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ABSTRACT 

 

In this paper, we present our approach to extracting structured 

information from unstructured Electronic Health Records (EHR) 

[2] which can be used to, for example,  study adverse drug reactions 

in patients due to chemicals in their products. Our solution uses a 

combination of Natural Language Processing (NLP) techniques 

and a web-based annotation tool to optimize the performance of a 

custom Named Entity Recognition (NER) [1] model trained on a 

limited amount of EHR training data. This work was presented at 

the first Health Search and Data Mining Workshop (HSDM 2020) 

[26]. 

 

We showcase a combination of tools and techniques leveraging the 

recent advancements in NLP aimed at targeting domain shifts by 

applying transfer learning and language model pre-training 

techniques [3]. We present a comparison of our technique to the 

current popular approaches and show the effective increase in 

performance of the NER model and the reduction in time to 

annotate data.A key observation of the results presented is that the 

F1 score of model (0.734) trained with our approach with just 50% 

of available training data outperforms the F1 score of the blank 

spaCy model without language model component (0.704)  trained 

with 100% of the available training data. 

 

We also demonstrate an annotation tool to minimize domain expert 

time and the manual effort required to generate such a training 

dataset. Further, we plan to release the annotated dataset as well as 

the pre-trained model to the community to further research in 

medical health records. 
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1. INTRODUCTION 

 

Extracting structured information from unstructured text such as 

EHRs and medical literature has always been a challenging task. 

Recent advancements in machine learning take advantage of the 

large text corpora available in scientific literature as well as medical 

and pharmaceutical web sites and train systems which can be 

leveraged for several NLP tasks ranging from text mining to 

question answering. Along with progress in the research space, 

there has been significant progress in the libraries and tools 

available for industry use.  

 

The specific problem we focused on was extracting adverse drug 

reactions from EHRs using NER. The solution required us to 

extract key entities such as prescribed drugs with dosage and the 

symptoms and diseases mentioned in the EHRs. The extracted 

entities would be processed further downstream to link the entities 

and leverage dictionary-based techniques for flagging any 

symptoms which could potentially be adverse drug reactions of the 

prescribed medicines.  

 

A crucial component in our devised solution employed a custom 

NER model for extracting key entities from EHRs. The state-of-

the-art Named Entity Recognition models built using deep learning 

techniques [13] extract entities from text sentences by not only 

identifying the keywords or linguistic shape of entities, but also by 

leveraging the context of the entity in the sentence. Furthermore, 

with language model pre-trained embeddings, the NER models 

leverage the proximity of other words which appear along with the 

entity in domain specific literature.  
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One of the key challenges in training NLP based models is the 

availability of reasonable-sized, high-quality annotated datasets. 

Further, in a typical industrial setting, the relative difficulty in 

garnering significant domain expert time, and the lack of tools and 

techniques for effective annotation along with the ability to review 

such annotations to minimize human errors , affects research and 

benchmarking new learning techniques and algorithms. 

 

Additionally, models like NER often need significant amount of 

data to generalize well to a vocabulary and language domain. Such 

vast amounts of training data are often unavailable or difficult to 

manufacture or synthesize.To bridge the gap between academic 

developments and industrial requirements, we designed a series of 

experiments employing transfer learning from pre-trained models 

while working with a comparatively smaller dataset. 

 

Transfer learning techniques [3] are largely successful in the image 

domain and are advancing steadily in natural language domain with 

the availability of pre-trained language embeddings and pre-trained 

models. 

 

In this paper we present findings of our experiments to solve the 

industrial problem of training NER models with limited data using 

spaCy [7] , a state-of-the-art industrial strength natural language 

processing package, along with the latest techniques in transfer 

learning.  

 

The paper is organized as follows. Section 2 describes the 

motivation for our experiments followed by Section 3 discusses the 

problem and our solution, both in algorithmic and implementation 

terms, and evaluates the results produced by our solution. Section 

4 discusses the results and Section 5 concludes and suggests 

directions for future work. 

