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Abstract. This paper describes ASAPPpy – a framework fully-developed
in Python for computing Semantic Textual Similarity (STS) between
Portuguese texts – and its participation in the ASSIN 2 shared task on
this topic. ASAPPpy follows other versions of ASAPP. It uses a regres-
sion method for learning a STS function from annotated sentence pairs,
considering a variety of lexical, syntactic, semantic and distributional fea-
tures. Yet, unlike what was done in the past, ASAPPpy is a standalone
framework with no need to use other projects in the feature extraction or
learning phase. It may thus be extended and reused by the team. Despite
being outperformed by deep learning approaches in ASSIN 2, ASAPPpy
can explain the model learned by the relevant features that have been
selected as well as inspect which type of features plays a key role in the
STS learning.

Keywords: Semantic Textual Similarity · Natural Language Processing
· Semantic Relations · Word Embeddings · Supervised Machine Learning.

1 Introduction

Semantic Textual Similarity (STS) aims at computing the proximity of meaning
of two fragments of text. Shared tasks on this topic have been organised in the
scope of SemEval 2012 [2] to 2017 [10], targeting English, Arabic and Spanish. In
2016, the ASSIN shared task [14] focused on STS for Portuguese, and its collec-
tion was made available. ASSIN 2 was the second edition of this task, with minor
di↵erences on the STS annotation guidelines and covering more simple text.

ASAP(P) is the name of a collection of systems developed in CISUC for
computing STS based on a regression method and a set of lexical, syntactic,
semantic and distributional features extracted from text. It has participated
in several STS evaluations, for English and Portuguese, but was only recently
integrated in two single independent frameworks: ASAPPpy, in Python, and AS-
APPj, in Java. Both of the previous versions of ASAPP participated in ASSIN 2,
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but this paper is focused on the former, ASAPPpy. Also, although both ASSIN
and ASSIN 2 cover STS and Textual Entailment (TE), this paper is mainly fo-
cused on the approach followed for STS, including feature engineering, feature
selection and learning methods. The performance of ASAPPpy in STS was sat-
isfactory for an approach that follows traditional supervised machine learning,
also enabling an analysis of the most relevant features, but it was clearly outper-
formed by approaches based on deep learning or its products, including recent
transformer-based language models, like BERT [11].

In the remainder of the paper, we overview previous work that led to the
development of ASAPPpy, focused on previous versions of this system. We then
describe the features exploited by ASAPPpy and report on the selection of the
regression method and features used, also covering the o�cial results in ASSIN 2,
which we briefly discuss.

2 An overview of ASAP(P) for STS

The first version of ASAP [3] dates from 2014, with the participation in the
SemEval task Evaluation of Compositional Distributional Semantic Models on
Full Sentences through Semantic Relatedness and Textual Entailment [18], in
English, though only on the subtask of semantic relatedness. Here, a set of
65 features was extracted from sentence pairs ranging from overlapping token
counts, phrase chunks, or topic distributions.

From the first participation, we proposed to learn a model based on regres-
sion analysis that considered di↵erent textual features, covering distinct aspects
of natural language processing. Lexical, syntactic, semantic and distributional
features were thus extracted from sentence pairs. The main di↵erence in succes-
sive versions is the increasing adoption of more and more distributional features,
initially based on topic modeling, and recently on di↵erent word embedding mod-
els. Its main contribution was in the use of complementary features for learning
a STS function, a part of the challenge of building Compositional Distributional
Semantic Models.

One year later, ASAP-II [5] participated in a task that was closer to our cur-
rent goal: Semantic Textual Similarity (STS) at SemEval 2015 [1]. Even though
the task covered three languages – English, Spanish and Arabic – , we only
targeted English. At first, the goal of STS may look similar to the one of Se-
mEval 2014’s task, but the available datasets were very di↵erent from each other.
One such di↵erence was the occurrence of named entities in the SemEval 2015
dataset. To address this, ASAP-II retrieved named entities and compound nouns
from DBPedia [7], an e↵ort to extract structured information from Wikipedia.
Due to DBPedia’s central role in the Linked Data initiative, it is also connected
to WordNet [13], which enables the connection between some DBPedia entities
and their abstract category.

