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Abstract

AI enabled cyber-physical systems such as artificial pancreas
suffer from the ”no oracle problem”. The system is subjected
to inputs and scenarios which are not observed during training
time and hence the expected outputs are not known. Hence,
popular model-based verification techniques that characterize
behavior of a control system before deployment using pre-
dictive models may be inaccurate and may result in incor-
rect safety analysis results. In this research, we propose an
operational safety verification technique through hybrid sys-
tem mining from input/output traces of deployed AI-enabled
cyber-physical systems. The hybrid automaton model enables
formal verification of safety despite the ”no oracle problem”.
We apply our technique to the artificial pancreas control sys-
tem utilizing data from an outpatient study on an artificial
pancreas system. We demonstrate that our technique success-
fully infers accurate hybrid automata representation of these
systems in the field and can be used to perform safety analy-
sis to ascertain safety of the system in presence of inputs and
scenarios for which the expected output of the system is un-
known. We identify an evaluation scenario under which there
exists a clear safety violation.

1 Introduction

The increasing use of artificial intelligence (AI) and ma-
chine learning (ML) in safety-critical cyber-physical sys-
tems (CPS) and their recent cases of fatal failures have re-
newed the discussion on the certification problem and has
brought with it a pressing need for developing rigorous
safety verification techniques. However, operational compo-
nents interaction circumstances, inclusion of human-in-the-
loop, and environmental changes in AI-enabled CPS make
formal safety verification a very challenging task. Tradi-
tional approaches of safety verification involve testing and
simulation and are no longer sufficient to assess safety in
the case of AI-enabled CPS, wherein exhaustive safety ver-
ification is necessary. In contrast, formal methods such as
model checking were developed to overcome the limitations
of traditional safety verification techniques. However, these
methods may fall short for AI-Enabled CPS, where com-
plete formal verification models are often unavailable. As
a result, the AI-enabled CPS operation in the real world
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tends to diverge from the safety assured design of the sys-
tem. AI-enabled CPSs such as artificial pancreas (AP) or au-
tonomous cars are using machine learning to make several
critical decisions. As an example, let us consider the glu-
cose predictive system of the Medtronic 670G AP (closed
loop blood glucose control system). The system uses the
predictive model to predict low blood glucose levels. If the
blood glucose level is predicted to be low in the future, the
infusion pump shuts off. The purpose is to avoid impend-
ing hypoglycemia which can be a fatal consequence. How-
ever, if the prediction is wrong, it can lead to hyperglycemia,
which has long term negative consequences on the body. The
model prediction is dependent on the physiological param-
eters of the human user such as insulin sensitivity. These
parameters are dependent on the human behavior such as
physical activity, meal patterns, and mental states. Such pa-
rameter variations cannot be replicated while designing the
control systems. In this paper, we propose a novel approach
presented in Figure 1 to solve the given problem of model-
based safety verification of AI enabled cyber-physical con-
trol systems with limited oracle. Our approach initially con-
siders a hybrid system representation of the control system
that describes the expected operation for which the system
was tested, validated, and verified using controlled experi-
mental studies. We then describe a methodology to mine a
hybrid system representation of the AI-enabled control sys-
tem from input/output (I/O) timeseries data. If the mined hy-
brid system is same as the initial hybrid model defined in the
documentation provided by the manufacturer, then there is
no change in the safety conclusion. However, if the mined
hybrid system differs from the initially expressed one (w.r.t
to the number of modes, flow dynamics, modes transitions,
guard conditions, or reset conditions), then there might be a
significant change in the safety conclusions. In such cases,
we consider the reachability analysis of the newly mined hy-
brid system to evaluate the safety of the control system (Alur
et al. 1995). If the newly mined hybrid system is unsafe, then
potentially a root cause analysis algorithm can be invoked.
We do not discuss this in our paper, but is surely a future
endeavor. In addition, safety critical CPS should meet gov-
ernment regulatory requirements before marketing. Due to
production pressure and conflicting goals and tradeoffs, or-
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Figure 1: Overall scheme of the proposed safety verification technique.

