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ABSTRACT

Recent approaches adopt multimodel databases (MMDBs) to
natively handle the variety issues arising from the increasing
amounts of heterogeneous data (structured, semi-structured, graph-
based, etc.) made available. However, when it comes to analyzing
these data, traditional data warehouses (DWs) and OLAP systems
fall short because they rely on relational Database Management
Systems (DBMSs) for storage and querying, thus constraining
data variety into the rigidity of a structured schema. This pa-
per provides a preliminary investigation of the performance of
an MMDB when used to store multidimensional data for OLAP
analysis. A multimodel DW would store each of its elements
according to its native model; among the benefits we envision for
this solution, that of bridging the architectural gap between data
lakes and DWs, that of reducing the cost for ETL data transfor-
mations, and that of ensuring better flexibility, extensibility, and
evolvability thanks to the use of schemaless models. To support
our investigation we present an implementation, based on the
UniBench benchmark dataset, that extends a star schema with
JSON, XML, spatial, and key-value data; we also define a sample
OLAP workload and use it to test the performance of our solution
and compare it with that of a classical star schema. As expected,
the full-relational implementation performs better, but we believe
that this gap could be balanced by the benefits of multimodel in
dealing with variety. Finally, we give our perspective view of the
research on this topic.

1 INTRODUCTION

Big Data is notoriously characterized by (at least) the 3 V’s: vol-
ume, velocity, and variety. To handle velocity and volume, some
distributed file system-based storage (such as Hadoop) and new
Database Management Systems (DBMSs) have been proposed.
In particular, four main categories of NoSQL databases have
been proposed [2]: key-value, extensible record, graph-based,
and document-based.

Although NoSQL DBMSs have successfully proved to support
the volume and velocity features, variety is still a challenge [21].
Indeed, several practical applications (e.g. retail, agriculture, etc.)
ask for collecting and analyzing data of different types: structured
(e.g., relational tables), semi-structured (e.g., XML and JSON), and
unstructured (such as text, images, etc.). Using the right DBMS
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for the right data type is essential to grant good storage and anal-
ysis performance. Traditionally, each DBMS has been conceived
for handling a specific data type; for example, relational DBMSs
for structured data, document-based DBMSs for semi-structured
data, etc. Therefore, when an application requires different data
types, two solutions are actually possible: (i) integrating all data
into a single DBMS, or (ii) using two or more DBMSs together.
The former solution presents serious drawbacks: first of all, some
types of data cannot be stored and analyzed (e.g., the pure re-
lational model does not support the storage of images, XML,
arrays, etc. [29]); besides, even when data can be converted and
stored in the target DBMS, querying performances could be un-
satisfactory. The latter approach (known as polyglot persistence
[16]) presents important challenges as well, namely, technically
managing more DBMSs, complex query languages, inadequate
performance optimization, etc. Therefore, Multimodel databases
(MMDBs) have recently been proposed to overcome these issues.
A MMDB is a DBMS that natively supports different data types
under a single query language to grant performance, scalability,
and fault tolerance [21]. Remarkably, using a single platform for
multimodel data promises to deliver several benefits to users
besides that of providing a unified query interface; namely, it will
simplify query operations, reduce development and maintenance
issues, speed up development, and eliminate migration problems
[21]. Examples of MMDBs are PostgreSQL and ArangoDB. Post-
greSQL supports the row-oriented, column-oriented, key-value,
and document-oriented data models, offering XML, HSTORE,
JSON/JSONB data types for storage. ArangoDB supports the
graph-based, key-value, and document-oriented data models.

Handling variety while granting at the same time volume and
velocity is even more complex in Data Warehouses (DWs) and
OLAP systems. Indeed, warehoused data result from the integra-
tion of huge volumes of heterogeneous data, and OLAP requires
very good performances for data-intensive analytical queries [20].
Traditional DW architectures rely on a single, relational DBMS
for storage and querying!. To offer better support to volume
while maintaining velocity, some recent works propose the usage
of NoSQL DBMSs; for example, [8] relies on a document-based
DBMS, and [5] on a column-based DBMS. NoSQL proposals for
DWs are based on a single data model, and all data are trans-
formed to fit with that model (document, graph, etc.). Overall,
although these approaches offer interesting results in terms of
volume and velocity, they have been mainly conceived and tested
for structured data, without taking into account variety.

