance in evaluating and

benchmarking multiple models, as well as in parameter tuning of

models. Many tools such as Doccano [6] exist in the open-source

community that help in solving this problem. We developed an in-

house tool which we could customize for speeding up the

annotation process.

3. USE CASE DETAILS

Studying adverse reactions due to chemicals in a drug on the patient

is central to drug development in healthcare. Pharmacovigilance

(PV) [21] as described by WHO, is defined as “the science and

activities relating to the detection, assessment, understanding and

prevention of adverse effects or any other drug-related problem.”

Pharmaceutical companies often want to understand the conditions

and pre-conditions under which a drug might have an adverse

reaction on a patient. This would help in research and studies of the

drugs and also reduce or prevent risks of any harm to the patient.

Co-occurrence of disease and chemicals in an EHR of a patient is

useful in studies and research for most pharmaceutical companies.

However, EHRs are unstructured data and additional processing is

required to extract structured information such as named entities of

interest. Such extraction can lead to significant savings of manual

labor and minimizing the time taken to get a new drug to market.

We developed custom healthcare NER models to extract phrases

related to (pharmaceutical) chemicals with dosage, diseases and

symptoms from EHRs. As the entities were specific to the domain

text, an in-house annotated dataset was created using our custom-

built annotation tool. A number of experiments were designed and

executed for training custom NER models on annotated data from

base models (spaCy[7] and scispaCy[8]) using transfer learning.

Section 3.1 describes the dataset preparation followed by Section

3.2 which presents an architecture overview. Section 3.3 presents

experiment details and Section 3.4 describes the results obtained.

3.1. DATASET PREPARATION

We created a domain-specific corpus by collating publicly

available sample medical notes and drug public assessment reports

from European Medical Agency (EMA)[9] and Sample Medical

Transcripts [10].

• A custom annotated dataset was created in-house

specifically for the four entities: Chemical, Disease,

Symptom and Dosage.

• A text corpus containing domain specific vocabulary was

created by utilising text from 2300 sample notes from the

Medical Transcripts Samples site and 100 FAQ sections

from the EMA site.

 Figure 1:In-house Annotation Tool

For annotating data, a custom-built web browser-based tool was

used. Figure 1 displays a screen shot of the annotation tool. As seen

in the figure, the tool works with text files and the user provides

annotations using mouse and keyboard inputs. After marking the

required span of text using the mouse, the user can use keyboard

keys to annotate the selected span. For example , the ‘S’ key on the

keyboard represents the Symptom entity. On providing inputs, the

tool highlights the span with a specific color for each entity, and

also adds an entity name on the screen with a cross mark to make

corrections. The tool also has a recheck functionality to enable the

reviewer to reexamine annotations.

After initial annotations (Around 100 occurrences of each entity),

we utilized the annotated data to train the spaCy [7] NER model

and leveraged it to identify named entities in new text files to

accelerate the annotation process.

The annotated dataset was randomized and split into 80% for

training and 20% for testing. As the training data for spacy follows

a pattern of sentence and entity tuples there is no overlap between

sentences split into training and test dataset. The training data was

further split into smaller sets ranging from 50% to 100% of the data,

in 10% increments. Table 1 presents the statistics of the annotated

data. It tabulates the counts of annotated sentences as well entity

wise counts.

Table 1. Dataset Description

Dataset
Total

Sentences

Entity Counts

Chemical Disease Symptom Dosage

All

Annotated

Data

4212 1194 929

1922

290

Train Data 2948 908 638 1351 207

Test Data 1264 286 291 571 83

3.2. ARCHITECTURE OVERVIEW

Figure 2 presents our solution architecture which includes four key

components. The first component comprises of Python scripts to

fetch and collate medical notes text from the Sample Medical

Transcripts [10] site. The second component is the in-house

Annotation tool which is used by domain experts to annotate notes.

The annotation tool is a web application with a Python Flask- [14]

based REST API as the backend. The annotation tool processes

document annotations and outputs annotated data in the format

required to train spaCy models. The third component consists of a

Python module which utilizes the spaCy pre-train feature for

language model pre-training. The fourth component is a Python

module built using spaCy which consumes the annotated data, the

spaCy models and the pre-trained vector to performs model

training, to produce custom NER models.