ganizations tend to migrate to a state of heightened risk by
relaxing safeguards and controls (Leveson 2011). For exam-
ple, the Volkswagen’s defeat device that allowed vehicles
to improperly meet US standards during regulatory testing
(Contag et al. 2017). This dissonance between ”what the
system is designed to do”, ”what the operator thinks the
system is doing”, and ”what the system is actually doing”
is an important problem (McDermid, Jia, and Habli 2019).
It was reported in the final report No. KNKT.18.10.35.04 to
be one of the compounding factors leading to Boeing Max
8 fatal crashes 1. This problem becomes even more impor-
tant and highly challenging for Industry 4.0 systems with
AI-enabled or self-adaptive components, where the system
is flexible, fully autonomous, and adapts its model as it en-
counters new situations. This motivates a need for rigorous
operational safety verification techniques to help monitor
and maintain the system safe operation in the real world.
This paper addresses this issue by combining information
theory, formal methods, and ML to obtain a proactive oper-
ational safety verification technique that detects intentional
or unintentional deviations from the safety assured design of
the AI-enabled CPS once deployed to the field. The paper is
organized as follows: Section 2 discusses competing works
towards solving the discussed problem, Section 3 discusses
definitions and preliminaries related to AI-enabled system
model, Section 4 provides details about the proposed tech-
nique, Section 5 evaluates the effectiveness of the proposed
technique for extracting hybrid automata, and finally Section
6 to conclude the paper.

1https://www.flightradar24.com/blog/wp-
content/uploads/2019/10/JT610-PK-LQP-Final-Report.pdf

2 Related Work

2.1 Engineering Safety-Critical Systems

Verifying the safety and correct operation of AI-enabled
CPS relies on verifying the correct interaction between
the software and the physical environment (Leveson 2011).
Leveson uses system-theoretic processes to identify safety
constraints which help in designing or re-designing safer
systems. These techniques are usually applied in the de-
sign phase of complex safety-critical systems. They may
also be used in accidents root-cause analysis. Formal de-
sign and verification of safety-critical CPS with artificial in-
telligence (AI) and machine learning (ML) components is
becoming an important topic in the field of AI/ML-based
systems (Dreossi et al. 2019; Zhu et al. 2019). Dreossi et
al. propose a toolkit VERIFAI that focuses on simulation-
based safety analysis of AI-based systems where a simulat-
able abstract model of the system is used. In this work, we
want to ascertain that the safety verification results learned
using traces collected from real-world operation of the AI-
enabled CPS are consistent with formal or simulated safety
verification results. On the other hand, reachability analysis
is a formal safety verification technique that has been ex-
tensively studied in the literature for time-invariant systems
(Alur et al. 1995; Frehse et al. 2011; Fan et al. 2016). It
determines the set of states that the system may visit when
starting from a bounded set of initial conditions. If no un-
safe state is reachable, the system can be deemed to be safe.
In this work, we propose a safety verification scheme that
aims at identifying deviations of safety verified AI-enabled
CPS in the field (during the operational phase) in a proactive
manner. The proposed scheme is based on hybrid automaton



mining using real-time data collected from the operation of
an AI-enabled CPS in the field. We apply reachability anal-
ysis over a learned hybrid automaton to verify the safety of
the operational AI-enabled CPS.