More precisely, this is true for so-called ROLAP architectures. In MOLAP architec-
tures, data are stored in multidimensional arrays. Finally, in HOLAP architectures,
a MOLAP and a ROLAP systems are coupled.



Furthermore, to facilitate OLAP querying, DWs are normally
based on the multidimensional model, which introduces the con-
cepts of facts, dimensions, and measures to analyze data, so source
data must be forcibly transformed to fit a multidimensional logi-
cal schema following a so-called schema-on-write approach. Since
this is not always painless because of the schemaless nature of
some source data, some recent work (such as [12]) propose to
directly rewrite OLAP queries over document stores that are not
organized according to the multidimensional model, following a
schema-on-read approach (i.e., the multidimensional schema is
not decided at design time and forced in a DW, but decided by
each single user at querying time). However, even this approach
relies on a single DBMS.

An interesting direction towards a solution for effectively
handling the 3 V’s in DW and OLAP systems is represented by
MMDBs. A multimodel data warehouse (MMDW) can store data
according to the multidimensional model and, at the same time,
let each of its elements be natively represented through the most
appropriate model. Among the benefits we envision for MMDWs,
that of bridging the architectural gap between data lakes and
DWs, that of reducing the cost for ETL data transformations, and
that of ensuring better flexibility, extensibility, and evolvability
thanks to the use of schemaless models.

In this paper we conduct a preliminary investigation of the
performance of MMDWs to store multidimensional data. To this
end we introduce a logical schema for MMDWs and its implemen-
tation on PostgreSQL, which gives native multimodel support.
Our schema extends the classical star schema introducing semi-
structured (JSON, XML, and key-value) data in all the multidi-
mensional elements; thus, it goes in the direction of coupling the
pros of schema-on-write approaches (mainly, good performances
and simple query formulation with no need for query rewriting)
with those of schema-on-read approaches (higher flexibility in
ad-hoc querying).

Due to the lack of a benchmark for multimodel data warehouse,
in this paper we propose our own OLAP workload to evaluate
the performance of our proposal, which we also test against a
full-relational implementation on PostgreSQL. To the best of our
knowledge, no benchmark dataset for DW (either relational or
NoSQL) supports variety; thus, for the experiments we use the
schema and data provided by UniBench [30], a benchmark for
MMDBs that well represents variety.

The paper outline is as follows. After discussing the related
literature in Section 2, in Section 3 we present the UniBench case
study. Sections 4 and 5 introduce our logical schema for MMDWs
and the related OLAP workload, respectively. Section 6 shows
the results of the experiments we made, while Section 7 presents
our vision of future MMDW research. Finally, in Section 8 we
draw the conclusions.

2 RELATED WORK

Some recent work concerns warehousing and OLAP using NoSQL
DBMSs of different kinds. In [11], three different logical mod-
els are proposed, using 1 or N document collections to store
data in document-based DBMSs and highlighting the utility of
nested document and array types [10]. The same authors also
investigate how to handle complex hierarchies and summariz-
ability issues with document-based DWs [9]. The introduction
of spatial data in document-based DWs has been discussed in
[15], which proposes a new spatial multidimensional model to
avoid redundancy of spatial data and improve performances. A
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Figure 1: Overview of the UniBench data

logical model for column-based DWs has been proposed by [5]
and [7] to address volume scalability. In [28], transformation
rules for DW implementation in graph-based DBMSs have been
proposed for better handling social network data. To the best of
our knowledge, only [22] presents a benchmark for comparing
NoSQL DW proposals; specifically, this benchmark is applied to
MongoDB and Hbase. Some works also study the usage of XML
DBMSs for warehousing XML data [24]. Although XML DWs
represent a first effort towards native storage of semi-structured
data, their querying performances do not scale well with size,
and compression techniques must be adopted [4].

Among all these proposals, it is hard to champion one logical
and physical implementation for NoSQL and XML DWs, since
no approach clearly outperforms the other on the 3 V’s. More-
over, these single-model proposals do not address other issues
related to warehousing big data, such as reducing the cost of ETL,
evolution and improving flexibility.

Recently, some approaches to execute OLAP queries directly
against NoSQL data sources were proposed. In [12], a schema-
on-read approach to automatically extract facts and hierarchies
from document data stores and trigger OLAP queries is proposed.
A similar approach is presented in [17]; there, schema variety is
explicitly taken into account by choosing not to design a single
crisp schema where source fields are either included or absent,
but rather to enable an OLAP experience on some sort of “soft”
schema where each source field is present to some extent. In
the same direction, [13] proposes a MapReduce-based algorithm
to compute OLAP cubes on column stores, while [6] aims at
delivering the OLAP experience over a graph-based database.

