
PointNet with Spin Images

Jakub Střelský1[0000−0002−5096−863X]

Charles University, Faculty of Mathematics and Physics, Department of Software and
Computer Science Education, Prague, Czech Republic

Abstract. Machine learning on 3D point clouds is challenging due to
the absence of natural ordering of the points. PointNet is a neural net-
work architecture capable of processing such unordered point sets di-
rectly, which has achieved promising results on classification and seg-
mentation tasks. We explore methods of utilizing point neighborhood
features within PointNet and their impact on classification performance.
We propose neural models that operate on point clouds accompanied by
point features. The results of our experiments suggest that traditional
spin image representations of point neighborhoods can improve classi-
fication effectiveness of PointNet on datasets comprised of objects that
are not aligned into canonical orientation. Furthermore, we introduce a
feature-based alternative to spatial transformer, which is a sub-network
of PointNet responsible for aligning misaligned objects into canonical ori-
entation. Additional experiments demonstrate that the alternative might
be competitive with spatial transformer on challenging datasets.

1 Introduction

Machine analysis of 3D geometrical data is becoming an important area of re-
search because of the increasing demand from applications such as autonomous
driving. Thanks to the advances in the development of depth sensors, large
amounts of such data are publicly available, which makes development and em-
ployment of data-oriented algorithms more accessible.

Convolutional neural networks (CNNs) have established state-of-the-art re-
sults in computer vision tasks such as image classification, but their application
on tasks involving 3D data remains a problem. CNNs rely on regular grid repre-
sentations that are very memory demanding and computationally expensive to
process in 3D. CNNs were already utilized on voxel data, but even with opti-
mization like hierarchical octrees, this solution is limited to grids of resolution
2563 and will probably be very difficult to scale to finer resolutions.

Point cloud representation is appealing alternative to voxel representation for
several reasons. The data sparsity is naturally reflected in point cloud represen-
tation which is typically much more concise compared to voxel representation.
There is no trade-off between precision and memory demands like in the case
of voxel representation and point cloud can capture an arbitrary level of detail.
Point clouds are also close to raw measurements of sensors as LiDAR or RGBD
cameras. Automatic machine analysis of point cloud representation is, however,

Copyright c© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

85

challenging, mainly because the points of a point cloud have no ordering so any
permutation of the points represents the same point cloud.

PointNet [8] is a neural network architecture designed to process point cloud
representations directly. It obtains hidden representation of each input by in-
dependently processing each point by a Multi Layer Perceptron (MLP). Those
representations are then aggregated by maximum pooling to obtain a permuta-
tion invariant representation. PointNet provided a considerable boost in com-
putational efficiency of 3D object classification while keeping up in the terms of
classification performance with other state-of-the-art approaches. Furthermore,
the model is also straightforwardly applicable to other useful tasks involving 3D
data such as the task of point cloud segmentation. PointNet effectively sam-
ples the 3D domain via so called point functions. But, unlike e.g. voxelization,
it works in an efficient and data dependent way. Unfortunately, when used on
objects appearing in an arbitrary orientation, the effectiveness of sampling the
3D domain seems limited, as the number of locations in which the points can be
located is greatly increased.

The authors utilize spatial transformer network [2] in order to deal with this
issue, but aligning point clouds to canonical orientation is a difficult task, which
would itself require recognition of object classes in some cases. Furthermore, the
spatial transformer itself relies on PointNet within PointNet, so the alignment
capabilities of spatial transformer share the limitations of PointNet.

It seems intuitive that additional local information extracted from point
neighborhoods could be beneficial for classification, especially in the case when
point clouds are not aligned to canonical orientation. A successor of PointNet
called PointNet++ [9] was introduced in order to add capabilities of utilizing
the local neighborhood features into PointNet by applying a small PointNet on
point neighborhoods and repeating the process on gradually higher-dimensional
point clouds.

In this paper, we follow the direction of PointNet++ towards adding local
point features into PointNet. We focus on the tasks in which the input objects
are not aligned into canonical position. We develop models based on rotation
invariant point features and PointNet. Several experiments were conducted in
order to compare our models with the PointNet baselines. Our model manifests
comparable classification performance on datasets with manually aligned objects
and noticeably better performance on datasets in which objects are oriented
arbitrarily. We also propose a simple feature-based heuristic for point cloud
alignment in the form of a neural network layer, and we empirically show that
our heuristic can be more effective than spatial transformer in certain cases.

