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Abstract. Expert estimation of objects takes place when there are no benchmark 
values of object weights, but these weights still have to be defined. That is why 
it is problematic to define the efficiency of expert estimation methods. We pro-
pose to define efficiency of such methods based on stability of their results under 
perturbations of input data. We compare two modifications of combinatorial 
method of expert data aggregation (spanning tree enumeration). Using the exam-
ple of these two methods, we illustrate two approaches to efficiency evaluation. 
The first approach is based on usage of real data, obtained through estimation of 
a set of model objects by a group of experts. The second approach is based on 
simulation of the whole expert examination cycle (including expert estimates). 
During evaluation of efficiency of the two listed modifications of combinatorial 
expert data aggregation method the simulation-based approach proved more ro-
bust and credible. Our experimental study confirms that if weights of spanning 
trees are taken into consideration, the results of combinatorial data aggregation 
method become more stable. So, weighted spanning tree enumeration method has 
an advantage over non-weighted method (and, consequently, over logarithmic 
least squares and row geometric mean methods). 

Keywords: Expert Data Aggregation, Decision-making Support, Estimate, 
Simulation, Pair-wise Comparison Matrix. 

1 Introduction 

Expert estimation is a powerful decision support tool for weakly structured subject do-
mains. Weakly structured subject domain features are listed in many sources, for in-
stance, in [1]. In our current research we propose to focus on such features of weakly 
structured domains as lack of benchmarks, incompleteness of information on estimated 
objects, and impact of human factor. These features make it difficult to define the effi-
ciency of expert estimation methods. 

While measurement of objects according to quantitative parameters (such as length, 
weight, duration etc), actually, means comparing them to some benchmark values or 
units (foot, pound, second etc), people resort to expert estimation as an alternative to 
measurement in cases when measurement of objects is impossible. In such cases expert 
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estimates of objects become the only source of quantitative information about these 
objects. Experts can provide both direct estimates in certain scales (ordinal or cardinal, 
numeric or verbal, agreement scale etc) and pair-wise comparisons of objects. Accord-
ing to many specialists, the best way to measure a set of objects according to some 
“intangible” criterion is to compare them with each other. This assumption resulted in 
emergence of many methods based on pair-wise comparisons of objects. Particularly, 
we should mention the Analytic Hierarchy/Network Process (AHP/ANP) [2, 3], 
TOPSIS [4], “triangle” and “square” [5, 6], combinatorial method [5-7], logarithmic 
least squares method (LLSM) [8]. 

Efficiency indicators for methods which operate with determined data are mostly 
based on different measures of deviation of real (experimental) data from benchmark 
values (average mean (square) deviation, mathematical expectation of error, Euclidean 
distance etc). When it comes to expert data-based methods, there is always a question: 
“what should we compare expert data (and results of their processing) with?” (as, again, 
there are no benchmarks). When a decision-maker (DM) organizes an examination, 
(s)he heuristically assumes that there is some ground truth, i.e. “exact” values of esti-
mates of objects and ratios between them. So, the key question is: which indicators can
define the degree of accuracy and credibility of expert data and methods of their aggre-
gation? Level of DM trust towards expert recommendations and decisions, made on
their basis, will depend on these indicators.

Academic publications list relatively few approaches to determination of accuracy 
of expert methods (if the term “accuracy” applies at all). According to the academic 
school of T.Saaty, the main requirement to expert data, input into pair-wise comparison 
matrices (PCM), is ordinal and cardinal consistency (absence of transitivity violations) 
[2]. In [3] the term “legitimization” is used. Expert data-based examination result is 
“legitimate” if it coincides with the DM’s independent choice (in [3] there is a curious 
example of location selection for Disneyland in China). Pankratova and Nedash-
kovskaya [9] demonstrate that results, obtained using ANP and original hybrid method, 
coincide, and this, according to the authors, confirms the credibility of hybrid method. 
In Elliot’s research [10] experts compare several estimation scales and define which of 
these scales allows them to express their preferences in the most adequate way. A sim-
ilar approach is used in [11], where the experts choose the result of aggregation of their 
estimates, which reflects their understanding of the subject domain most adequately. 