The approaches mentioned above rely on a single-model data-
base. Conversely, [19] proposes a pay-as-you-go approach which
enables OLAP queries against a polystore supporting relational,
document, and column data models by hiding heterogeneity be-
hind a dataspace layer. Data integration is carried out on-the-fly
using a set of mappings. Even this approach can be classified as
schema-on-read; the focus is on query rewriting against hetero-
geneous databases and not on the performances of the approach.

3 CASE STUDY: UNIBENCH

UniBench is a benchmark for multimodel databases proposed
in [30]. It includes a retail dataset composed of relational, XML,
JSON, key-value, and graph data as shown in Figure 1, which
makes it a good representative for variety. However, UniBench
was not conceived for OLAP queries. Since our goal is to han-
dle variety with specific reference to DWs, we had to derive a
multidimensional schema from UniBench. This adaptation re-
quired some modifications, including the addition of descriptive
attributes (e.g., LastName), which allows to better test the ef-
fectiveness of the proposed approach; as a consequence, some
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Figure 2: Multidimensional schema for UniBench (the
DFM notation [18] is used)

additional data had to be (randomly) generated. The resulting
schema represents the Order fact; as shown in Figure 2 it presents
three dimensions:

o A Time dimension with levels Day, Month, and Year.

e A Product dimension with one hierarchy including level
Store and some descriptive attributes (e.g., Vendor). Inter-
estingly, stores are described by a spatial level, Location.
The cloud symbol in the schema denotes that a product can
have some additional descriptive attributes not specified
at design time.

e A Costumer dimension in which two hierarchies are rooted:

one with level Gender, one with UsedBrowser. The cus-
tomer also has some descriptive attributes, e.g., LastName.

Attribute Rating is cross-dimensional, i.e., its value is jointly de-
termined by Product and Customer (a customer can rate several
products). The fact has one measure, TotalPrice.

Finally, since an order is associated to many products, a many-
to-many relationship is set between the fact and the product
dimension (non-strict hierarchy).?

4 A MULTIMODEL STAR SCHEMA FOR
UNIBENCH

In this section we present a MultiModel, MultiDimensional (in
short, M3D) logical schema for the Order fact introduced above.
Essentially, we use a classical star schema with a fact and di-
mension tables, extended with semi-structured data in JSON and
XML form, and with spatial data. Starting from a star schema
has several clear advantages: (i) the star schema is supported
by all OLAP servers and already in use in a huge number of en-
terprise DWs; (ii) the best practices for designing a star schema
from a conceptual schema are well understood and commonly
adopted by practitioners; (iii) fact-dimension relationships are
ruled by foreign keys so their consistence is natively checked
by the DBMS; (iv) performance optimization of star schema has
been long studied and practiced at both the logical (e.g., via view
materialization) and the physical (e.g., via indexing) level.
Clearly, several possible alternatives arise for modeling the
Order fact with an extended star schema. Defining a set of best
practices for designing an M3D schema that achieves the best
trade-off between the five advantages listed in Section 1 is out of
the scope of this paper; so, we opted for designing the schema
based on a simple guideline: preserve as much as possible the
source data variety, i.e., minimizing the transformations to be
applied to UniBench source data. Figure 3 shows the M3D schema

2We have not considered the graph data of UniBench, since the PostgreSQL DBMS
used for implementation does not support them natively.

that results from applying this guideline to the conceptual schema
in Figure 2. It can be described as follows:

o The fact table, Fact_Order, has one tuple for each order

and references the order customer and date via foreign

keys. Each tuple includes a JSON document that stores
the totalPrice measure and an array of orderlines, each
specifying a product.

The customer dimension table, Dim_Customer, specifies

each customer’s data in the form of XML documents.

The temporal dimension table, Dim_Date, stores in each

tuple a JSON document with the order date; to enable use-

ful aggregations, it also stores the corresponding month
and year.

The product dimension table, Dim_Product, for each prod-

uct stores its location (as a spatial attribute), vendor, and

store, as well as a JSON document with the product name

(title), price, and image. Each product also has a Feedback

attribute that stores all its ratings in key-value form, with

the customer code as a key.

e As shown in Figure 2, each order refers to several prod-
ucts. To model this non-strict hierarchy, rather than opt-
ing for the classical relational solution (a many-to-many
bridge table [18]), we established a connection between
the InfoOrder document stored in the fact table and the
Dim_Product dimension table via the asin attribute.