HSDM 2020, Feb, 2020, Houston, Texas USA A.Tarcar et al.

Figure 2: Architectural Overview of Experiment Setup

3.3. EXPERIMENTS

The spaCy library provides a variety of tools for fast text processing

and is developed as a modular pipeline. The library parses text to

create a custom spaCy data structure which is then passed through

orchestrated components of the pipeline for further processing. The

components of the pipeline are highly customizable for efficient

execution of NLP tasks such as text categorization, POS tagging ,

named entity recognition etc. Furthermore, these components can

be individually updated for adapting to specific implementations.

For implementation of our experiments we focused onto two

critical components of the spaCy pipeline namely the components

which are responsible for converting string tokens to vectors and

the named entity recognition component.

The NER component in spacy pipeline is a deep learning model

utilizing Convolutional Neural Network (CNN) and Long Short

Term Memory (LSTM) architectures. The implementation is based

on the transition-based framework described by Lample et al [21].

SpaCy provides wrapper APIs to interact with this NER model as

well as to improve it and add custom entities by leveraging

annotated data. The spaCy training API obtains error gradients and

updates the model weights using back-propagation. Using spaCy

train API [15], we can train the deep learning model for NER

component starting from a blank English language class model

which has no learned entities or leverage a model which already

contains a few trained entities. Leveraging the model which has

been trained for recognizing a few overlapping entities is often

beneficial in case of limited amount of training data as compared to

the blank model.

The second component which we experimented with was the

component in the pipeline which provides vectors for string tokens.

The token to vector layer of the pipeline (tok2vec) can be

customized to provide custom vectors. There are two prominent

techniques for obtaining word embeddings: the classic techniques

such as Word2vec[22] and Glove [23] which provides static

embeddings for each word, and the dynamic word embeddings

which are based on the context of the word in the sentence.

Dynamic word embeddings can be obtained from language models

such as ELMo [4] and BERT [5].

In order to obtain dynamic embeddings specific to the context of

the text which we need the NER model to run on we need to train a

separate machine learning model. The learning objective of training

task is to work with the non-annotated text corpus by internally

converting it into a supervised learning task by masking words from

sentences and then predicting this word. This training task is

implemented on raw text corpus containing a large number of

domain specific words. The embeddings are then obtained from this

trained model which can be leveraged as token vectors.

spaCy has implemented a deep learning implementation for

obtaining dynamic word embeddings using an approximate

language-modelling objective. The pretrain wrapper API [12]

internally executes the training of this deep learning model given a

large corpus of domain specific text data. The output of pretraining

API is a domain specific dynamic embedding model.

We designed three experiments using these two key components of

the spaCy NLP pipeline and trained multiple NER models using the

annotated training data to obtain optimal performance on test data

using the spaCy training module [15]. Our experimental set up

included working with spaCy version 2.1.4 [18] on an Anaconda

Distribution [16], Python 3.6.8 [17] environment running on a

machine with x86_64 GNU/Linux, Intel Core Processor

(Broadwell) with 16 GB RAM. The experiments can be split into

three main methods.

3.3.1. Method 1: Blank spaCy model

We trained a blank spaCy English language model (this model has

no trained entities) using annotated training data to recognize four

custom entities. We did not provide any custom token to vector

layer and set the API to use default execution of the spaCy NLP

pipeline.

We started with utilizing only 50% of the available training data

and trained 5 models (for 100 iterations with dropout rate=0.2)

while increasing the training data in increments of 10%. The

performance of the trained models was evaluated on the test data.

3.3.2. Method 2: scispaCy + Transfer Learning + Retraining

We observed that the pre-trained scispaCy model

(en_ner_bc5cdr_md) [8] was trained on BC5CDR [11]corpus for

recognizing two entities (Disease and Chemical) that overlap with

our custom four entities. The BC5CDR corpus consists of 1500

PubMed articles with 4409 annotated chemicals, 5818 diseases and

3116 chemical-disease interactions [20].