2. MOTIVATION  

Recent advancements in NLP also known as the ImageNet moment 

in NLP [3], have shown significant improvements in many NLP 

tasks using transfer learning. Language models like ELMo [4] and 

BERT [5] have shown the effect of language model pre-training on 

downstream NLP tasks. Language models are capable of adjusting 

to changes in the textual domain with a process of fine-tuning. Also, 

in this self-supervised learning scenario, there is an implicit 

annotation in sentences, i.e.  predicts the next token (word) given a 

sequence of tokens appearing earlier in the sequence. Given all this, 

we can adjust to a new domain-specific vocabulary with very little 

training time and almost no supervision. 

 

NER aimed at detecting and identifying entity classes in text can 

help in extracting structured information and assisting upstream 

user experiences. The applicability of NER models are widespread, 

ranging from identifying dates and cities in chatbots to open 

domain question answering. 

 

Using task-specific annotation tools can minimize the time to 

generate high-quality annotated datasets for training models. The 

traditional process of annotating data is slow, but fundamental to 

most NLP models. It often acts as a hindrance in evaluating and 

benchmarking multiple models, as well as in parameter tuning of 

models. Many tools such as Doccano [6] exist in the open-source 

community that help in solving this problem. We developed an in-

house tool which we could customize for speeding up the 

annotation process. 

3. USE CASE DETAILS 

 

Studying adverse reactions due to chemicals in a drug on the patient 

is central to drug development in healthcare. Pharmacovigilance 

(PV) [21] as described by WHO, is defined as “the science and 

activities relating to the detection, assessment, understanding and 

prevention of adverse effects or any other drug-related problem.” 

Pharmaceutical companies often want to understand the conditions 

and pre-conditions under which a drug might have an adverse 

reaction on a patient. This would help in research and studies of the 

drugs and also reduce or prevent risks of any harm to the patient. 

 

Co-occurrence of disease and chemicals in an EHR of a patient is 

useful in studies and research for most pharmaceutical companies. 

However, EHRs are unstructured data and additional processing is 

required to extract structured information such as named entities of 

interest. Such extraction can lead to significant savings of manual 

labor and minimizing the time taken to get a new drug to market. 

 

We developed custom healthcare NER models to extract phrases 

related to (pharmaceutical) chemicals with dosage, diseases and 

symptoms from EHRs. As the entities were specific to the domain 

text, an in-house annotated dataset was created using our custom-

built annotation tool. A number of experiments were designed and 

executed for training custom NER models on annotated data from 

base models (spaCy[7] and scispaCy[8]) using transfer learning. 

Section 3.1 describes the dataset preparation followed by Section 

3.2 which presents an architecture overview. Section 3.3 presents 

experiment details and Section 3.4 describes the results obtained. 

 

3.1. DATASET PREPARATION 

We created a domain-specific corpus by collating publicly 

available sample medical notes and drug public assessment reports 

from European Medical Agency (EMA )[9] and Sample Medical 

Transcripts [10]. 

• A custom annotated dataset was created in-house 

specifically for the four entities: Chemical, Disease, 

Symptom and Dosage. 

• A text corpus containing domain specific vocabulary was 

created by utilising text from 2300 sample notes from the 

Medical Transcripts Samples site and 100 FAQ sections 

from the EMA site.  

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 1:In-house Annotation Tool  

For annotating data, a custom-built web browser-based tool was 

used. Figure 1 displays a screen shot of the annotation tool. As seen 

in the figure, the tool works with text files and the user provides 

annotations using mouse and keyboard inputs. After marking the 

required span of text using the mouse, the user can use keyboard 

keys to annotate the selected span. For example , the ‘S’ key on the 

keyboard represents the Symptom entity. On providing inputs, the 

tool highlights the span with a specific color for each entity, and 

also adds an entity name on the screen with a cross mark to make 

corrections. The tool also has a recheck functionality to enable the 

reviewer to reexamine annotations.   

 

After initial annotations ( Around 100 occurrences of each entity), 

we utilized  the annotated data to train the spaCy [7] NER model 

and leveraged it to identify named entities in new text files to 

accelerate the annotation process.  

 

The annotated dataset was randomized and split into 80% for 

training and 20% for testing. As the training data for spacy follows 

a pattern of sentence and entity tuples there is no overlap between 

sentences split into training and test dataset. The training data was 

further split into smaller sets ranging from 50% to 100% of the data, 

in 10% increments. Table 1 presents the statistics of the annotated 

data. It tabulates the counts of annotated sentences as well entity 

wise counts.  