An example of instances of the fact table and of the product
dimension table are shown in Figure 4.

The cloud symbol in Figure 2 denotes that the product di-
mension can include some additional attributes not specified
at design time (hence, not included in the JSON schema). For
instance, some InfoPrdt documents will have an EU attribute
precising the category of product according to the EU classifica-
tion (see Figure 5), while some InfoOrder documents will have a
brand attribute.

5 AN OLAP WORKLOAD FOR UNIBENCH

The workload we introduce to test our MD schema is inspired by
that of the classical SSB benchmark [23], itself loosely based on
the TPC-H benchmark. The SSB workload is meant to function-
ally cover the different types of star schema queries while varying
fact table selectivity. SSB queries are organized in 4 flights, where
each flight is a list of 3 to 4 queries. Query flight 1 has restrictions
on only 1 dimension, flight 2 has restrictions on 2 dimensions,
flight 3 on 3, and flight 4 represents a what-if sequence of the
OLAP type. We adopt the same approach, while at the same time
classifying queries according to the usage of relational (R)/non
relational (NR) measures, relational/non relational group-by lev-
els, and relational/non relational selection levels. We also add
a parameter representing the type of join: relational means a
join using two relational attributes, while JSON means a join
between a JSON attribute and a relational one. Q10 and Q12 use
selection attributes that are not part of the JSON schema (brand
and EU, respectively). In Table 1, which presents the workload,
“by” introduces a group-by and “for” a selection.

6 MULTIMODEL VS. FULL-RELATIONAL

In this section we give a preliminary assessment of the effec-
tiveness and efficiency of MMDWs as compared to those of a
classical relational implementation.
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Figure 3: Multimodel star schema in PostgreSQL (solid and dashed lines represent foreign key relationships and implicit
relationships between relational and JSON attributes, respectively; in italics, level properties)
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Figure 4: Sample instances of Fact_Order (top) and Dim_Product (bottom)

{ "title": "5 LED Bicyle Rear Tail", 6.1 Emciency
"price":  8.26,
"imhUrl": "http://ecx.images-amazon.com/SY300.jpg", We have implemented the M3D schema using PostgreSQL with
il Electronics” i} its JSON, XML, key-value, and spatial native storage. Data used to

feed dimensions and facts has been extracted from the UniBench
Figure 5: An InfoPrdt document including an extra- benchmark [30]. Specifically, we have 745 dates (|Dim_Date|),
schema attribute, EU 9,949 customers (|Dim_Customer]), 10,116 products (|Dim_Product|),
and 640,000 orders (|Fact_Order]).



Table 1: OLAP queries on the Order fact

select count(distinct 0.1d_Order) as NumberOfOrders, d.Month
from ( select Id_Order, products->>'asin’ as Asin
from Fact_Order o,
jsonb_array_elements(o.InfoOrder->'orderLine') as products
) as op, Fact_Order o, Dim_Date d,
( select skeys(p.Feedback) as Id_Cust, Asin, svals(p.Feedback) as Rating
from Dim_Product p
) ascp
where d.Year='2020' and Rating>4 and o.ld_Date=d.ld_Date
and o.ld_Cust=cp.ld_Cust and o.ld_Order=op.ld_Order and cp.Asin=op.Asin
group by d.Month

Figure 6: SQL formulation of query Q2 in PostgreSQL over
the M®D schema

All the OLAP queries proposed in Section 5 have been suc-
cessfully formulated and executed over the M3D schema, which
confirms the feasibility of using PostgreSQL as a platform for stor-
ing and querying MMDWs. Figure 6 shows the SQL formulation
of a sample query in PostgreSQL; note that attributes Feedback
of type key-value and InfoOrder of type JSON are retrieved as
table views to be used for a join or a selection.