2.2 Mining Hybrid Automata

Several previous work have proposed algorithms and
frameworks for learning hybrid automata. Minopoli and
Frehse present a tool for translating a simulink model to a
hybrid automaton (Minopoli and Frehse 2016). Lyde and
Might propose an approach for analyzing control code using
abstract interpretation and inferring a hybrid automaton
from an abstract state transition system (Lyde and Might
2013). However, our work differs in that we learn hybrid
automata models automatically using system operational
I/O traces.
Mining HA from I/O traces: Medhat et al. proposed a
framework for mining mealy automata from black-box
systems using only execution traces. This framework is
limited to systems that exhibit input changes in the form
of step functions and these changes are assumed to have
an instantaneous effect in the output trace, which is not
often observed in practice (Medhat et al. 2015). In addition,
the authors only consider guard conditions as time-based
transitions and thus guards on output values cannot be mod-
elled using their proposed framework. Balakrishnan et.al
presented an algorithm to determine a maximum-likelihood
hybrid system model using only continuous output of the
system (Balakrishnan et al. 2004), but this work assumes
that guard conditions are independent of the continuous
state which limits the class of hybrid automata that can
be learned using the proposed technique. Blackmore et. al
extended this work by including autonomous mode tran-
sitions which are conditioned on the continuous state, but
their approach assumes that the guard conditions are given
(Blackmore et al. 2007). Our proposed hybrid automata
mining technique derives the guard conditions through
clustering of the continuous states. Ly and Lipson presented
an approach that uses clustered symbolic regressions and
a machine learning algorithm to infer non-linear symbolic
expressions that model the behavior of a dynamical system
from unlabeled time-series data (Ly and Lipson 2012).
The authors also propose a transition modeling algorithm
that searches for non-linear symbolic inequalities to model
guard conditions. Unlike our proposed technique, their
work assumes that the guard condition is strictly related to
a change in the inputs of the system and that the system
can not have two distinct modes with similar behavior.
Moreover, the behavior of the system is defined as a strict
I/O relationship, as opposed to our hybrid mining technique
where behaviors are represented by differential equations.
In addition, some of the related approaches require a priori
knowledge of number of discrete modes (Santana et al.
2015; Ly and Lipson 2012), as opposed to our technique.
Niggemann et. al share same motivation for the automated
leaning of hybrid system’s behavioral model and applica-
tion of the learned model to detect anomalies in the overall
system behavior (Niggemann et al. 2014; Niggemann and
Lohweg 2015). On the other hand, HyBUTLA (Niggemann

et al. 2012) infers hybrid timed probabilistic automata while
our technique relaxes this timing constraint which allows it
to infer hybrid automata models for a larger class of hybrid
systems. CHARDA is the closest work to ours and was
applied to learn hybrid behaviors of videogame characters
(Summerville, Osborn, and Mateas 2017). However, our
proposed technique and CHARDA differ in the fact that
CHARDA is limited to systems where the derivatives of
the continuous state variables are constant, which is often
not observed in practice. In this work, we adapt the hybrid
automata mining technique HyMn (Lamrani, Banerjee, and
Gupta 2018) with a new flow extraction technique where
multi-variable non linear polynomial regression analysis
are employed to derive non-linear dynamics evolution. In
addition, we updated the change-point detection technique
used in HyMn algorithm by the RuLSIF technique discussed
in Section 4.1. The output of this re-classification are unique
modes of the AI enabled CPS.

2.3 Conformance Testing

Our proposed approach shares same motivation as the
verification of the conformance between a running CPS and
the formal specifications of its required behavior, which
is referred to as conformance testing (Woehrle, Lampka,
and Thiele 2012; Abbas 2015). Woehrle et. al presented
a conformance testing method that relies on mapping
the specifications of the system and its implementation
generated traces to timed automata and verifying whether
each generated implementation trace is included in the
traces of the specifications timed automaton. However,
their approach is solely limited to the class of timed
automata. As opposed to this conformance notion, other
works define conformance testing as a closeness measure
between an implementation and the specifications model,
whose computation solely relies on system traces( Abbas
2015; Araujo et al. 2018). However, even for simple linear
systems, providing guarantees about the conformance
degree remains a challenge. Finally, to the best of our
knowledge, conformance testing methods output are limited
to a pass or fail. Hence, in case of conformance failure
only a debugging trace is provided to the test engineer,
which helps in debugging implementation errors of a CPS.
For complex systems, locating the root cause without the
presence of an operational model may require extensive
work.

Novelty: The HA mining algorithm presented in this
paper differs from related work in the following key factors:

• It can extract control modes where the controller output is
a linear combination of the continuous state variables,

• The continuous state variables follow a set of non-linear
differential equations.