2 Related work

There are several ways of applying machine learning to 3D point clouds that are
currently actively researched. One common way is to transform the point cloud
representation to voxel grid representation, which can be processed by 3D CNNs
[7], [12], [10]. Scaling these methods to classification of complex objects which

86 Jakub Střelský

require fine level of detail to be distinguished is, nevertheless, difficult due to the
inherent trade-off between managable memory demands and admissible loss of
information.

Sequences of images obtained by rendering the point cloud representation
from different view-points is another grid-based representation which can be
processed naturally by 2D CNNs [4], [11], [10]. These approaches have estab-
lished state-of-the-art results on classification benchmarks. Limitation of these
methods are difficulty of their extension for different tasks like the point cloud
segmentation. The point cloud representations are also in principle capable of
capturing more complex data than surfaces and such data would be difficult to
render into images without potentially loosing important information.

Point clouds can also be processed directly by several recent models. Point-
Net [8] applies a neural network on every input coordinate of the point cloud
independently and extracts a permutation invariant representation by applying
global pooling. Spatial transformer is applied on the input coordinates to deal
with variance of input orientations and is also applied on the hidden representa-
tions. From the reported results, it is, however, not clear how the model would
perform on datasets with objects of highly varying pose. PointNet++ [9] utilizes
small PointNet networks on point neighborhoods across several scales in order to
introduce local point features to the original architecture. Such local features are
powerful, since they are learned from the point cloud data directly, but they not
invariant under rotations, which might cause a decrease of classification perfor-
mance on unaligned data. Kd-Net [5] allows convolution-like processing of point
clouds by building a balanced kd-tree and then following a bottom-up traversal
of the tree, while applying learned affine transformation and non-linearity on
features contained in child nodes in each parent node. Kd-net is also not invari-
ant under rotations and could also potentially benefit from rotation invariant
local features.

3 Methods

Our work extends PointNet [8] by using local point features in a way that is
similar to PointNet++ [9]. We focus on features which are rotation invariant,
and we investigate if such features have a positive impact on classification on
unaligned data. In this section, we describe feature extraction techniques and our
method for aligning point clouds. Section 5 describes the exact models derived
from methods of this section.

3.1 Spin Images

There is a plethora of descriptors invariant under rigid transformations which
could be incorporated into PointNet. In this work, we opt for spin images [3]
primarily because the representation of spin images can be straightforwardly
processed by empirically succesfull CNNs. We leave investigation of other de-
scriptors for future work. We briefly summarize the spin images technique here.

87PointNet with Spin Images

p

n

α

β

x

Fig. 1. Spin image coordinates of point x when computing the representation for point
p with associated normal vector n.

In order to extract a spin image of a neighborhood around a point p ∈ R3,
knowledge of a normal vector n ∈ R3 associated with p is required. For clas-
sification of point clouds that represent surfaces, this is not a very restrictive
assumption, since normal vectors can be estimated from eigenvalue decomposi-
tion of local covariance matrices [1].

Given input points of a neighborhood around p, every input point x is pro-
jected to the new coordinates (α, β) indicated in Figure 1 and accumulated into
a two-dimensional histogram. If the points carry additional information in the
form of a vector such as the color, the vector can also be accumulated into bins
for example by addition. Spin images have appealing properties. Their descrip-
tiveness is easily adjusted by changing the histogram resolution. They can also
be made local and global point cloud descriptors by changing the size of the
point neighborhood.

3.2 Spin Coordinates

Spin image coordinate transformation also provides a straightforward way to
make PointNet++ features invariant under rotation, simply by using the trans-
formation on local point clouds before they are processed by local PointNets of
PointNet++. This is essentially equivalent to forcing the point functions learned
by PointNet to be axially symmetrical around the local normal vector. We will
refer to these features as the spin coordinates.