The common feature of the listed approaches is absence of any benchmark estimate 
values (in actual expert examinations there are, indeed, no benchmarks). Conceptually 
different approach involves testing of expert methods on the specially generated 
(simulated) set of “benchmark” (model) objects, for which the exact values of their 
estimates according to a certain criterion are known. For example, we can mention an 
experiment [2], where respondents are asked to estimate the ratios of several figure 
squares. Exact ratios are known only to the experiment organizer. These model values 
are compared with values, obtained based on expert estimates using group AHP. 

In Ukraine a similar approach is used in [5, 6]. The authors compare around 20 expert 
methods according to 3 criteria: accuracy (precision), duration of estimation process, 
and consistency of its results. Experts estimate 7 objects (colored figures) using differ-
ent methods. Number 7 is chosen due to psycho-physiological limitations of human 
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mind [12]. Real (benchmark, model) ratios between object weights are, again, known 
only to the experiment organizer. Aggregate estimation results are compared to bench-
mark values. Methods that produce smaller average error are considered more accurate. 

Still another approach to defining accuracy of expert methods is based on simulation 
and does not require participation of experts at all. Both model object weights and ex-
pert estimates are simulated. Such simulation of PCM is used to define threshold values 
of consistency index (CI) and ratio (CR) (these values are constantly updated based on 
the number of modeled PCM [3]). Examples of PCM simulations can also be found in 
[13]. 

2 Combinatorial method: an overview 

For the first time combinatorial method of pair-wise comparison aggregation was in-
troduced in the early 2000-s; since then it went through many updates and improve-
ments [7]. The problem (just like in AHP) is to find a vector of n  priorities (object 
weights) based on PCM, provided by one or several experts. The key idea of the method 
is most thorough usage of expert data, provided in the form of PCM. In the general 
case, this information is redundant. That is why, all non-redundant informatively-mean-
ingful basic pair-wise comparison sets, which can be formed from elements of a given 
PCM, are enumerated. Sometimes these basic sets are called spanning trees (the term 
is borrowed from graph theory). According to Cayley’s theorem on trees [14], a com-
plete PCM with dimensionality nn×  allows us to form 

2−nn  of such spanning trees. 
Each basic set allows us to build a vector of relative object weights. After that we can 
find the aggregate priority vector as ordinary (1) or weighted (2) average. 
 Practical implication of combinatorial method is its usage as the primary expert es-
timate aggregation tool in the strategic planning technology for weakly-structured sub-
ject domains [11, 15]. 
 In 2010 the advantage of combinatorial method over other pair-wise comparison ag-
gregation methods was demonstrated [16]. In 2012 the method was “re-invented” [17, 
18]. In 2017 updated formulas for calculation of relative expert competence coefficients 
(based on the quality of expert information) were introduced [19]. During the last few 
years equivalence of combinatorial method, LLSM [8] (for complete and incomplete, 
additive and multiplicative PCM), and row geometric mean [20] methods was proved. 
However, equivalence holds only if ordinary (and not weighted) average formula is 
used for aggregation (1). 

njww
TT

q

q
j

aggregate
j ..1;)(

1

1
== ∏

= (1)

where 
2−≤ nmnT  is the total number of basic pair-wise comparison sets (spanning 

trees); }..1;..1;{ Tqnjwq
j ==  is the set of relative weights of n  objects, calculated

based on spanning tree number q ; ( njwaggregate
j ..1, = ) are aggregate object weights; m

is the number of experts. 