3 Definitions and preliminaries

3.1 System Model

An AI-enabled CPS is a system comprising a perception
component, a planner/controller, and the environment
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Figure 2: Non-Linear AI Enabled Cyber-Physical System.

(system under control) (Russell and Norvig 2016). As
shown in Figure 2, an AI-enabled CPS interacts with the
environment using a set of sensors and actuators. The
environment can be expressed using a set of n continuous
variables {x1, x2, . . . , xn}. The continuous variables are
governed by a set of non-linear differential equations which
are also modulated by p control outputs {o1, o2, . . . , op}.
The continuous variables states are provided as inputs to
the agent that performs actions on the physical environment
so as to achieve a given or computed goal using the current
and predicted state of the environment. The current state
is determined by sensors’ information and predicted state
of the environment is determined using the environment
predictive model.

3.2 Operational Safety

Operational safety is ensuring that the operation of the AI-
enabled CPS in the field does not deviates from the safe cer-
tified design of the system. It aims at detecting dissonance
between the system’s behavior out in the field and the safe
certified behavior of the system. This dissonance between
what the system is actually doing and what the operator
thinks the system is doing can be due to intentional corrup-
tion scenarios (due to production pressure or goals trade-
off) or to unintentional corruptions scenarios (flaws in re-
quirements, specifications, design, or implementation of the
system during its development lifecycle). For example, the
Volkswagen’s cheating defeat device that allowed vehicles
to improperly meet US standards during emission regulatory
testing (Contag et al. 2017) and the case of the Boeing 737
Max 8 aircraft crash where operators lack crucial informa-
tion about the MCAS system.This dissonance could expose
the system to potential dangerous situations.

3.3 Example of AI-enabled CPS: Artificial
Pancreas (AP)

The AP control system is an example of an AI-enabled CPS
used for automated control of blood glucose level for Type1
diabetic patients (Clarke et al. 2009). The agent uses pre-
dicted glucose level 30 minutes ahead in time and outputs
the right amount of insulin infusion rate It for the infusion
pump to maintain for the next 30 minutes. The agent’s goal
is to maintain the prescribed level of blood glucose and avoid

occurrence of hypoglycemic/hyperglycemic events. These
dangerous events happen as a result of an inaccurate infusion
of insulin, e.g. if the glucose concentration G goes above
180mg/dl, it can lead to hyperglycemia while low glucose
level i.e. below 60mg/dl can cause hypoglycemia. The dy-
namics of the AP are represented by nonlinear equations 1,

2 and 3, where Ẋ represents the rate of the variation in the

interstitial insulin concentration, Ġ is the rate of change of
blood glucose concentration (G) for the infused insulin con-

centration X and İ is the variation in plasma insulin concen-
tration (I) (Andersen and Højbjerre 2002). The AP device
has three control modes:

1- basal, where the reset condition It = 5,
2- braking, where It = 0.5G+ 44.75, and
3-correction bolus, where It = 50.

The differential equation expressing the blood glucose and
insulin interaction are non-linear in nature.

Ẋ = −k2.X(t) + k3.(I(t)− Ib), (1)

Ġ = −X(t).G(t) + k1.(Gb −G(t)), (2)

İ = −k4.I(t) + k5.(G(t)− k6)
+.t. (3)

3.4 Non-Linear Hybrid Automata

AI-enabled systems are dynamical systems comprising dis-
crete transition systems (intelligent agents) interacting with
continuous dynamical systems (non-linear physical environ-
ments). A non-linear hybrid automaton is a model of closed-
loop system combining discrete evolution (control mode
transitions and variable updates) and continuous evolution
(system dynamics that are governed by differential equa-
tions). We formally define a non-linear hybrid automaton
formal model of AI-enabled CPS as follows.
Hybrid Automata: A hybrid automaton H is a tuple
< X ,M, E ,G,R,F > where:

• X = {x1 . . . xm} is a finite set of continuous variables
where X = I

⋃
O. I is a set of internal input variables

and O is a set of output (controlled) variables. A valua-
tion over the set X of variables is a member of Rm such
that each variable xi ∈ X receives a real value. Ẋ =
{ẋ1, . . . , ˙xm} is the set of dotted continuous variables
representing the first time derivatives of the continuous
variables during continuous change. X ′ = {x′

1, . . . , x
′

m}
is the set of primed continuous variables, which represents
the values of the variables at the conclusion of a control
mode transition.