As the model was already trained on medical data, we used it as a

base model and applied transfer learning and retrained it using our

in-house annotated data. Similar to the blank models, we trained 5

models (for 100 iterations with dropout rate=0.2) while increasing

the training data from 50% to 100% of the available training data.

The performance of the trained models was evaluated on the

standard test data.

3.3.3. Method 3: scispaCy + Transfer Learning + Pre-training

In order to improve the performance of transfer learning models

further, we employed a newly released spaCy package feature, that

of pre-training. Pre-training allows us to initialize the neural

network layers of spaCy’s CNN layers with a custom vector layer.

This custom vector can be trained by utilizing a domain specific

text corpus using the spaCy library pre-training command [12].

The pre-training API spaCy has implemented a deep learning

implementation for obtaining dynamic word embeddings using a

Language Modelling with Approximate Outputs (LMAO)

described in spaCy Language model pretraining [25].

We leveraged spaCy pre-training API and trained our custom

dynamic embedding model over our domain specific text corpus.

We collated our domain specific text corpus (which was created by

utilizing text sentences from 2300 sample notes from Sample

Medical Transcripts [10] site and 100 FAQ section texts from EMA

[9] site).We provided scispaCy model (en_ner_bc5cdr_md) [8]

embedding vectors as a seed while training.

We monitored the loss over epoch while training and it was

observed that the loss gradually reduced to minimum around 95

epoch mark after which it plateaued. With our experimental set up

(CPU machine with x86_64 GNU/Linux, Intel Core Processor

(Broadwell), 16 GB RAM), 95 epochs of fine tuning were

completed in 8 hours.

Then we used this domain specific word embedding model for the

vectorization of tokens while performing transfer learning from

scispaCy model (en_ner_bc5cdr_md) [8] using our annotated data.

We trained five models (for 100 iterations with dropout rate=0.2)

similar to the models developed in earlier methods. With our

experimental set up (CPU machine with x86_64 GNU/Linux, Intel

Core Processor (Broadwell), 16 GB RAM), 100 iterations of

training required for each model were completed in 48 mins.

3.4. RESULTS

Table 2 captures the observed overall NER model performance on

test data for the conducted experiments.

Table 2. Performance of Trained Models on Test Data

Percentage

of Training

Data Used

Model Name Performance on Test Data

 Precision Recall F1-

Score

50 % Blank 0.607 0.539 0.571

Retrained

scispaCy

0.682 0.719 0.700

Retrained

scispaCy with

pre-training

0.711 0.759 0.734

60 % Blank 0.647 0.569 0.605

Retrained

scispaCy

0.714 0.728 0.721

Retrained

scispaCy with

pre-training

0.740 0.758 0.749

70% Blank 0.688 0.611 0.647

Retrained

scispaCy

0.744 0.752 0.748

Retrained

scispaCy with

pre-training

0.753 0.747 0.750

80% Blank 0.689 0.646 0.667

Retrained

scispaCy

0.755 0.741 0.748

Retrained

scispaCy with

pre-training

0.757 0.778 0.767

90% Blank 0.696 0.662 0.679

Retrained

scispaCy

0.747 0.743 0.745

Retrained

scispaCy with

pre-training

0.754 0.761 0.757

100% Blank 0.724 0.685 0.704

Retrained

scispaCy

0.755 0.743 0.749

Retrained

scispaCy with

pre-training

0.776 0.794 0.785

HSDM 2020, Feb, 2020, Houston, Texas USA A.Tarcar et al.

Figure 3: F1 Scores on Test Data While Increasing Training

Data

For each trained model overall NER evaluation metrics were

recorded which includes Precision, Recall and F1 Score [19].

Figure 3 presents bar chart representation of the observed overall

F1 scores as mentioned in Table 2, across the three methods named

as Blank , Retrained scispaCy and Retrained scispaCy with pre-

training while progressively increasing training data.

As observed in Figure 3, there is generally a steady increase in F1

score with an increase in available training data. The gain between

blank model and scispaCy derived models is prominent along with

a steady gain visible between the two scispaCy derived models.