In the following, we present some experiments aimed at quan-
titatively comparing the querying performances of the M3D
schema and those of a full-relational star schema (from now
on, FR). For the FR schema we used two bridge tables as shown
in Figure 8. The first one, Bridge_Ord_Prod, stores the many-
to-many relationship between an order and its products. The
second one, Bridge_Cust_Prod, is necessary to store the Rating
cross-dimensional attribute. Noticeably, attributes EU and brand
are not included here since, as explained in Section 4, they were
not known at design time. Clearly, unless some (costly) evolution
of the schema is carried out, these attributes cannot be loaded
and they cannot be used for querying. The FR schema is also
implemented in PostgreSQL; Figure 7 shows the SQL formulation
of query Q2 over the FR schema. A comparison between Figures
6 and 7 suggests that the formulation over the M3D schema is
more complex; however, we wish to emphasize that there is no
real difficulty in formulating queries on an MMDW in compar-
ison to a traditional star schema, except that some knowledge
of the DBMS-specific operators to manipulate key-value, JSON,
and XML types is required.

For both implementations, B+trees have been used to index
relational attributes. For the M3D schema, some tests were done
in order to find the best optimization plan for the workload
queries. The results we report below use the following;: (i) a Gist
index is used on the Feedback hstore attribute; (ii) B+trees and
Gin indexes are used on JSON attributes. All tests have been run

Query | Measure | Group-by | Selection | Join Query Numb. of selections NR types
Q0 R R R R Number of orders by months for given months and years 2 —
Q1 R R R JSON | Number of orders by months for given stores and years 2 JSON
Q2 R R NR JSON | Number of orders by months for given years and rating 2 JSON key-value
Q3 R NR R R Number of orders by months, gender for given years 1 XML
Q4 R NR NR JSON | Number of orders by months, gender for given products 1 JSON, XML
Q5 NR R R JSON | Total price by year for given stores 1 JSON
Q6 NR R NR R Total price by year for given genders 1 JSON, XML
Q7 NR NR R JSON | Total price by year, gender for given stores and years 2 JSON
Q8 NR NR NR R Total price by year of birth for given browsers and genders 2 XML
Q9 NR NR NR JSON | Total price by date, customer for given months, ratings, stores 3 JSON key-value
Q10 NR NR NR opt. R Total price by date for given months, genders, brands 3 JSON, XML
Q11 NR NR NR JSON | Total price by date, customer for given months, genders, ratings 3 JSON, XML key-value
Q12 NR NR NR opt. JSON | Total price by costumer for given EU values 1 JSON, XML

Q2: Q2:

select count(distinct Id_Order) as NumberOfOrders, d.Month

from Fact_Order o, Dim_Date d, Bridge_Cust_Prod cp, Bridge_Ord_Prod op
where d.Year='2020' and Rating>4 and o.ld_Date=d.ld_Date

and o.ld_Cust=cp.ld_Cust and o.ld_Order=op.ld_Order and cp.Asin=0p.Asin
group by d.Month

Figure 7: SQL formulation of query Q2 in PostgreSQL over
the FR schema

Dim_Date
<PK>|d Date : Int
Date : Date
Bridge_Ord_Prod Month : Date
Year : Date
<PK,FK> Id_Order: String
<PK,FK> Asin : String Dim_Customer
<PK>1d Cust : String
Fact_Order FirstName  : String
Dim_Product ! LastName  : Strinj
im_ u <PK>|d Order : String Gender . String
<PK> Asin  : String <FK> Id_Cust : String Birthday N Date
Title  : String <FK> Id_Date : Int CreationDate : Date
Price  : Double TotalPrice : Double BrowserUsed : String
ImhUrl : String .
Location: Geo
Store Str!ng Bridge_Cust_Prod
Vendor : String

<PK,FK> Id_Cust : String
<PK,FK> Asin : String
Rating : Int

Figure 8: Full-relational star schema in PostgreSQL

Table 2: Performance of benchmark queries (in millisec-
onds)

Qo 253 310
Q1 712 633
Q2 2509 1161
Q3 3996 1023
Q4 1049 175
Q5 1437 714
Q6 1034 197
Q7 1902 711

Q8 817 131
Q9 187 732

Q10 1660 | —
Qi1 2726 | 517
Q12 1165 | —

on a Core i5 with 4 CPUs @2.3GHz laptop with 16 GB RAM and
SSD running MacOS Mojave.