• M = {m1 . . .mn} is a finite set of control modes.

• A set Fmi
of non-linear ordinary differential equations

over X
⋃
Ẋ representing the dynamics evolution (flow

rate) of each variable xi for each the control mode mi ∈
M.

• E is a finite set of edges called mode transitions or mode
changes. Every edge ei ∈ E is defined by a conjunction
of guard condition Gmi,mj

and a reset condition Rmi,mj
,

where mi ∈ M is the source mode and mj ∈ M is the
target mode.

• The guard condition Gmi,mj
is a linear polyhedral con-

straint over the variables in X . The transition between mi



and mj following the edge ei is enabled when values of
the continuous set of variables X ∈ Gmi,mj

. G is the set
of all guard conditions.

• The reset condition Rmi,mj
, given by a linear assignment

over the variables in X
⋃
X ′, associates a variable assign-

ment to the mode transition mi to mj following the edge
ei, for example x′

i = xi where x′

i represents the updated
value of the variable xi after the edge ei has been tra-
versed. R is the set of all reset conditions.

3.5 Assumptions

The proposed safety verification HA mining-based tech-
nique requires the manufacturer provides a reference safety
assured (certified) hybrid automaton model of the system.
However, manufacturers may not be able to provide a hy-
brid automaton as the reference specifications model for our
safety verification technique since they may have used a dif-
ferent model for specifications such as i*, UML, SysML,
MARTE, Agent UML. However, learning a hybrid automa-
ton model from the specifications document or mapping a
given specifications model to a hybrid automaton model is
feasible (Burmester, Giese, and Oberschelp 2006; Schmitz
et al. 2009; Liu et al. 2013a). For example, for safety-critical
control systems such as aircrafts, a simulator is required
for operators’ training 2. The simulator can be used in our
technique as the reference specifications model. For artifi-
cial pancreas, UVA/Padova is an FDA approved simulator
and has been largely adopted in research as replacement for
preclinical trials of certain insulin treatments, including test-
ing closed-loop control algorithms for AP (Man et al. 2014).
Hence, combining the control logic of the artificial pancreas
with the simulator can represent the reference specifications
Simulink model of the Medtronic 670G. Also, several pre-
vious work have proposed algorithms and frameworks for
mapping some formalism model to a hybrid automaton. For
example, Minopoli and Frehse created a tool for translat-
ing a simulink model to a hybrid automaton (Minopoli and
Frehse 2016). Lyde and Might proposed an approach for
analyzing control code using abstract interpretation and in-
ferring a hybrid automaton from an abstract state transition
system (Lyde and Might 2013). Another assumption of the
proposed technique is that the traces are noiseless. However,
most CPS have signal processing and filtering algorithms to
assure only good quality sensory data is used by the control
logic. Thus, the controller of CPS uses filtered, adjusted, and
calibrated data to make decisions. However, the data col-
lected from the sensor may not processed if the pre-filtering,
filtering, or calibration are not included as part of the sen-
sor transmitter. In this case, our proposed approach assumes
that the pre-filtering, filtering, or calibrating approaches are
provided in the specifications document (since it is part of
the controller). Hence, these modules are part of the hidden
control variables and if we have a description of their speci-
fications, then we can easily simulate processed data.

2https://www.bloomberg.com/news/articles/2019-11-
08/delays-in-boeing-max-return-began-with-near-crash-in-
simulator

3.6 Notation

R is the set of real numbers.
ẋ, and dx

dt
both mean differential of x with respect to t.

A polyhedral constraint over a a list of variables X is a finite
conjunction of linear constraints over X .
A linear constraint over a list of variables X is defined as an
expression of the form P (X ) ♦ r, where P (X ) is a polyno-
mial term over X , r ∈ R , and ♦ ∈ {≤, <,≥, >,=}.