Finally, one year later, motivated by the organisation of the first ASSIN
shared task [14], ASAP focused on Portuguese, becoming ASAPP – Automatic
Semantic Alignment for Phrases applied to Portuguese [4]. The first ASAPP ex-
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ploited several heuristics over Portuguese semantic networks [16] for extracting
semantic features, beyond lexical and syntactic. As the same nature of its pre-
decessors, several tools have been used for the extraction of morpho-syntactic
features, including tokenization, part-of-speech tagging, lemmatization, phrase
chunking, and named entity recognition. For the first ASSIN, this was achieved
with NLPPort [21], built on top of the OpenNLP framework, though with some
modifications targeting Portuguese processing.

The original participation in ASSIN did not exploit distributional features.
Only later, word embeddings (word2vec CBOW [17]) and character n-grams
were adopted by ASAPP (version 2.0) [6]. When trained in the ASSIN training
collections, adding distributional features to the others led to improvements in
the performance of STS. We also concluded that, although the ASSIN collections
were divided between European and Brazilian Portuguese, better results were
achieved when a single model was trained in both.

Up until this point, all versions of ASAP(P) could not be seen as a single well-
integrated solution. Di↵erent features were extracted with di↵erent tools, not
always applying the same pre-processing or even using the same programming
languages, and sometimes by di↵erent people. After extraction, all features were
integrated in a single file, then used in the learning process. Towards better
cohesion and easier usability, in 2018, we started to work on the integration
of all feature extraction procedures in a single framework. Yet, due to specific
circumstances, we ended up developing two versions of ASAPP: ASAPPpy, fully
in Python, and ASAPPj, fully in Java. Each was developed by a di↵erent person,
respectively José Santos and Eduardo Pais, both supervised by Ana Alves. This
paper is focused on ASAPPpy.

Besides training and testing both versions of ASAPP in the collection of
the first ASSIN, their development coincided with ASSIN 2, where they both
participated. Curiously, the data of ASSIN 2 is closer to that of SemEval 2014’s
task [18], where the first ASAP participated.

3 Feature Engineering for Portuguese STS

The main di↵erence between ASAPPpy and previous versions of ASAPP is that
it is fully implemented in Python. This includes all pre-processing, feature ex-
traction, learning, optimization and testing steps.

ASAPPpy follows a supervised learning approach. Towards the participation
in ASSIN 2, di↵erent models were trained in the training collection of ASSIN 2,
and some also in the collections of the first ASSIN (hereafter ASSIN 1). Both
collections have the same XML-like format, where a similarity score (between 1
and 5) and an entailment label are assigned to each pair of sentences, based on
the opinion of several human judges. The first sentence of the pair is identified
by t and the second by h, which stands for text and hypothesis, respectively.

The ASSIN 1 collection comprises 10,000 pairs, divided in two training
datasets, each with 3,000 pairs, and two testing datasets, each with 2,000, cover-
ing the European-Portuguese (PTPT) and Brazilian-Portuguese (PTBR) vari-
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ants. The ASSIN 2 collection is divided into training and validation datasets,
with 6,500 and 500 pairs, respectively, and a testing dataset, with 3,000 pairs
whose similarity our model was developed to predict. In contrast to ASSIN 1,
the ASSIN 2 collection only covers the Brazilian-Portuguese (PTBR) variant.

To compute the semantic similarity between the ASSIN sentence pairs, a
broad range of features was initially extracted, including lexical, syntactic, se-
mantic and distributional. All features were obtained using standard Python as
well as a set of external libraries, namely: NLTK [8], for getting the token and
character n-grams; NLPyPort4, a recent Python port of the NLPPort toolkit [21]
based on NLTK, for Part-of-Speech (PoS) tagging, Named Entity Recogni-
tion (NER) and lemmatisation; Gensim [20], for removing non-alphanumeric
characters and multiple white spaces, and, in combination with scikit-learn [19],
to extract the distributional features. Semantic features were based on a set of
Portuguese relational triples (see section 3.3) and distributional features relied
on a set of pre-trained Portuguese word embedding models (see section 3.4).

Table 1 summarises all the features extracted, to be described in more detail
in the remainder of this section.

Features Count
Common token 1/2/3-grams (Dice, Jaccard, Overlap coe�cients) 9
Common character 2/3/4-grams (Dice, Jaccard, Overlap coe�cients) 9
Di↵erence between number of each PoS-tag (25 distinct tags) 25
Semantic relations between tokens in both sentences (4 types) 4
Di↵erence between number of NEs of each category (10 categories) 10
Di↵erence between number of NEs 1
TF-IDF vectors cosine 1
Average word-embeddings cosine (5 models) 5
Average TF-IDF weighted word-embeddings cosine (5 models) 5
Token n-grams binary vectors cosine 1
Character n-grams binary vectors cosine 1

Total 71
Table 1. Features extracted to train the STS models.