 

Table 1. Dataset Description 

Dataset 
Total 

Sentences 

Entity Counts 

Chemical Disease Symptom Dosage 

All 

Annotated 

Data 

4212 1194 929 

 

1922 

 

290 

Train Data 2948 908 638 1351 207 

Test Data 1264 286 291 571 83 

 

3.2. ARCHITECTURE OVERVIEW 

Figure 2  presents our solution architecture which includes four key 

components. The first component comprises of Python scripts to 

fetch and collate medical notes text from the Sample Medical  

 

Transcripts [10] site. The second component is the in-house 

Annotation tool which is used by domain experts to annotate notes. 

The annotation tool is a web application with a Python Flask- [14] 

based REST API as the backend. The annotation tool processes 

document annotations and outputs annotated data in the format 

required to train spaCy models. The third component consists of a 

Python module which utilizes the spaCy pre-train feature for 

language model pre-training. The fourth component is a Python 

module built using spaCy which consumes the annotated data, the 

spaCy models and the pre-trained vector to performs model 

training, to produce custom NER models.  
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Figure 2: Architectural Overview of Experiment Setup 

 

3.3. EXPERIMENTS  

 

The spaCy library provides a variety of tools for fast text processing 

and is developed as a modular pipeline. The library parses text to 

create a custom spaCy data structure which is then passed through 

orchestrated components of the pipeline for further processing. The 

components of the pipeline are highly customizable for efficient 

execution of NLP tasks such as text categorization, POS tagging , 

named entity recognition etc. Furthermore, these components can 

be individually updated for adapting to specific implementations.  

 

For implementation of our experiments we focused onto two 

critical components of the spaCy pipeline namely the components 

which are responsible for converting string tokens to vectors and 

the named entity recognition component. 

 

The NER component in spacy pipeline is a deep learning model 

utilizing Convolutional  Neural Network (CNN) and Long Short 

Term Memory (LSTM) architectures. The implementation is based 

on the transition-based framework described by Lample et al [21].  

 

SpaCy provides wrapper APIs to interact with this NER model as 

well as to improve it and add custom entities by leveraging  

annotated data. The spaCy training API obtains error  gradients and 

updates the model weights using back-propagation. Using spaCy 

train API [15],  we can train the deep learning model for NER 

component starting from a blank English language class model 

which has no learned entities or leverage a model which already 

contains a few trained entities. Leveraging the model which has 

been trained for recognizing a few overlapping entities is often 

beneficial in case of limited amount of training data as compared to 

the blank model.  

 

The second component which we experimented with was the 

component in the pipeline which provides vectors for string tokens.  

 

The token to vector layer of the pipeline  (tok2vec) can be 

customized to provide custom vectors. There are two prominent 

techniques for obtaining word embeddings: the classic techniques 

such as Word2vec[22] and Glove [23] which provides static 

embeddings for each word, and the dynamic word embeddings 

which are based on the context of the word in the sentence. 

Dynamic word embeddings can be obtained from language models 

such as ELMo [4] and BERT [5].  

 

In order to obtain dynamic embeddings specific to the context of 

the text which we need the NER model to run on we need to train a  

separate machine learning model. The learning objective of training 

task is to work with the non-annotated text corpus by internally 

converting it into a supervised learning task by masking words from 

sentences and then predicting this word. This training task is 

implemented on raw text corpus containing a large number of 

domain specific words. The embeddings are then obtained from this 

trained model which can be leveraged as token vectors.  

 

spaCy has implemented a deep learning implementation for 

obtaining dynamic word embeddings using an approximate 

language-modelling objective. The pretrain wrapper API [12] 

internally executes the training of this deep learning model given a 

large corpus of domain specific text data. The output of pretraining 

API is a domain specific dynamic embedding model. 