4 Safety Verification HA-Mining Based

Methodology

We propose a safety verification algorithm based on re-
verse engineering of a non-linear AI-enabled CPS from op-
erational time-series traces collected from the operation of
CPS out in the field and system specifications (initial HA)
provided by the manufacturer. The scheme of the proposed
safety verification technique is shown in Figure 1.

• The HA mining algorithm takes the following inputs -

– The time series traces obtained from the operation of
the AI-enabled CPS, and

– Documentation that contains general information in-
cluding controller frequency, requirements, and design
document. We use this documentation to model the ini-
tial HA of the AI-enabled system, if not provided in the
system documentation.

• It employs relative unconstrained least-squares impor-
tance fitting (RuLSIF) and density-based clustering algo-
rithm on time-series data to derive the discrete mode tran-
sitions of the AI-enabled system.

• It employs Fisher information based analysis and Cramer
Rao bound to derive the guard and reset conditions be-
tween every two control modes, as performed in our pre-
vious work (Lamrani, Banerjee, and Gupta 2018).

• For each derived mode, it employs multi-variable poly-
nomial regression analysis MultiPolyRegress written by
Ahmet Cecen in MATLAB Central to derive the physical
environment flow equations.

• The output of the HA mining algorithm is a learned non-
linear hybrid automaton HALearned.

• It then evaluates the consistency between the newly mined
HA (HALearned) and the initial HA provided by the
manufacturer. If HALearned is same as the initial hybrid
model defined in the documentation provided by the man-
ufacturer, then there is no change in the safety conclusion.
This similarity is expressed as reach sets comparison, as
shown in Figure 6.

4.1 RuLSIF Change-Point Detection Method

The goal of the change-point detection technique is to dis-
cover abrupt changes lying behind time-series data. Early
proposed change detection approaches are not robust against
different types of changes, which significantly limits the
range of applications in practice. Recent efforts within this
line of research introduced a new strategy which estimates
the ratio of probability densities instead of directly estimat-
ing the density (Liu et al. 2013b). In this paper, we apply
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the relative unconstrained least-squares importance fitting
(RuLSIF) method, which was reported to outperform com-
petive approaches in regard to robustness, optimality of non-
parametric convergence rate, and optimality of numerical
stability (Aminikhanghahi and Cook 2017). The main idea
behind the RuLSIF method is to bound the density-ratio and
use the α-relative Pearson (PE) divergence as a dissimilarity
measure, where 0 < α < 1. Thus, the RuLSIF dissimi-
larity measure has the following form: PEα[p(x)||p

′(x)] =
PE(p(x)||αp(x) + (1− α)p′(x)).

4.2 Multivariate Non-Linear Polynomial
Regression Analysis

We consider the problem of estimating a non-linear relation-
ship among the set of continuous variables X from a series
of observations. Multivariate polynomial regression analysis
can be performed on multidimensional data to model non-
linear variables that depend on more than one variable by
fitting data to higher order multidimensional polynomials.
For example, a second order polynomial for an equation of
two variables has the following form: y = a1+a2xi+a3yi+
a4x

2
i + a5xiyi + a6y

2
i , i = 1, ..., n, where n represents the

number of data points. In this paper, each differential equa-
tion of xi ∈ X with respect to time is regressed on powers
of the variables in X while fitting the data into the non-linear
polynomial regression models to find the best fit curve (Ce-
cen 2017).

4.3 Safety Guarantees

We assume that the manufacturer has proven the safety of
the hybrid automaton representation of the system. This
means that the reach set of the hybrid system provided by
the manufacturer will not intersect with the unsafe set, as
shown in Figure 3. The solution of the reachability analysis
always provides a solution that is an over-approximation of
the system’s operating envelope (Alur et al. 1995). With re-
spect to the learned system, there can be four distinct safety
guarantee cases:
1) The reach set of the learned system is an over-
approximation of the specified system and encompasses the