3.1 Lexical Features

Lexical features compute the similarity between the sets and sequences of tokens
and characters used in both sentences of the pair. This is achieved with the
Jaccard, Overlap and Dice coe�cients, each computed between the sets of token
n-grams, with n = 1, n = 2 and n = 3, and character n-grams, with n = 2,
n = 3 and n = 4, individually. In total, 18 lexical features were extracted given
that, for each n-gram, both token and character, we computed the three di↵erent
coe�cients. Figure 1 illustrates how sentences were split into n-grams, in this

4 https://github.com/jdportugal/NLPyPort
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particular case, character 2-grams, and provides the value of the coe�cients
computed over them, used as features.

t: Uma pessoa tem cabelo loiro e esvoaçante e está tocando violão
#

Character n-grams of size 2 in t: {Um, ma, pe, es, ss, so, oa, te, em, ca, ab,
be, el, lo, lo, oi, ir, ro, es, sv, vo, oa, aç, ça, an, nt, te, es, st, tá, to, oc, ca, an, nd,
do, vi, io, ol, lã, ão}

h: Um guitarrista tem cabelo loiro e esvoaçante
#

Character n-grams of size 2 in h: {Um, gu, ui, it, ta, ar, rr, ri, is, st, ta, te,
em, ca, ab, be, el, lo, lo, oi, ir, ro, es, sv, vo, oa, aç, ça, an, nt, te}

Jaccard(T,H) =
|T \H|
|T [H| =

20
42

= 0.4762 (1)

Overlap(T,H) =
|T \H|

|min(T,H)| =
20
28

= 0.7143 (2)

Dice(T,H) =
|T \H|
|T | + |H| =

20
62

= 0.3226 (3)

Fig. 1. Example of computing the 2-grams overlap.

Two variants of the previous lexical features were considered only for ASSIN
2. Their value is the cosine similarity between binary vectors obtained from
each sentence as follows: (i) extract the list of n-grams in sentence t, h or both,
considering di↵erent values of n; (ii) represent each sentence as a vector where
each dimension corresponds to one of the extracted n-grams and is 1, if the
n-gram is in both t and h, or 0, if it is in only one. This was made for token
1/2/3-grams (first feature) and character 2/3/4-grams (second feature). Figure 2
illustrates the computation of this alternative character n-gram based feature to
the sentences used in the previous examples.

3.2 Syntactic Features

The only syntactic features exploited were based on the PoS tags assigned to
the tokens in each sentence of the pair, namely the absolute di↵erence between
the number of occurrences of each PoS tag (25 distinct) in sentence t with
those in sentence h. Considering the sentences used in the previous example,
figure 3 shows the PoS tags for each word and the array of features obtained
after applying the aforementioned method. In these two sentences, only five
distinct tags were identified, which meant that for the remaining 20 the feature
has value zero.
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t: Uma pessoa tem cabelo loiro e esvoaçante e está tocando violão
#

Character 2/3/4-grams in t: {um, ma, pe, es, ss, so, oa, te, em, ca, ab, be, el,
lo, lo, oi, ir, ro, es, sv, vo, oa, aç, ça, an, nt, te, es, st, tá, to, oc, ca, an, nd, do, vi,
io, ol, lã, ão, uma, pes, ess, sso, soa, tem, cab, abe, bel, elo, loi, oir, iro, esv, svo,
voa, oaç, aça, çan, ant, nte, est, stá, toc, oca, can, and, ndo, vio, iol, olã, lão, pess,
esso, ssoa, cabe, abel, belo, loir, oiro, esvo, svoa, voaç, oaça, açan, çant, ante, está,
toca, ocan, cand, ando, viol, iolã, olão}

h: Um guitarrista tem cabelo loiro e esvoaçante
#

Character 2/3/4-grams in h: {um, gu, ui, it, ta, ar, rr, ri, is, st, ta, te, em, ca,
ab, be, el, lo, lo, oi, ir, ro, es, sv, vo, oa, aç, ça, an, nt, te, gui, uit, ita, tar, arr, rri,
ris, ist, sta, tem, cab, abe, bel, elo, loi, oir, iro, esv, svo, voa, oaç, aça, çan, ant,
nte, guit, uita, itar, tarr, arri, rris, rist, ista, cabe, abel, belo, loir, oiro, esvo, svoa,
voaç, oaça, açan, çant, ante}