3.3 Orientation Alignment Layer

For a given object, in the form of point cloud and corresponding point features,
if we were able to select points which are accompanied by distinctive features,
then objects of the same class could be approximately aligned in a coordinate
system that would be based on these points. Based on this idea, we designed a
simple heuristic algorithm, which we call orientation alignment layer (Algorithm
1). The algorithm is also easily extensible to the problem of pose alignment, but
we will only consider alignment for simplicity (see Section 6.1 for clarification of
pose and orientation). Algorithm 1 rotates an input point cloud so that points
with selected features would be positioned in a direction of canonically chosen
orthogonal vectors.

88 Jakub Střelský

Algorithm 1 Orientation Alignment Layer(X)

Input: X = (xi)
n
i=1 where xi ∈ R3+d . sequence of coordinates and features

Output: sequence of n rotated points from X
Let (ci)

n
i=1 , ci = (xi,1, xi,2, xi,3),xi ∈ X . sequence of coordinates

Let (fi)
n
i=1 ,fi = (xi,4, xi,5, ...xi,3+d),xi ∈ X . sequence of features

i, j ← Feature Selection Heuristic((fi)
n
i=1, 2) Algorithm 2

Let x, y ∈ R3 be two orthogonal unit vectors chosen canonically
R1 ← the rotation matrix such that R1

ci
‖ci‖

= x
v ← R1cj
v ← v − (v · x)x
R2 ← the rotation matrix such that R2

v
‖v‖ = y

return (R2R1ci, fi)
n
i=1

Features that are common within a class but uncommon within an individual
point cloud could be good candidates for the selection. Selection of features that
are frequent within a class provides consistent orientation of objects within the
same class. Furthermore, selection of features that are unique within a point
cloud provides robustness in case of presence of multiple good candidates in the
point cloud. These rather abstract qualities are, however, not straightforward to
define and compute quantitatively.

We have chosen simple heuristic approach to the feature selection described
by Algorithm 2. We do not have satisfactory justification of the heuristic, but it
seems intuitive that selecting the features with maximal entries could provide at
least somewhat consistent selection. Besides, when the heuristic is applied within
hierarchical PointNet which apply max pooling of local features, we assume that
the maximal features are likely to be important for classification.

Algorithm 2 Feature Selection Heuristic(F , k)

Input: F = (fi)
n
i=1 where fi ∈ Rd . sequence of features

k = number of features to be selected
Output: k integer indices of selected feature vectors
F ′ ← (f ′

i)
n
i=1, f

′
i = maxfi . maximum entries of features

return indices of k largest elements of F ′

4 Datasets

Our experiments were based on datasets which are described in this section.

ModelNet

The Princeton ModelNet dataset [12] has two variants: ModelNet10 which con-
tains 4899 objects of 10 categories and ModelNet40 which contains 12311 objects

89PointNet with Spin Images

of 40 categories. We use point clouds consisting of 1024 points extracted from
the original CAD models by [8]. In the case of ModelNet10, the individual ob-
jects are manually aligned (each object has the identical pose). The objects are
centered and scaled so that each object fits into the unit ball. We use the original
train/test splits consisting of 3991/908 objects from ModelNet10 and 9843/2468
objects from ModelNet40. We further split the train partitions for the purpose
of validation.

Augmented ModelNet10

We prepared a challenging modification of the ModelNet10 dataset by replacing
each original object with two modified copies. Every object is subject to random
rotation of angle up to π. The objects are translated by a vector of random direc-
tion and of random length from uniform distribution on [0, 0.25]. Additionally,
up to 3 cubes of random size and orientation are inserted into each point cloud,
so that they never intersect with the original objects. The inserted cubes were
represented by 50 points, and their maximum size was 0.5× 0.5× 0.5.

SHREC17

A subset of the ShapeNet dataset consisting of 51,162 triangle meshes of ob-
jects. We use the provided 70%/10%/20% training/validation/test split for the
experiments. There are two variants of the SHREC17: normal and perturbed.
Here, we use the perturbed dataset where the objects are subjected to random
rotations. Point clouds are sampled from the provided triangle meshes by sam-
pling the triangles with probability proportional to their area, and then sampling
the triangle surfaces uniformly so that the obtained point clouds are consistent
with ModelNet point clouds. We use 1024 sampled points for the classification
and an additional feature engineering as required. For the methods that require
normal vectors, we calculate the normal vectors from the meshes rather than
from the sampled point clouds. It should be noted that there are both inward-
pointing and outer-pointing normal vectors in every mesh, which most likely
hinders the performance of some of the methods relying on the normal vectors
to some extent.