reach set of the specified system but it does not intersect the
unsafe set. In such a case, we can guarantee that the system
is operating within the safety envelope.
2) The reach set of the mined system is an underapproxima-
tion of the reach set of the specified system or intersects it
and mined system does not intersect the unsafe state. This
is an uncertain scenario, because the deviation can be either
due to a change in system operation or can be due to error in
mining.
3) The reach set of the mined system intersects unsafe set but
the area of intersection is within error bound of the mining
technique. This case is also an uncertain case, because the
intersection with unsafe set can be either due to a problem
with the system operation or due to an error in the mining.
4) The reach set of the mined system intersects unsafe set
and area of intersection is greater than the error bound of the
mining technique. In such a scenario, we can guarantee that
this is due to an unsafe operation of the system.

5 Evaluation

In this section, we consider the effectiveness of extracting
a hybrid automaton for the artificial pancreas (AP) control
system. Data used in this experiment are collected from our
collaboration with MAYO clinic. Collected data consist of
CGM readings and meal intake amounts. In order to obtain
the remaining inaccessible signals, we used the UVA/Padova
T1d platform to simulate traces for interstitial insulin X and
plasma insulin concentration I for one T1D subject (Man et
al. 2014). From I/O traces, we apply our technique to obtain
the learned hybrid automaton and compare its operation to
the one provided by the manufacturer (Banerjee et al. 2013)
. We compare both inferred and given hybrid automata se-
mantics to find out inconsistencies between the two mod-
els. We apply C2E2 tool to perform our reachability analysis
evaluations (Fan et al. 2016).

Artificial Pancreas (AP): We first consider I/O traces from
the AP control system. Here G and I are the continuous state
variables and also the controller inputs, and the external in-
sulin infusion rate It is the controller output.

• The first step of the HA mining algorithm is to em-



𝑷𝒆𝒂࢙࢘
𝑫𝒊𝒗࢔࢕

𝒆࢘𝒈𝒆࢔
𝒄𝒆𝑺𝒄࢕

𝒆࢘
mode

transition

timestamps

m1 m2 m3 m4 m5 m6
m7 m8 m9 m10 m11 m12

time

Figure 4: RuLSIF I/O segmentation example

G

I

Mode transition 1

Mode transition 2

Mode transition 3

Figure 5: Density-Based Clustering of Mode Transitions.

ploy RuLSIF, as described in Section 4.1, on I/O data
to find abrupt changes lying behind I/O time-series data,
which represent potential control mode changes. From
Figure 4, we initially consider the mode set M =
{m1,m2, . . .m12} 12 distinct modes.

• For the artificial pancreas, controller decisions are related
to the predicted values of the continuous state variables in
the next 30 minutes. At each transition timestamp, values
of controller output before and after the mode transition
and values of the continuous state variables in the next
30 minutes are considered. Collected timeseries data are
used as features in density-based clustering algorithm to
group unique control mode changes, as shown in Figure 5.

• The HA mining technique then derives the reset condition
for each cluster, where each cluster represents a distinct
control mode change. If the reset value is not a constant
value of actuation and is varying within each data point
in the cluster, we employ Fisher information and Cramer
Rao bound to derive the linear relation of It with G, X ,
and I (Lamrani, Banerjee, and Gupta 2018). The analysis
results in the following equation 4 for the cluster encom-
passing mode transitions from mode m2 to m3 depicted
with blue diamonds in Figure 5.

It = 0.5G+ 44.75 (4)
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(Almost Complete)

Reach set of the given hybrid automaton
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Figure 6: Comparison between the reach set of the learned
HA and initial HA provided by the manufacturer.