119 

Conceptual difference of the modified combinatory method is usage of ratings of 
basic pair-wise comparison sets. These ratings are based on completeness, detail, con-
sistency, and compatibility of data, input by experts into individual PCM. Ratings of 
priority (relative alternative weight) vectors, obtained from ideally consistent PCM, re-
constructed based on every single spanning tree (basic pair-wise comparison set), are 
taken into consideration. As a result, weight aggregation formula (1) assumes the fol-
lowing look (2): 
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Additive look of basic pair-wise comparison set (spanning tree) rating is as follows: 
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Multiplicative look of basic pair-wise comparison set (spanning tree) rating is as fol-
lows: 
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In formulas (3) and (4) lk ,  are the numbers of experts ( mlk ..1, = ), whose PCM are
being compared with each other; lk cc ,  are a-priori values of relative expert compe-
tence; k  and l  can be equal or different; q is the number of ideally consistent PCM

copy kmTq ..1= ; 
kqs  is the relative average weight of scales in which basic pair-wise

comparison set elements are input; it is calculated based on Hartley’s formula [21];  
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ls  is the average weight of scales, in which elements of the respective individual PCM 
of expert number l are input.  

In (5) and (6) N is the number of grades in the scale, in which the respective pair-
wise comparison is provided. More detailed explanation of spanning tree ratings can be 
found in [19]. 
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3 Numeric example 

3 equally competent experts 321 ,, EEE  ( 1321 === ccc ) compare 4 objects
( 4321 ,,, AAAA ) in integer scales. We should calculate relative object weights (priori-
ties) based on PCM, provided by the experts. Total numbers of grades in the scales, 
selected by experts, are given in Table 1. Table 2 provides particular grade numbers, 
selected by the experts. Table 3 provides the PCM, brought to the unified scale. 

Table 1. Number of grades in the scales, selected by experts for pair-wise comparisons  

E1 E2 E3 
A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

A1 1 9 8 7 1 3 4 5 1 9 9 8 
A2 1 6 5  1 6 7  1 3 9 
A3  1 4 1 8 1 7 
A4  1  1  1 

Table 2. Numbers of specific grades of pair-wise comparison scales, selected by the experts 

E1 E2 E3 
A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

A1 1 2 4 7 1 3 4 5 1 2 4 8 
A2 1 2 4 1 2 3 1 2 5 
A3  1 2 1 2 1 3 
A4  1 1 1 

Table 3. Values of pair-wise comparisons, brought to the unified scale 

E1 E2 E3 
A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

A1 1 2 4 1/3 8 5/6 1 7 1/2 8 1/6 8 1/2 1 2 4 9 
A2 1/2 1 2 2/7 6 1/2 1/7 1 2 2/7 3 1/2 1/2 1 3 1/2 5 
A3 2/9 3/7 1 2 5/6 1/8 3/7 1 2 1/4 2/7 1 3 1/2 
A4 1/9 1/6 1/3 1 1/8 2/7 1/2 1 1/9 1/5 2/7 1 

48 ideally consistent PCM (ICPCM) ( 4843 22 =×=−nmn ) are built based on initial 
3 PCM. Each ICPCM is constructed from the respective basic pair-wise comparison set 
(spanning tree). For instance, the basic set of pair-wise comparisons of objects ),,( 21 AA

),( 31 AA , and ),( 42 AA corresponds to the spanning tree, shown on Fig. 1 (clockwise).
From the respective elements of the PCM provided by the expert 2E  we reconstruct
the ICPCM, shown in Table 4 (basic pair-wise comparison values are highlighted in 
bold, while other elements are reconstructed based on transitivity rule). 

Fig 1. Spanning tree example for 4 objects 
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Table 4. ICPCM example 

1 7 1/2 8 1/6 26 ¼ 
1/7 1 1 3 ½ 
 1/8 1 1 3 1/5 

0 2/7 1/3 1 

Similarly, ICPCM are reconstructed from all basic pair-wise comparison sets, pro-
vided by each of the 3 experts. In this process, in order to verify consistency and com-
patibility of the initial PCM, ICPCM are compared with these initial PCM provided by 
the experts. For this purpose, 3 copies of each ICPCM are built. So, the total number of 
ICPCM to be analyzed is 14422 == −nnmT . Each ICPCM is assigned a rating, calcu-
lated according to (4). For, instance, when ICPCM, shown in table 4, is compared to 
the PCM of the first expert 1E , non-normalized value of the respective rating equals
1.191. When all ICPCM ratings are calculated, they are normalized by sum (see power
index in (2)). From each ICPCM copy number 144..1=q  we reconstruct a vector of
relative object weights 

qqqq wwww 4321 ,,, (ideal consistency of the matrix allows us to use
any basic set of pair-wise comparisons as priority vector; for instance, the first row). 
Finally, the aggregate priority (object weight) vector is calculated according to (2).  