5 Models

In this section we provide a description for every model that will be evaluated
in the next section. The model architectures were selected so that their sizes
would be roughly comparable in terms of the number of learnable parameters.
We did not fine-tune hyperparameters in this work as we were mainly interested
in observing major differences of models, and we did not intent to achieve the
best performance.

90 Jakub Střelský

1 PointNet: A small PointNet model. The shared MLP part of the model
before the maximum pooling is formed of fully connected layers with sizes 64,
64, 64, and 256 neurons. The MLP part of the model after maximum pooling
consists of dropout with probability 0.2 and two fully connected layers with 512
and 128 neurons.

2 PointNetST: The same model as the previous PointNet model, but a spa-
tial transformer parametrized by linear or affine transformations is additionally
inserted as the first layer for appropriate tasks, that is: the linear transformer
for the tasks where the input objects are possibly rotated but not translated and
the affine transformer for the rest. The spatial transformer itself is a PointNet
consisting of layers with 32, 32, and 128 neurons before the maximum function
and then a single layer of 128 neurons.

3 PointNetSTL: Re-implementation of the original PointNet [8] with 2 dif-
ferences: we only use the first spatial transformer and we do not utilize batch-
normalization layers.
4 Spin Images: This model makes predictions based on spin images only and

does not utilize the coordinates of the features. Spin images are of size 32× 32.
Thirty-two spin images of radius 1 are utilized. The 32 points are selected by
farthest sampling algorithm. The model consists of 3D convolutional layers with
32, 64 and 128 filters of size 1 × 3 × 3 followed by 1 × 2 × 2, 1 × 2 × 2 and
32× 1× 1 maximum pooling, respectively, followed by dropout with probability
0.2 and fully connected layers with 512 and 256 neurons.

5 Hierarchical Spin Images: This model utilizes both the representations
obtained from the spin images and the coordinates. Spin images are of size 16×8.
Thirty-two spin images of radius 0.6 are utilized. Spin images are processed by
the same 3D CNN from previous model, then the representation is concatenated
with point coordinates and fed into PointNet (Model 1).

6 Hierarchical PointNet: Thirty-two point neighborhoods, each consisting
of 32 nearest points, are utilized. Each neighborhood is processed by a small
PointNet consisting of layers of 32, 32, and 32 neurons followed by max pooling
and 64 neurons. The extracted embedding is concatenated with point coordi-
nates and fed into PointNet (Model 1).
7 Hierarchical PointNet Spin Coordinates: The same model as the Hier-

archical PointNet, but the local coordinates are first transformed using the spin
image coordinate transformation.

8 Hierarchical PointNet Orientation Alignment: This is the same as
the previous model, except that orientation alignment layer (see Algorithm 1) is
additionally inserted after the concatenation of embeddings and coordinates.

6 Experiments

In this section, we describe the experiments that were carried out in order to
empirically compare suggested models and features. In order to evaluate per-
formance of the models, we measured classification accuracy on official test sets
given in the respective benchmark tasks. We further split the original training

91PointNet with Spin Images

sets into two parts for training and validation. We evaluate performance of mod-
els after each epoch of training on validation partition of data. A model with
the best performance on validation data across all epochs is taken as a result of
the training. The categories are not balanced in terms of their frequencies, so
the data are split in stratified manner meaning that frequencies of the categories
is the same in training and validation parts. We use the Adam optimization
algorithm with parameters (α = 0.001, β1 = 0.9, β2 = 0.99) and batch size
128. Training strategy is adjusted to take imbalanced categories into account by
filling batches in a way such that categories are uniformly distributed in each
batch. We apply L2-regularization of network weights with λ = 0.0001.