• The HA mining technique then uses the multivariate poly-
nomial regression MultiPolyRegress in Matlab, described
in Section 4.2, to infer the flows equations for each con-
trol mode using I/O time-series data. For the variation of
blood glucose we got the following equation, where terms
with minor influence are canceled out:
Ġ =

✭
✭
✭
✭
✭
✭

−4.6948−9X +✭
✭
✭

✭
✭

1.1483−12I +
✭
✭
✭
✭
✭
✭
✭

−3.7926−11IX +
−0.031684G − GX +

✭
✭
✭
✭
✭
✭✭

−7.1742−15GI + 2.9149 −
✭

✭
✭
✭
✭✭

1.4819−14I2.
Thus, HyMn infers the following set of equations for one
T1D subject:

Ġ = −X(t)G(t)− 0.03G(t) + 2.9, (5)

İ = −0.23I(t)− 0.09G(t) + 17.03. (6)

For every segment we obtained the same set of equations
5 and 6 with different reset conditions It, resulting in the
conclusion that m1,m2,m3 are unique modes and are
not composite (breaking, basal, and bolus control modes).

• The next step is to determine the guard condition for each
control mode change. Using an observation matrix of the
continuous state variables at the time of the control mode
change, rectangular or non-rectangular guards are learned
as a conjunction of linear constraints over the continuous
state variables, as reported in our previous work (Lamrani,
Banerjee, and Gupta 2018).

• Finally, a reach set comparison is performed between the
mined HA and the initial HA provided by the manufac-
turer as depicted in Figure 6.

6 Discussions and Conclusions

The main contribution of this work is a new scheme for
the safety verification during the operational phase of an
AI-enabled CPS. The proposed approach is based on hy-
brid automata mining from traces collected from the oper-
ation of AI-enabled systems. The safety verification uses the
learned hybrid automaton and compares it with the specifi-
cations of the system given by the manufacturer to ensure
that the operation of the system conforms with the design



safety properties. If the learned hybrid automaton has less
control modes than the reference specifications model pro-
vided by the manufacturer, then traces representing the miss-
ing modes are not present in the available traces. With insuf-
ficient I/O traces, the learned hybrid automaton will be an
underapproximative representation of the reference specifi-
cations model. In this case, the manufacturer should provide
complete traces to accomplish the mining process. We ap-
ply the proposed technique to the artificial pancreas control
system and demonstrated the effectiveness of this safety ver-
ification technique. The difference between the reach sets of
the learned HA and the initial HA provided by the manu-
facturer is very minimal that it may not require root cause
analysis. However, a root cause analysis using the learned
HA model is surely one of our future endeavors. We identify
all the possible outcomes of the proposed safety analysis and
identified which cases lead to certain safety conclusions and
other cases where more analysis is needed. This can pro-
vide certification agencies such as FAA or FDA with impor-
tant directives regarding safety adherence of the operational
system. The fidelity of the learned HA is based on numer-
ical guarantees which consists on comparing collected I/O
traces for verification (different than data used in training) to
those generated using the inferred HA by calculating the root
mean square error (RMSE) between the two sets of traces.
It remains for future work to develop formal guarantees of
the proposed method. Another direction for improvement is
how to decide what is the reasonable period of time to mine
again another automaton for periodic safety verification of
operational AI-enabled CPS.
Operational Safety of Boeing Aircrafts:
Operational safety verification can be used to learn about the
operation of MCAS of the Boeing aircraft. The MCAS sys-
tem is an automatic pitch control system that gets activated
when the Angle of Attack (AoA) of the aircraft is very high.
When the AoA reading from the sensor is high depending
on a threshold set by the manufacturer, the MCAS system
gets activated. The algorithm then pushes the horizontal sta-
bilizer trim upward at the rate of 0.27 degrees per second, to
either up to 2.5 degrees or for a maximum of 9.26 seconds3.
The proposed operational safety HA-learning based tech-
nique can be applied to learn a hybrid automaton represent-
ing two control modes MCAS enabled and MCAS disabled,
the aircraft environmental model that can be expressed us-
ing differential equations representing the rate of change of
AoA in each control modes, and the guard condition that en-
ables transition from one mode to the other. This allows the
Boeing operator to be aware of the operation of MCAS as
well as its operational model. If the manufacturer of MCAS
allows access to its specifications model, then operational
safety allows conformance verification between the certified
MCAS operation and its operation in the real world.

3https://theaircurrent.com/aviation-safety/what-is-the-boeing-
737-max-maneuvering-characteristics-augmentation-system-
mcas-jt610/
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