Binary vector
�!
t : [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0]

Binary vector
�!
h : [1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,

1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1]

Cosine(
�!
t ,

�!
h ) = 0.5955

Fig. 2. Alternative lexical features.

t: Uma pessoa tem cabelo loiro e esvoaçante e está tocando violão
#

PoS-tags in t: {art n v-fin n N conj-c N conj-c v-fin N n}

h: Um guitarrista tem cabelo loiro e esvoaçante
#

PoS-tags in h: {art n v-fin n N conj-c N}

N art conj-c n v-fin
1 0 1 1 1

Fig. 3. Syntactic features based on PoS-tagging.
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3.3 Semantic Features

Language is flexible in a way that the same idea can be expressed through di↵er-
ent words, generally related by well-known semantic relations, such as synonymy
or hypernymy. Such relations are implicitly mentioned in dictionaries and explic-
itly encoded in wordnets and other lexical knowledge bases (LKBs). In order to
extract the semantic relations between words in each pair of sentences, a set of
triples, in the form word

1

Semantic-Relation word

2

, was used. They were ac-
quired from ten lexical knowledge bases (LKBs) for Portuguese [16] and, for this
work, only those that occurred in at least three LKBs were considered. Based
on this, four features of this kind were computed, by counting the number of se-
mantic relations that existed between words in sentence t and words in sentence
h and then normalising the result. The following semantic relations were con-
sidered: (i) synonymy; (ii) hypernymy/hyponymy; (iii) antonymy; (iv) any other
relation covered by the set of triples. Before searching for relations, words were
lemmatized with NLPyPort. Considering the sentences used in the two previous
examples, table 2 shows the array of features obtained with the aforementioned
method. In this case, there was a single relation, pessoa (person) hypernym-of
guitarrista (guitar player).

antonyms synonyms hyperonyms other
0.0 0.0 0.0625 0.0

Table 2. Semantic features based on semantic relations.

Besides semantic relations, Named Entities (NE) were also exploited, due to
their importance for understanding the meaning of text. Although the collection
of ASSIN 2 would not include NEs, these features were still exploited, considering
the application of the model to other tasks. Computed features included the
absolute di↵erence between the number of entities of each type identified in
sentence t and those in sentence h. As ten di↵erent NE types were recognized (i.e,
Abstraction, Event, Thing, Place, Work, Organization, Person, Time, Value,
Other), this resulted in ten features, plus one for the absolute di↵erence of the
total number of NEs between the sentences.

3.4 Distributional Features

Distributional features were based on the TF-IDF matrix of the corpus, which
allowed the representation of each sentence as a vector. The first feature of this
kind was the cosine of the TF-IDF vector of each sentence.

In addition to the TF-IDF matrix, and given the importance of distribu-
tional similarity models for computing semantic relatedness, four pre-trained
word embeddings for Portuguese, based on di↵erent models and data, were also
exploited, namely: (i) NILC embeddings [17], which o↵er a wide variety of pre-
trained embeddings, learned with di↵erent models in a large Portuguese corpus.
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From those, CBOW Word2vec and GloVe, both with 300-dimensioned vectors,
were selected; (ii) fastText.cc embeddings [9], which provide word vectors for
157 languages, trained on Common Crawl and Wikipedia using fastText. For the
present system, only the Portuguese word vectors were used; (iii) ConceptNet
Numberbatch [22], obtained by applying a generalisation of the retrofitting tech-
nique [12], which improves the representation of words in the form of vectors by
utilising the ConceptNet knowledge base. Given that the pre-trained vectors used
are multilingual, only the vectors of Portuguese words were used; (iv) PT-LKB
embeddings [15], a di↵erent distributional model, not learned from corpora, but
built by applying the node2vec method to the same ten LKBs used for the se-
mantic features [16]. The vectors used had 64 dimensions, the value that achieved
best results in word similarity tests [15].