6.1 Robustness to Rotations

Let us informally define notions about object orientation in order to clarify de-
scriptions of experiments from this section. We assume that every object has a
unique reference pose which is given by semantics. Reference pose is described
by a canonical coordinate system. Pose of an observed object is then the coor-
dinate system (taken w.r.t. the canonical system) in which the object is in its
reference pose. When we refer to orientation of an object, we mean the pose
of the object without translation element, i.e. the coordinate systems are zero
centered. We will also use the notion of orientation vector, by which we mean
a vector parallel to one canonically chosen axis of the orientation coordinate
system.

With the following experiment, we tested robustness of PointNet against
rotations of point cloud objects. We augmented the ModelNet10 dataset by
rotating the objects from dataset randomly. Two rotated samples of each object
were placed into the augmented dataset instead of each original object. We
then performed 10-fold cross-validation on the augmented dataset to evaluate
classification accuracy. The models PointNet and PointNetST (see Model 1 and
2) were subject to the experiment.

The rotation matrices used for rotating the objects were sampled in such a
way, so that orientation vectors of all objects were distributed uniformly on a
cap of the unit sphere with the apex at the original orientation vectors. The
tested maximal angles of the rotations were π

4 , π
2 , 3π

4 , and π.

Table 1. Mean accuracy with standard deviation on rotated ModelNet10 with increas-
ing maximal angle of object rotations.

Maximum angle

Model 0 0.25π 0.5π 0.75π π

PointNet 0.90 ± 0.01 0.87 ± 0.02 0.83 ± 0.02 0.79 ± 0.02 0.79 ± 0.02
PointNetST 0.91 ± 0.01 0.88 ± 0.02 0.85 ± 0.02 0.78 ± 0.03 0.77 ± 0.03

Table 1 reveals that PointNet without spatial transformer is quite robust
versus rotations. Higher accuracy could be achieved with more augmentation

92 Jakub Střelský

and further regularization techniques. Nevertheless, the decrease of accuracy is
noticeable. Spatial transformer clearly helps for the rotations of small angles,
but does not seem to help for the rotations of large angles, where the accuracy
is nearly the same for the PointNet and PointNetST models.

6.2 Entropy of Orientation Distributions

Spatial transformer was designed to decrease variance of orientations of the point
cloud objects present in the data. It seems highly probable that increase of accu-
racy is correlated with the decrease of variance of orientations, but if we wanted
to compare other mechanisms for decreasing orientation variance, it might be
better not to rely solely on accuracy which might be also affected by other factors.
With access to the original orientation of each object, we can directly measure
how the variance of the orientations is affected by transformations produced by
spatial transformer or other techniques.

We have only considered orientation vectors in this experiment for simplicity,
even though an orientation vector v is not sufficient to fully describe orientation
of an object in 3D since the rotation component around v is left unspecified.
The unit orientation vectors of the objects can be viewed as samples from a
distribution X on the two-dimensional unit sphere S embedded in R3, which we
will refer to as the orientation distribution. The differential entropy H(X)
of the distribution X with a probability density function f whose support is S
defined as:

H(X) = −
∫

x∈S

f(x) log (f(x)) dx (1)

is a measure (not in the mathematical sense) of uncertainty of the distribution.
The lower the entropy of orientation distribution within a dataset is, the more
aligned the dataset is. By comparing entropy of the orientation distribution of
the augmented input data and the data transformed by the spatial transformer,
we can observe whether the spatial transformer performs alignment of the objects
or not. We do not have access to the probability density function directly for
computation of the entropy, but we can estimate the entropy from samples. We
chose the Kozachenko-Leonenko entropy estimator [6] for the purpose because
it relies on pairwise distances of the samples, which can be computed trivially,
whereas other approaches to the problem, e.g. that rely on density estimation,
are not so straightforwardly applicable on spherical distributions.

Let X = (x1,x2, ...,xn), xi ∈ Rd be the samples from the distribution
subject to the entropy estimation. Let (di)

n
i=1 be the distances of the samples

xi to their k-th nearest neighbors, then the Kozachenko-Leonenko estimate can
be written as:

Ĥ(X) = ψ(n)− ψ(k) + log(c) +
d

n

n∑
i=1

log(di) (2)

where ψ is the digamma function, and c is the volume of the unit ball dependent
on the norm used to calculate the distances. In the case of X being distribution

93PointNet with Spin Images

on the unit sphere, the distance is defined by the angle between samples, and
the c = 2π(1− cos 1) is the surface area of the spherical cap with the unit angle
between the apex and the edge.