 

We designed three experiments using these two key components of 

the spaCy NLP pipeline and trained multiple NER models using the 

annotated training data to obtain optimal performance on test data 

using the spaCy training module [15]. Our experimental set up 

included working with spaCy version 2.1.4 [18] on an Anaconda 

Distribution [16], Python 3.6.8 [17] environment running on a 

machine with x86_64 GNU/Linux, Intel Core Processor 

(Broadwell) with 16 GB RAM. The experiments can be split into 

three main methods.  

 



  

 

 

3.3.1. Method 1: Blank spaCy model 

We trained a blank spaCy English language model (this model has 

no trained entities) using annotated training data to recognize four 

custom entities. We did not provide any custom token to vector 

layer and set the API to use default execution of the spaCy NLP 

pipeline. 

We started with utilizing only 50% of the available training data 

and trained 5 models (for 100 iterations with dropout rate=0.2) 

while increasing the training data in increments of 10%. The 

performance of the trained models was evaluated on the test data.  

3.3.2. Method 2: scispaCy + Transfer Learning + Retraining 

We observed that the pre-trained scispaCy model 

(en_ner_bc5cdr_md) [8] was trained on BC5CDR [11]corpus for 

recognizing two entities (Disease and Chemical) that overlap with 

our custom four entities. The BC5CDR corpus consists of 1500 

PubMed articles with 4409 annotated chemicals, 5818 diseases and 

3116 chemical-disease interactions [20].  

 

As the model was already trained on medical data, we used it as a 

base model and applied transfer learning and retrained it using our 

in-house annotated data. Similar to the blank models, we trained 5 

models (for 100 iterations with dropout rate=0.2) while increasing 

the training data from 50% to 100% of the available training data. 

The performance of the trained models was evaluated on the 

standard test data.  

 

3.3.3. Method 3: scispaCy + Transfer Learning + Pre-training 

In order to improve the performance of transfer learning models 

further, we employed a newly released spaCy package feature, that 

of pre-training. Pre-training allows us to initialize the neural 

network layers of spaCy’s CNN layers with a custom vector layer. 

This custom vector can be trained by utilizing a domain specific 

text corpus using the spaCy library pre-training command [12]. 

The pre-training API spaCy has implemented a deep learning 

implementation for obtaining dynamic word embeddings using a 

Language Modelling with Approximate Outputs (LMAO) 

described in spaCy Language model pretraining [25]. 

 

We leveraged spaCy pre-training API and trained our custom 

dynamic embedding model over our domain specific text corpus. 

We collated our domain specific text corpus (which was created by 

utilizing text sentences from 2300 sample notes from Sample 

Medical Transcripts [10] site and 100 FAQ section texts from EMA 

[9] site).We provided scispaCy model (en_ner_bc5cdr_md) [8] 

embedding vectors as a seed while training.  

We monitored the loss over epoch while training and it was 

observed that the loss gradually reduced to minimum around 95 

epoch mark after which it plateaued. With our experimental set up 

(CPU machine with x86_64 GNU/Linux, Intel Core Processor 

(Broadwell), 16 GB RAM),  95 epochs of fine tuning were 

completed in 8 hours. 

 

Then we used this domain specific word embedding model for the 

vectorization of tokens while performing transfer learning from 

scispaCy model (en_ner_bc5cdr_md) [8] using our annotated data. 

We trained five models (for 100 iterations with dropout rate=0.2) 

similar to the models developed in earlier methods. With our 

experimental set up (CPU machine with x86_64 GNU/Linux, Intel 

Core Processor (Broadwell), 16 GB RAM), 100 iterations of 

training required for each model were completed in 48 mins. 

3.4. RESULTS 

Table 2 captures the observed overall NER model performance on 

test data for the conducted experiments.  