Normalized priorities 4321 ,,, wwww , calculated using the modified combinatorial
method (2), based on the example data equal (0.563734299; 0.263382041; 
0.120820159; 0.052063501). Values of priorities, calculated using ordinary combina-
torial method (1) equal (0.590174795; 0.243658012; 0.114086692; 0.052080501).  

It has been proven that ordinary combinatorial priority aggregation method (1) is 
equivalent to row geometric mean [20] and LLSM [8]. At the same time, as we can see 
from the example (and from [19]), results produced by ordinary (1) and modified 
method (2) are significantly different, so these two methods are not equivalent. 

Both row geometric mean and LLSM have lower computational complexity than 
combinatorial method, and this is their advantage. The key advantage of modified com-
binatorial method is that it allows us to consider the quality of expert data prior to its 
aggregation. Consequently, results of its work more adequately reflect the level of ex-
pert competence in the issue under consideration. 

The current research is an attempt to empirically confirm the advantage of the mod-
ified combinatorial method over the ordinary method (and, consequently, over row ge-
ometric mean and LLSM). 

4 Available approaches to determination of efficiency of 
ordinary and modified combinatorial method 

At the beginning of the paper we outlined several approaches used to determine the 
efficiency (and compare) expert methods. However, not all these approaches are appli-
cable to our particular case.  
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1. Holding real expert sessions (Saaty’s “legitimization” [3]) intended to empirically
verify certain hypotheses is a “luxury” that an average researcher cannot afford. Finding 
real experts and obtaining estimates from them requires too many resources.  

2. Comparing results of several methods [9] and expecting them to coincide is not
our task under the circumstances. We are trying to define, which of the two methods 
produced better results. 

3. Holding model examinations (for example, with students), such as ones described
in [10, 11], where experts themselves would define, which results more adequately re-
flect their understanding of the subject domain, again would not solve the problem. We 
are trying to define objective characteristics of the methods that do not depend on the 
attitudes of the respondents, and to compare methods according to these characteristics. 

4. Testing of the methods on the data of real expert estimation of specially modeled
objects [5, 6] is plausible. 

5. Simulation of model object weights and of expert estimates of ratios between them 
(priorities) [16] is plausible. 

So, we propose to focus on the last two of the listed approaches: a) comparing of the 
two methods on real expert estimates of a set of model objects and b) simulation of both 
model object weights and expert estimates. 

5 Comparing ordinary and modified combinatorial methods on 
real data of expert estimation of model objects 

The model objects were figures with different numbers of colored pixels (known to 
expert session organizer). The number of such figures, which the experts compared 
according to coloring degree, amounted to 7 ( 7=n ) (based on psycho-physiological 
constraints of human mind [12]). 18 independent pair-wise comparison sessions were 
conducted with real respondents (experts). Pair-wise comparisons were multiplicative 
ones, that is PCM transitivity (consistency) requirement looked as follows:nkjiaawwwwwwa kjikjkkijiij ..1,,;)()( =×=×== , where ija  is the value of pair-
wise comparison of objects number i  and j ; kji www ,,  are the weights of objects with
respective numbers. Based on expert PCM, 4 series of calculations were performed, 
respectively, for individual and group, ordinary (1) and modified (2) combinatorial 
methods. Estimates were input in a unified scale and experts were considered equally 
competent a priori, so the numerator in the multiplicative rating formula (4) equaled 1. 

Obtained weights were compared with true values and relative estimation errors 
were calculated for each of the 7 objects (7): 
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Group estimation sessions were simulated as combinations of groups of 3 experts 
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from 18 available individual estimation precedents. So, the number of such group ses-
sions amounted to 8163

18 =C . The generalized accuracy indicator was the average rela-
tive estimation error calculated across all objects: 
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In order to conduct the experiment we used the original software module (Fig. 2). 