We repeated the experiment from Section 6.1 and we estimated the differen-
tial entropy of the orientation distributions of the data before and after applica-
tion of the transformations generated by the spatial transformer. Since spatial
transformer is not restricted to produce only orthogonal transformations, we
normalized the transformed orientation vectors in order to obtain spherical dis-
tribution.

Table 2. Results of the entropy estimation experiment with increasing maximal angle
of rotation. Analytical differential entropy H(X) of uniform distributions of the spher-

ical caps is depicted as a reference. Ĥ(X) is the estimated entropy of input orientation

distribution. Ĥ ′(X) is the estimated entropy of orientation distribution of the objects
transformed by the spatial transformer or by the orientation alignment layer. The last
column is simply the difference of 3rd and 4th columns. The values were measured on
validation splits of 10-fold cross validation and the reported results are averages.

Spatial transformer

Angle H(X) Ĥ(X) Ĥ ′(X) difference

0.25π 0.61 0.54 −0.45 0.99

0.5π 1.84 1.77 1.55 0.22

0.75π 2.37 2.27 2.18 0.09

π 2.53 2.42 2.36 0.06

Orientation alignment layer

π 2.53 2.42 1.68 0.74

Results of the entropy experiment are given in Table 2. We can see that there
is a relation between accuracy and differential entropy of orientation distribution
by comparing the results with the experiment from previous section summarized
by Table 1, where spatial transformer was most helpful in the cases of maximum
angle up to π

2 , which was also the case in this experiment. The experiment sug-
gests that the spatial transformer probably helps in certain cases, but it is likely
not a universal remedy for the problem of pose alignment. Careful adjustment of
the spatial transformer hyper-parameters might be needed in order to enjoy its
benefits. Orientation alignment layer performed better than spatial transformer
on fully uniform rotations with more significant entropy reduction. Disadvantage
of orientation alignment layer is that it performs in a way that is independent
on the input orientation distribution entropy by the nature of Algorithm 1, so
the entropy after transformation is the same for all tests.

6.3 Benchmarks

On datasets which are mostly aligned (ModelNet datasets), the PointNet models
1–3 perform well and additional local features wre not helpful for classification.

94 Jakub Střelský

Fig. 2. left: orientation distribution of inputs in rotated ModelNet10 (two different
view angles), right: orientation distribution of objects after orientation alignment layer

Table 3. Test classification accuracy of presented methods on the ModelNet10, Mod-
elNet40, SHREC17, and Augmented ModelNet10 datasets. Number of parameters
slightly differ for each variant because of the size of output layer. The reported num-
ber of parameters is taken from the ModelNet10 variant. Micro indicates the accuracy
averaged over the test set. Macro is the average of class accuracy averages.

ModelNet10 ModelNet40 SHREC17 AModelnet10

Model Macro Micro Macro Micro Macro Micro Macro Micro # params

1 PN 0.90 0.90 0.85 0.82 0.42 0.30 0.38 0.37 291k
2 PNST 0.91 0.91 0.85 0.81 0.42 0.30 0.38 0.37 314k
3 PNSTL 0.91 0.91 0.85 0.81 0.42 0.31 0.22 0.23 1.6M
4 SI 0.83 0.82 0.71 0.67 0.67 0.51 0.79 0.78 438k
5 HSI 0.88 0.88 0.84 0.81 0.63 0.50 0.75 0.74 403k
6 HPN 0.89 0.89 0.85 0.82 0.44 0.34 0.53 0.52 293k
7 HPNS 0.89 0.90 0.84 0.80 0.46 0.38 0.61 0.61 293k
8 HPNOA 0.73 0.71 0.66 0.62 0.58 0.45 0.62 0.60 293k

On the other two datasets, which are perturbed by rotations and additionally
translations in the case of Augmented ModelNet10, the Model 4 was superior
to others probably because of its invariance under rigid transformations. The
Model 5 seems stable in the sense that it is never substantially worse than the
best model in each task, so it seems that a combination of rotation invariant
features with absolute point coordinates is a promising direction.