Table 3 presents the entity-wise F1 scores [19] of the models

trained using 100% training data using the three methods. As

observed in Table 3, the F1 scores of the model derived from

scispaCy with pre-training are consistently higher than the other

models across the entities.

Table 3. Entity-wise F1 Scores of Trained Models on Test Data

with 100% Training Data

Label Blank Retrained

scispaCy

Retrained

scispaCy with

Pre-training

CHEMICAL 0.790 0.842 0.860

DISEASE 0.690 0.785 0.809

SYMPTOM 0.637 0.719 0.723

DOSAGE 0.815 0.838 0.878

4. DISCUSSION

As observed in the results, with progressive increase in availability

of training data, the performance of the models on test data steadily

increases. A clear gain is observed between the blank model and

the model based on scispaCy pre-trained model. This gain can be

attributed to the overlap of entities between the custom model and

the scispaCy model. Furthermore, performance gains are observed

when using a pre-training vector customized to the domain

vocabulary used in the medical reports.

A key observation of the results presented is that the F1 score of

the scispaCy + pre-trained model trained with just 50% of available

training data (0.734, as observed in Table 2 in Section 3.4)

outperforms the F1 score of the blank spaCy model trained with

100% of the available training data (0.704, as observed in Table 2

in Section3.4)

The final performance of custom NER model was evaluated on the

test data set. The overall F1 score of our recommended NER model

which was derived from scispaCy (en_ner_bc5cdr_md) [8] using

Method 3 with custom pre-trained vector was 0.785 as observed in

Table 2 in Section 3.4.

5. CONCLUSION

Our experiments present empirical results which corroborate the

hypothesis that transfer learning delivers clear benefits while

working with even a limited amount of training data. A key

observation of the results presented is that the F1 score of a model

trained with our approach with just 50% of available training data

(0.734) outperforms the F1 score of the blank spaCy model (0.704)

trained with 100% of the available training data. Clearly,

leveraging pre-trained models with partial overlap with the entities

provides significant benefits.

In future work, we plan to increase the number of entities and

experiment with how the number of entities affect performance of

the trained models. We also plan to release our pre-trained model

with pharmacology domain entities that can be used for multiple

applications.

Our approach to the problem using a custom annotation tool and

pre-training techniques can be utilized and extended to multiple

NLP problems, such as Machine Comprehension, FAQ-based

Question-Answering, Text Summarization etc. The techniques are

application domain-agnostic and can be applied to any industrial

vertical such as but not limited to: Banking, Insurance, Pharma,

Healthcare etc., where domain expertise is required.

0

0.2

0.4

0.6

0.8

1

50% 60% 70% 80% 90% 100%

Blank
Retrained scispaCy
Retrained scispaCy with Pre-training

REFERENCES

[1] Named Entity Recognition:

https://en.wikipedia.org/wiki/Named-entity_recognition.

Accessed on 08/19

[2] Electronic Health Records:

https://en.wikipedia.org/wiki/Electronic_health_record

[3] Sebastian Ruder; NLP ImageNet Moment: http://ruder.io/nlp-

imagenet/ Accessed on 08/19

[4] Matthew Peters et al. 2018. Deep contextualized word

representations. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for

Computational Linguistic

 [5] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding . In Proceedings of

the 2019 Annual Conference of the North American Chapter

of the Association for Computational Linguistics, NAACL-

HLT ’19.

[6] Doccano: Open Source text annotation for machine learning

practitioner : https://github.com/chakki-works/doccano ;

Accessed on 08/19

[7] spaCy https://spacy.io Accessed on 08/19

[8] Mark Neumann et al. 2019. Scispacy: Fast and robust models

for biomedical natural language processing. In Proceedings of

the 18th BioNLP Workshop and Shared Task, BioNLP@ACL

2019 . scispaCy (en_ner_bc5cdr_md) version 0.2.0

 [9] EMA - https://clinicaldata.ema.europa.eu/web/cdp/home

Accessed on 08/19

[10]Medical Transcripts Samples -

http://www.medicaltranscriptionsamples.com/ Accessed on

08/19

[11]BC5CDR Corpus

http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/

Accessed on 08/19

[12]Matthew Hannibal; Language Model Pre-training in spaCy.