 

Table 2. Performance of Trained Models on Test Data  

Percentage 

of Training 

Data Used 

Model Name Performance on Test Data 

  Precision Recall F1-

Score 

50 %  Blank  0.607 0.539 0.571 

Retrained 

scispaCy 

0.682 0.719 0.700 

Retrained 

scispaCy with 

pre-training 

0.711 0.759 0.734 

60 %  Blank 0.647 0.569 0.605 

Retrained 

scispaCy 

0.714 0.728 0.721 

Retrained 

scispaCy with 

pre-training 

0.740 0.758 0.749 

70% Blank 0.688 0.611 0.647 

Retrained 

scispaCy 

0.744 0.752 0.748 

Retrained 

scispaCy with 

pre-training 

0.753 0.747 0.750 

80% Blank 0.689 0.646 0.667 

Retrained 

scispaCy 

0.755 0.741 0.748 

Retrained 

scispaCy with 

pre-training 

0.757 0.778 0.767 

90%  Blank 0.696 0.662 0.679 

Retrained 

scispaCy 

0.747 0.743 0.745 

Retrained 

scispaCy with 

pre-training 

0.754 0.761 0.757 

100%  Blank 0.724 0.685 0.704 

Retrained 

scispaCy 

0.755 0.743 0.749 

Retrained 

scispaCy with 

pre-training 

0.776 0.794 0.785 
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Figure 3: F1 Scores on Test Data While Increasing Training 

Data 

 

For each trained model overall NER evaluation metrics were 

recorded which includes Precision, Recall and F1 Score [19]. 

Figure 3 presents bar chart representation of the observed overall 

F1 scores as mentioned in Table 2,  across the three methods named 

as Blank , Retrained scispaCy and Retrained scispaCy with pre-

training while progressively increasing training data. 

 

As observed in Figure 3, there is generally a steady increase in F1 

score with an increase in available training data. The gain between 

blank model and scispaCy derived models is prominent along with 

a steady gain visible between the two scispaCy derived models. 

 

Table 3 presents the entity-wise F1 scores [19] of the models 

trained using 100% training data using the three methods. As 

observed in Table 3, the F1 scores of the model derived from 

scispaCy with pre-training are consistently higher than the other 

models across the entities.  

 

Table 3. Entity-wise F1 Scores of Trained Models on Test Data 

with 100% Training Data 

 

Label Blank Retrained 

scispaCy 

Retrained 

scispaCy with 

Pre-training 

CHEMICAL 0.790 0.842 0.860 

DISEASE 0.690 0.785 0.809 

SYMPTOM 0.637 0.719 0.723 

DOSAGE 0.815 0.838 0.878 

 

 

 

4. DISCUSSION 

As observed in the results, with progressive increase in availability 

of training data, the performance of the models on test data steadily 

increases. A clear gain is observed between the blank model and 

the model based on scispaCy pre-trained model. This gain can be 

attributed to the overlap of entities between the custom model and 

the scispaCy model. Furthermore, performance gains are observed 

when using a pre-training vector customized to the domain 

vocabulary used in the medical reports.  

 

A key observation of the results presented is that the F1 score of 

the scispaCy +  pre-trained model trained with just 50% of available 

training data (0.734, as observed in Table 2 in Section 3.4) 

outperforms the F1 score of the blank spaCy model trained with 

100% of the available training data (0.704, as observed in Table 2 

in Section3.4) 

 

The final performance of custom NER model was evaluated on the 

test data set. The overall F1 score of our recommended NER model 

which was derived from scispaCy (en_ner_bc5cdr_md) [8]  using 

Method 3 with custom pre-trained vector was 0.785 as observed in 

Table 2 in Section 3.4.  

 

5. CONCLUSION   

 

Our experiments present empirical results which corroborate the 

hypothesis that transfer learning delivers clear benefits while 

working with even a limited amount of training data. A key 

observation of the results presented is that the F1 score of a model 

trained with our approach with just 50% of available training data 

(0.734) outperforms the F1 score of the blank spaCy model (0.704)  

trained with 100% of the available training data. Clearly, 

leveraging pre-trained models with partial overlap with the entities 

provides significant benefits. 

 

In future work, we plan to increase the number of entities and 

experiment with how the number of entities affect performance of 

the trained models. We also plan to release our pre-trained model 

with pharmacology domain entities that can be used for multiple 

applications. 

 

Our approach to the problem using a custom annotation tool and 

pre-training techniques can be utilized and extended to multiple 

NLP problems, such as Machine Comprehension, FAQ-based 

Question-Answering, Text Summarization etc. The techniques are 

application domain-agnostic and can be applied to any industrial 

vertical such as but not limited to: Banking, Insurance, Pharma, 

Healthcare etc., where domain expertise is required. 
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