Fig. 2. Screenshot of the software module for experimental study of combinatorial method on 
real estimation data 

Brief algorithm of the experiment (once the module is launched) is as follows. 
1. Pair-wise comparison type (additive or multiplicative), as well as the number of

experts in the group are selected, and their relative competence values are set. Combi-
natorial method modification (ordinary (1) or modified (2)) is determined. There is an 
opportunity to exclude some objects from the initial set of 7 model objects. 

2. The module reads pair-wise comparison values from the file and performs calcu-
lations. It calculates priorities based on each estimation precedent using the selected 
combinatorial method modification. Calculation results (values of 7 model object 
weights) are written into another file in real time. 

3. The module ends its work when all possible expert group variants are enumerated.
If the general number of individual expert estimation precedents equals 18, and the 
number of experts in a group equals 3, then calculations are performed for 8163

18 =C  
group estimation sessions (1st session includes 1st, 2nd, and 3rd precedent; 2nd session – 
1st, 2nd, and 4th precedent; … 816th session – 16th, 17th, and 18th precedent). 

Calculated individual estimation error values for modified (“weighted”) and ordi-
nary (simplified) methods are shown on Fig. 3. Group estimation errors are shown on 
Fig. 4. On both figures X-axis denominates numbers of expert estimation sessions of 7 
model objects. Y-axis denominates average mean estimation errors (8) (values range 
from 0 to 1). Each number of estimation session is associated with 2 average relative 
error values (1 for ordinary and 1 for modified method), which correspond to 2 points 
on coordinate plane. If for some specific estimation session, the point, corresponding 
to one of the two methods, lies higher (has larger Y), it means that this method produces 
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larger error (its results are worse in comparison to true value) on the respective set of 
expert estimates. 

Fig. 3. Errors of estimation of 7 model objects using ordinary and modified combinatorial 
method (18 estimation sessions) 

Fig. 4. Errors of estimation of 7 model objects using ordinary and modified group combinato-
rial method (816 estimation sessions) 
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Ranges and average values of errors (8) for 816 group estimation precedents are 
shown in table 5. 

Table 5. Characteristics of modified and ordinary combinatorial methods based on real group 
expert estimation data  

Maximum average  
error 

Minimum average  
error 

Average error across all 
estimation precedents  

Ordinary method 0.379730445 0.016795423 0.126609639 
Modified method 0.384422003 0.028881538 0.130089121 

Results of experimental research of ordinary and modified combinatorial method on 
the data of real expert estimation of model objects do not allow us to draw any definite 
conclusion as to advantage of one of the two methods. As we can see from figures 3 
and 4, on some individual and group estimation precedents, ordinary method (that does 
not take the weights of basic spanning trees into account) turns out to be more accurate, 
while on others – the “weighted” method yields more accurate results. 

The look of priority aggregation formulas (1) and (2), as well as data from 816 group 
estimation precedents indicate, that the modified method tends to be more efficient in 
the cases, when the number of accurate comparisons (closer to model true values) ex-
ceeds the number of inaccurate ones. If the majority of comparisons is inaccurate (far 
from true values), although consistent and compatible, they “pull” the aggregate esti-
mate value towards themselves, as a result of weighting procedure (2). Consequently, 
on such precedents, the ordinary method produces better results. Moreover, both meth-
ods can produce paradoxes when averaging of inconsistent values far from true ones 
still produces rather accurate aggregate result. 

Intermediate conclusion: it is not the chosen estimate aggregation procedure, but the 
estimate values themselves, that influence the results of a method. During estimation 
session, expert’s mind “constructs” its own model priority vector. Result and relative 
accuracy of the method’s work depend on the proximity of the expert’s assumptions to 
the actual true vector. Hence, the difference between priorities obtained through aggre-
gation of real expert data, and true priority values (model object weights) cannot serve 
as an indicator of efficiency of aggregation methods, because accurate result of a 
method’s work confirms only the accuracy of initial expert data. 