https://spacy.io/usage/v2-1#pretraining Accessed on 08/19

[13]Jing Li, Aixin Sun, Jianglei Han, Chenliang Li 2018 A Survey

on Deep Learning for Named Entity Recognition ,CoRR

,abs/1812.09449

[14]Flask , The Python micro framework for building web

applications https://palletsprojects.com/p/flask/ Accessed on

08/19

[15] Training spaCy’s Statistical Models

https://spacy.io/usage/training Accessed on 08/19

[16]Anaconda Distribution

https://www.anaconda.com/distribution/ Accessed on 08/19

[17] Anaconda Python 3.6.8

https://anaconda.org/anaconda/python/files?version=3.6.8

Accessed on 08/19

[18]SpaCy version 2.1.4 https://pypi.org/project/spacy/ Accessed

on 08/19

[19]Machine learning performance evaluation F1 score

https://en.wikipedia.org/wiki/F1_score , Accessed on 08/19

[20]National Center for Biotechnology Information

https://www.ncbi.nlm.nih.gov/research/bionlp/Data/ ,

Accessed on 08/19

[21] Guillaume Lample, Miguel Ballesteros, Sandeep

Subramanian, Kazuya Kawakami, Chris Dyeret 2016. Neural

architectures for named entity recognition. In HLT-NAACL.

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado,

Jeff Dean 2013. Distributed Representations of Words and

Phrases and their Compositionality In Advances in Neural

Information Processing Systems 26

[23] Jeffrey Pennington, Richard Socher, Christopher Manning

2014 Glove: Global Vectors for Word Representation in

Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP)

[24] Liunian Harold Li, Patrick H. Chen, Cho-Jui Hsie, Kai-Wei

Chang 2019. Efficient Contextual Representation Learning

Without Softmax Layer

[25] Matthew Honnibal and Ines Montani in Language model

pretraining Accessed on 08/19

[26] Carsten Eickhoff ,Yubin Kim and Ryen White in Overview

of the Health Search and Data Mining (HSDM 2020)

Workshop. In Proceedings of the Thirteenth ACM

International Conference on Web Search and Data Mining,

WSDM 2020.

https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Electronic_health_record
http://ruder.io/nlp-imagenet/
http://ruder.io/nlp-imagenet/
https://www.aclweb.org/anthology/volumes/N18-1/
https://www.aclweb.org/anthology/volumes/N18-1/
https://www.aclweb.org/anthology/events/naacl-2019/
https://www.aclweb.org/anthology/events/naacl-2019/
https://github.com/chakki-works/doccano
https://spacy.io/
https://dblp.org/rec/bib/conf/bionlp/ZhaiNATDCGV19
https://dblp.org/rec/bib/conf/bionlp/ZhaiNATDCGV19
https://clinicaldata.ema.europa.eu/web/cdp/home
http://www.medicaltranscriptionsamples.com/
http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
https://spacy.io/usage/v2-1#pretraining
https://arxiv.org/abs/1812.09449
https://arxiv.org/abs/1812.09449
https://palletsprojects.com/p/flask/
https://spacy.io/usage/training
https://www.anaconda.com/distribution/
https://anaconda.org/anaconda/python/files?version=3.6.8
https://pypi.org/project/spacy/
https://en.wikipedia.org/wiki/F1_score
https://www.ncbi.nlm.nih.gov/research/bionlp/Data/
https://www.aclweb.org/anthology/N16-1030/
https://www.aclweb.org/anthology/N16-1030/
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://www.aclweb.org/anthology/D14-1162/
https://arxiv.org/pdf/1902.11269.pdf
https://arxiv.org/pdf/1902.11269.pdf
https://explosion.ai/blog/spacy-v2-1
https://explosion.ai/blog/spacy-v2-1
https://doi.org/10.1145/3336191.3371879
https://doi.org/10.1145/3336191.3371879
https://doi.org/10.1145/3336191.3371879