The performance of the Model 8, which utilizes orientation alignment layer,
was inferior in most cases, because the orientation alignment layer is harmful
when the data are well aligned. However, we see that in the SHREC17 task,
the presence of orientation alignment is beneficial compared to Models 6 and 7,
which indicates that reduction of orientation distribution entropy was achieved.

7 Conclusion

We have empirically demonstrated that PointNet can benefit from point neigh-
borhood features on classification tasks where objects represented by point clouds
may appear in arbitrary orientation. Spin images seem to be promising candi-
dates of point neighborhood features. Experiments also suggest that the spatial
transformer technique, employed by PointNet in order to deal with the problem
of object orientation alignment, may be difficult to utilize properly depending

95PointNet with Spin Images

on the data. We have also proposed a simple experiment to measure quality of
alignment achieved by spatial transformer interpretatively on the tasks where
orientation of objects is known in advance. We have also introduced a simple
heuristic algorithm as an alternative to spatial transformer, which we call orien-
tation alignment layer. Further experiments suggest that orientation normaliza-
tion layer might be able to achieve better quality of orientation alignment than
spatial transformer on difficult data.

In the future work, we would like to design better feature selection method
for our orientation alignment layer in order to make it more robust. We believe
that spatial transformer could also benefit from local point features, and we
would like to investigate the idea. It would also be possible to combine spatial
transformer and orientation alignment layer into single model. Finally, we intent
to compare spin images with other rotation invariant features.

References

1. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface recon-
struction from unorganized points. SIGGRAPH Comput. Graph. 26 (1992)

2. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer
networks. In: Advances in Neural Information Processing Systems 28, pp. 2017–
2025 (2015)

3. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in
cluttered 3d scenes. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI). pp. 433–449 (1999)

4. Kanezaki, A., Matsushita, Y., Nishida, Y.: Rotationnet: Joint object categorization
and pose estimation using multiviews from unsupervised viewpoints. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

5. Klokov, R., Lempitsky, V.: Escape from cells: Deep kd-networks for the recognition
of 3d point cloud models. In: 2017 IEEE International Conference on Computer
Vision (ICCV) (2018)

6. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of the entropy of a random
vector. Probl. Peredachi Inf. 23, 9–16 (1987)

7. Maturana, D., Scherer, S.: Voxnet: A 3d convolutional neural network for real-time
object recognition. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (2015)

8. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE (2017)

9. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Neural Information Processing Systems (NIPS)
(2017)

10. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.: Volumetric and multi-
view cnns for object classification on 3d data. In: Proc. Computer Vision and
Pattern Recognition (CVPR), IEEE (2016)

11. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.G.: Multi-view convolutional
neural networks for 3d shape recognition. In: Proc. ICCV (2015)

12. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: IEEE Conference on Computer
Vision and Pattern Recognition, CVPR (2015)

96 Jakub Střelský

	1
	paper1
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	9
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	10
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	11
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	12
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	13
	paper2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	14
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	15
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	16
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	17
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	18
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	19
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	20
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	21
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	22
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	23
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	24
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	25
	paper3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	26
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	27
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	28
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	29
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	30
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	31
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	32
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	33
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	34
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	35
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	36
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	37
	paper4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	49
	paper5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	50
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	51
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	52
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	53
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	54
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	55
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	56
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	57
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	58
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	59
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	60
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	61
	paper6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	62
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	63
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	64
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	65
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	66
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	67
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	68
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	69
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	70
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	71
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	72
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	73
	paper7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	74
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	75
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	76
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	77
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	78
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	79
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	80
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	81
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	82
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	83
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	84
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	85
	paper8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	86
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	87
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	88
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	89
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	90
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	91
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	92
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	93
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	94
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	95
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	96
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	97
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	98
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	99
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	100
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	101
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	102
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	103
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	104
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	105
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	106
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	107
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	108
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	109
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	110
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	111
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	112
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	113
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	114
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	115
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	116
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	117
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	118
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	119
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	121
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	122
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	123
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	124
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	125
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	126
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	127
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	128
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	129
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	130
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	131
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	132
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