It makes sense to use relative accuracy of real expert estimates of model objects as 
efficiency criterion for comparing conceptually different methods (for example, meth-
ods using multiplicative and additive scales; verbal, graphic, or numeric data input; 
pair-wise comparison vectors, triangular, or square PCM; methods with or without 
feedback etc), as shown in [5, 6]. When such methods are compared, input data and 
aggregation procedures are substantially different. Within our current research we use 
one and the same expert estimate set and similar aggregation procedures. That is why 
usage of the approach described in [5, 6] in the context of the present research turns out 
to be incorrect, and produces unrepresentative results. 

Human factor (subjective notion of the expert regarding ratios between objects) adds 
an unnecessary degree of freedom to the experiment. The only approach that would 
allow us to control the distance between expert estimates and true values (and, thus, 
neutralize the impact of human factor) is simulation of expert estimates themselves. 
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That is why it is relevant to use the simulation-based approach [15] for comparison of 
methods in terms of efficiency. 

6 Comparing ordinary and modified combinatorial methods 
through simulation of expert estimation of model objects  

The key idea of data aggregation methods’ efficiency evaluation is verification of their 
stability under fluctuations of input data (i.e. PCM). As we mentioned in the introduc-
tion, it is assumed that there is a certain true value of the object’s estimate according to 
a given criterion (such as exact number of colored pixels in a picture). The estimate 
provided by an expert differs from this true value by estimation error. Let us assume 
that under the same expert estimation errors one aggregation method produces the result 
(priority vector), that is closer to the model vector (of true values) than the result pro-
duced by the other method. In this case we can state that the first method is more effi-
cient. In order to be able to monitor expert estimation errors and deviations of priority 
vectors, obtained by different methods, from model values (in the context of aggrega-
tion method comparison), let us simulate expert estimation process in the following 
way. 
1. Set true model object weights.
2. Built an ICPCM A (based on the rule jiij wwa = for multiplicative or jiij wwa −=

for additive comparisons, where ija is the element of A ).
3. After that, add a certain “noise” to matrix A  so that each element (except diagonal
ones) changes as follows: %100/δ⋅±=′ ijijij aaa , where 0>δ  is a value set in advance, 
which defines maximum relative deviation of pair-wise comparisons provided by the 
expert (i.e. elements of A ) as percentage of true values. In this way expert estimation 
errors are simulated. In this caseδ denotes potential relative error made by the expert 
during pair-wise comparison session. 
4. “Perturbed” PCM A′ is used as input data for one of aggregation methods, which
produces aggregate object weights iw′  (priority vector). We propose to define the effi-
ciency of expert data aggregation method based on maximum possible relative devia-
tion of calculated object weight from true value of the same weight. The method pro-
ducing smaller deviations should be considered more efficient. 

%100max ×
−′

=Δ
i

ii

i w
ww

(9)

Calculated values of Δ  will depend on both δ and true relative weight values, set by 
experiment organizer. That is why the values of efficiency indicator for each method 
are presented in the form of function )(δΔ for each priority vector variant.  

Dependence )(δΔ is defined for each method on an interval ] [100;0∈δ  (we assume
that relative pair-wise comparison error made by an expert should not exceed 100%,
although in the general case the function )(δΔ  is defined in a wider range ] [∞∈ ;0δ
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). We propose to find maximum possible deviation Δ  for every δ  using the genetic 
algorithm (GA) [22]. 

Just like in the previous section, we used an original software module to conduct the 
experiment. The module allows us to generate and perturb the initial PCM and launch 
the GA (Fig. 5). 

Fig. 5. Screenshot of the software module for experimental research of combinatorial method 
using the GA 

In terms of the GA, the “individuals” are the perturbed PCM with given relative error 
value δ . “Fitness function” is the maximum relative deviation of resulting priorities 
from the true value of object weights Δ  (9). The GA works as follows. 

1. For given true values of object weights and δ  a “population” of individuals (per-
turbed PCM) is generated. (Cardinality of complete enumeration of matrices of di-
mensionality nn× , whose elements differ from true values by δ , is very large, so
a population includes only a part of PCM from the complete set. However, for 5≤n
complete enumeration is possible).

2. Individuals with maximum fitness function value are selected from the population.
That is, we are selecting PCM, which produce maximum deviation of priority vector
from true value after aggregation.