Table 2 shows the query execution in milliseconds against
both implementations. Note that Q10 and Q12 cannot be exe-
cuted on the FR schema because they use attributes (brand and
EU, respectively) that were not known at design time so they
are not part of that schema. Not surprisingly, the full-relational
implementation outperforms the multimodel implementation
over most queries. This can partly be explained by recalling that



Table 3: Storage size

Table M’D FR
Fact_Order 603 MB 41 MB
Dim_Product 4160 kB 3896 kB
Dim_Customer 3280 kB 824 kB
Dim_Date 56 kB 40 kB
Bridge_Ord_Prod — 55 MB
Bridge_Cust_Prod — 9864 kB

PostgreSQL was originally born as a relational DBMS, so semi-
structured and complex data querying is not fully optimized yet.
In particular, PostgreSQL lacks specific optimization structures
adapted to XML data, thus, the InfoCust attribute cannot be prop-
erly indexed; this impacts queries Q3, Q4, Q6, Q8, and Q10. M3D
is also penalized by the necessity to have a JSON attribute in the
fact table to be joined with a dimension table (namely, InfoOrder).
Additionally, the fact table in M3D is quite larger than the one in
the FR schema, which results in slower star joins (even using the
JSONB type instead of JSON, the improvement is very small). The
only case where the multimodel implementation significantly
outperforms the full-relational one is Q9; this is due to the use of
a bridge table in the relational implementation and specifically
to the fact that, despite the presence of indexes, the optimizer
uses sequential scan to access the bridge table.

Table 3 shows the storage size of both implementations. Un-
surprisingly, the relational implementation is more sober than
the multimodel one.

Though devising complete guidelines and best practices for
multimodel design is out of the scope of this paper, we observe
that:

(1) the relational model is still more efficient, so it should be
used, during logical design, for the data sources that can
be smoothly transformed into relational form (i.e., those
whose transformation does not entail loss of information
content and can be accommodated within the time frame
of ETL);

conversely, the data sources that hardly fit into the fixed
structure of a relational schema, e.g., because their schema
is not completely known in advance, should be left in their
native form.
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6.2 Effectiveness

In this section we provide a qualitative comparison of the two
solutions in terms of effectiveness from three points of view:

o Transformation. The full-relational implementation required
all the UniBench data to be translated in relational form
according to the star schema in Figure 8. While in the M3D
schema the dimension and fact tables are fed with JSON
data with simple INSERT queries, in the FR schema more
steps are required. For instance, just to feed the bridge
table using the ETL Talend tool we need (i) a job for read-
ing the JSON collection (tFileInput]SOn); (ii) a loop JSON
query to read the array of products of each InfoOrder doc-
ument; (iii) a job for reading the Dim_Product dimension
table; and finally (iv) a join operation. This means that
transformations may require a significant time and can be
error-prone, so they may be unsuitable in specific settings
such as those of real-time DWs.

e Flexibility. Differently from the FR schema, the M3D one
preserves the data variety existing in the data sources. This
is particularly relevant for instance in self-service busi-
ness intelligence scenarios, where data scientist will write

ad-hoc queries to satisfy situational analysis needs [1].
Besides, mixing different models allows, in an MMDW, to
achieve higher flexibility in the modeling solutions taken,
for instance when dealing with many-to-many relation-
ships.

Evolution. While the multimodel implementation is par-
tially schemaless, so it inherently supports evolution, the
situation with the full-relational implementation is quite
different. In fact, even adding a couple of simple levels
(as EU and brand in our case study) requires, at the very
least, changing the relational schema of one or more tables,
editing the ETL procedures, and migrating the data from
the old schema to the new one. A more complex evolu-
tion, e.g., one involving a new many-to-many relationship,
would have even more impact because it would require
creating new tables. In case users ask for a full versioning
of the schemata, the effort would be greater still. An M3D
schema represents a good trade-off here because most
evolutions can be handled seamlessly with no impact on
tables and ETL; clearly, a more invasive evolution (such as
adding a new dimension or measure) would still require
a change to the relational part of the schema and to the
ETL.

7 A PERSPECTIVE ON MMDW RESEARCH

The experiments we conduct in this work are encouraging enough
to set a short- and mid-term perspectives of the research on
MMDWs. The advantages we envision for MMDWs can be sum-
marized as follows:

(1) An MMDW will natively and efficiently support OLAP
querying over large volumes of multimodel and multidi-
mensional data, thus ensuring support to both volume,
velocity, and variety.

Storing data in their native model means reducing the
data transformations required; hence, the effort for writing
(time-consuming and error-prone) ETL procedures will be
reduced in MMDWs, and the freshness of data in the DWs
will be increased.