3. Individuals from the selected subset are “interbred” through weighted summation
(convex combination) and mutation. As a result, we get a new generation of individ-
uals.

4. If for the new generation the value of fitness function Δ  is larger than for the previ-
ous one, we should move to step 2. If during a fixed number of generations Δ  does
not grow, then the algorithm stops and terminates its work. As a result we get max-
imum Δ  for a givenδ .

In essence, we are looking for a maximum of a function of many variables),1(,);( njiaf ij =′ .Its arguments are elements of PCM A′ . Values of )(δΔ  for each ag-
gregation method also depend on specific values of initially set true values of object 
weights ),1(, niwi = . Examples of functions )(δΔ  for given true model values of object
weights are shown on Fig. 6. Variants of model weight vectors are set in a way that 
illustrates different ratios between object weights (equal, equal in pairs, arithmetic pro-
gression, geometric progression, extreme values of scale range etc). 
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In [16] individual “weighted” combinatorial method was compared with several 
other individual pair-wise comparison aggregation methods (Fig. 6). In the context of 
the present paper we should note that row geometric mean (one of the methods, studied 
in [16]) is equivalent to ordinary combinatorial method (as proven in [20]). So, the 
advantage of modified (weighted) combinatorial method over row geometric mean en-
tails its advantage over the ordinary method ([16, 19]) and LLSM (that is also equiva-
lent to ordinary method [8]). 

Consequently, we can conclude that empirical comparison data of several modifica-
tions of pair-wise comparison aggregation methods (obtained through simulation of ex-
pert estimation of model object weights) confirm the advantage of modified combina-
torial method over other methods. The efficiency indicator is its stability to perturba-
tions of the initial PCM (that is, to expert‘s errors). 

Fig. 6. Examples of dependence of Δ  on δ  for different model priority vectors
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We should note that experimental results, shown on Fig 6, are obtained only fro 
individual estimation methods ( 1=m ), mostly, in additive scale. That is, in the con-
ducted experiments in formulas (1) and (2) product is replaced by summation. 
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The next phase of the research will include simulation of group expert estimate ag-
gregation process, where the estimates are provided in both additive and multiplicative 
scales. Transition from multiplicative to additive scales (particularly, during modeling) 
can be performed using logarithm and power operators. Both functions are monoto-
nously increasing, so the properties of additive and multiplicative methods should be 
similar. 

7 Conclusions 

We have considered two possible ways of evaluating the efficiency of pair-wise com-
parison aggregation methods, namely, combinatorial methods of pair-wise comparison 
aggregation, where spanning tree weights are taken and not taken into account. We 
have shown that traditional concept of accuracy does not apply to expert data-based 
methods. As a result, simulation turns out to be the more correct way of evaluating the 
efficiency of the methods, than their testing on real expert data. We have suggested two 
approaches to efficiency evaluation of combinatorial method of pair-wise comparison 
aggregation (individual and group, additive and multiplicative methods): 1) defining 
relative accuracy of real expert pair-wise comparison aggregation results and 2) simu-
lation of the whole expert examination lifecycle. We have obtained experimental re-
sults, that empirically prove the advantage of the modified combinatorial method over 
the ordinary method (and, consequently, over row geometric mean and LLSM). 

Experimental results allow us to draw some fundamental conclusions: 1) the con-
cepts of accuracy of expert estimates and efficiency of expert data aggregation methods 
should be clearly distinguished; low accuracy of some method’s results is often induced 
by experts’ errors, and not by drawbacks of the method itself; 2) it is not the accuracy, 
but “consistent accuracy” that counts, both within a PCM of 1 expert and in a group of 
experts; more consistent and compatible estimation results should be considered more 
credible; 3) real expert data can be used to compare conceptually different methods, 
using expert information of different types; if input information for several methods is 
the same, and only aggregation procedures are different, then in order to evaluate and 
compare such methods, we should simulate the whole expert session cycle, including 
the estimates themselves. Further research will be targeted at extended studies of mod-
ified combinatorial method through simulation of group expert estimates’ aggregation 
for the cases when objects are estimated in both additive and multiplicative scales. 
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