MMDWs will bridge the architectural gap between data
lakes and DWs. A data lake ingests heterogeneously-
structured raw data from various sources and stores them
in their native format, enabling their processing according
to changing requirements [25]. Differently from DWs, data
lakes support storage of any kind of data with low-cost
design, provide increasing analysis capabilities, and offer
an improvement in data ingestion; however, analysis tasks
are more complex and time-consuming since a schema-on-
read approach must be followed. We believe MMDWs will
offer an effective architectural trade-off by enabling both
OLAP multidimensional analyses and ad-hoc analytics on
the same repository.

Schema evolution is a crucial issue in traditional DW ar-
chitectures, since modifying relational schemata to accom-
modate new user requirements is a complex and expensive
task. MMDWs can store schemaless data, so they will en-
sure a more effective support to schema evolution [27].
Again thanks to their support of schemaless data, higher
flexibility and extensibility will be granted, which will
enhance analysis capabilities thus generating added value
for users [3].
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(6) More specifically, key-value stores on the one hand,
and the array constructs supported by document-based
databases on the other, provide an alternative solution
to model many-to-many relationships appearing in some
multidimensional schemata.

In our short-term research agenda on MMDWs we mainly
plan to verify and quantify these benefits via an extensive set
of experiments based on a more comprehensive case study. This
will require, for instance, to measure the effort for writing ETL
procedures to transform all data according to a single model;
to assess the increase in querying expressiveness achieved by
MMDWs in function of the amount of data variety; to simulate
dynamic settings so as to evaluate the saving in dealing with
schema evolution. In order to overcome performance limitations
described in the previous section, we think also that new exper-
iments are mandatory on another multimodel DBMS such as
Oracle, which provides other types of implementation for non
relational data, and also distributed storage and computation.

In the mid-term, the preliminary work we presented in this
paper opens several research issues:

o Multidimensional design from MMDBs. The existing data-
driven approaches to multidimensional design are based
on detecting functional dependencies in single-model data
sources, namely, relational, XML, linked-open data, JSON
[26]. Using a multimodel data source for design requires
integrating different techniques into a synergic methodol-
ogy.

o Conceptual models. Existing conceptual models for DWs
are mostly aimed at designing multidimensional schemata
with fixed structure. To take full advantage of the flexibility
ensured by MMDWs, new models capable of coping with
schemaless data (as naively done with the cloud symbol
in Figure 2) are needed.

o Best practices for logical design. In presence of variety, sev-
eral alternatives emerge for the logical representation of
dimensions and facts [14]. Indeed, some combinations of
models may be better than others when coupled with star
schemata. A specific set of guidelines for logical design of
MMDWs is thus needed to find the best trade-off between
performances, fidelity to source schemata, extensibility,
and evolvability; this should also include the issues related
to view materialization.

e OLAP benchmark. Effectively benchmarking MMDBs [21]
and non relational DBMSs [22] is still a challenge. Pro-
viding a benchmark for MMDWs is a further challenge,
since it requires defining a dataset representative of DW
volume and multimodel variety, as well as a full range of
representative OLAP queries over this dataset.

o Indexing. PostgreSQL offers different types of indexes over
MMDBEs, e.g., B-trees, hash, GiST (for geo data), GIN (for
document and hstore data), etc. Ad hoc indexing strategies
will have to be devised, in presence of variety, to cope with
the specific features of multidimensional data and OLAP
queries.

e OLAP tools. Last but not least, more sophisticated OLAP
tools are required to let users benefit from the additional
flexibility introduced by MMDWs while ensuring good
performances. Specifically, there is a need for devising
techniques to automatically generate efficient SQL queries
over MMDWs from the (MDX-like or graphical) language
used by the front-end.

8 CONCLUSION

Handling big data variety, volume, and velocity is an important
challenge for decision-making information systems. On the one
hand, data lakes have been proposed to ensure flexible storage of
raw data, but at the price of making analyses more complex. On
the other hand, classical DW architectures provide an efficient
framework for analyzing transformed and integrated data, but
they fall short in natively handling data variety. Motivated by the
emerging trend of MMDBs, in this work we have investigated
the feasibility of a multimodel approach to DW based on an
extension of the well-known star schema with schemaless data
as dimensions and facts. Our experiments are encouraging as
they show that all queries of our multimodel tailored OLAP
workload can run over the proposed multimodel star schema in
acceptable time compared to a full-relational implementation.
Based on these first results, we have presented many short- and
mid-term research perspectives on MMDW.
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