For each model, two di↵erent features were considered, both after the conver-
sion of each sentence into a vector computed from the vectors of its tokens. The
di↵erence is in how this sentence vector was created. For the first feature, it was
obtained from the average of the token vectors. For the second, it was computed
from the weighted average of the token vectors, weighted with the TF-IDF value
of each token. In all cases, the similarity of each pair of sentences was computed
with the cosine of their vectors.

4 Training a Portuguese STS model

Based on the extracted features, various regression methods, with implementa-
tion available in scikit-learn [19], were explored for learning a STS model. Since
the work on ASAPPpy started before the ASSIN 2 training collection was re-
leased, initial experiments towards the selection of the regression method were
performed in the collection of ASSIN 1. It was also our goal to analyse whether
the number of features could be reduced and its impact on the results. Experi-
ments for this are reported in this section.

The results submitted to ASSIN 2 were obtained with the selected method,
but also trained in the ASSIN 2 training collection, with features selected from
the results in the validation collection. In all experiments, performance was as-
sessed with the same metrics adopted in ASSIN and other STS tasks, namely
Pearson correlation (⇢, between -1 and 1) and Mean Squared Error (MSE) be-
tween the values computed and those in the collection.

4.1 Selection of the Regression Method

Towards the development of the STS models in ASAPPpy, models were trained
with di↵erent regression methods, in both the PTPT and PTBR training collec-
tions of ASSIN 1, and then tested individually on the testing collections of each
variant. After initial experiments, three methods were tested, namely: a Support
Vector Regressor (SVR), a Gradient Boosting Regressor (GBR) and a Random
Forest Regressor (RFR), all using scikit-learn’s default setup parameters.
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Having in mind the e�ciency of the model, we further tried to reduce the
dimensionality of the feature set. For this purpose, we explored three types of
feature selection methods, also available in scikit-learn: Univariate, Model-based
and Iterative Feature Selection. In order to assess which method improved the
performance of the model the most, in comparison to each other and to using
all features, the model’s coe�cient of determination R

2 of the prediction was
used for each method. Although we did not perform any measurement of the
computational costs of these experiments, empirically we were able to assess
that both Univariate and Model-based methods were significantly faster than
Iterative Feature Selection when executed on the same machine.

We should add that, for these experiments, only 67 of the 71 features de-
scribed in section 3 were considered. Four distributional features were only added
later, namely those using Numberbatch embeddings and the binary vectors based
on the presence of n-grams. With the aforementioned feature selection methods,
the initial set of 67 features was reduced to 12, with marginal improvements in
some cases, as the results in Tables 3 and 4 show. Although all selection methods
were tested, the applied selection is the result of an Iterative Feature Selection,
because it was the method leading to the highest performance. In the end, the se-
lected features were: the Jaccard, Dice and Overlap coe�cients for token 1-grams
and character 3-grams; the Jaccard coe�cient for character 2-grams; the cosine
similarity between the sentence vectors computed using the TF-IDF matrix; the
fastText.cc word embeddings; and the word2vec, fastText.cc and PTLKB word
embeddings weighted with the TF-IDF value of each token. This means that
the reduced model only uses lexical and distributional features. It does not use
syntactic nor semantic features, though semantic relations should be captured
by the distributional features, namely the word embeddings.

Tables 3 and 4 report the performance of each model on both ASSIN 1 PTPT
and PTBR testing datasets, respectively before and after feature selection. The
best performing model is based on SVR and achieved a Pearson ⇢ of 0.72 and
MSE of 0.63, when tested on the PTPT dataset, using feature selection. For
PTBR, ⇢ was 0.71 and MSE 0.37, for the same model.

Method
PTPT PTBR
⇢ MSE ⇢ MSE

SVR 0.66 0.71 0.67 0.42
GBR 0.71 0.67 0.70 0.39
RFR 0.71 0.65 0.71 0.38

Table 3. Performance of di↵erent re-
gression methods in ASSIN 1, before
feature selection.

Method
PTPT PTBR
⇢ MSE ⇢ MSE

SVR 0.72 0.63 0.71 0.37
GBR 0.71 0.66 0.70 0.39
RFR 0.72 0.64 0.71 0.38

Table 4. Performance of di↵erent re-
gression methods in ASSIN 1, with fea-
ture selection.
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4.2 ASSIN 2 STS Model

Although performed on the ASSIN 1 collection, experiments described in the
previous section support the selection of the Support Vector Regressor (SVR)
as the learning algorithm for the three runs submitted to ASSIN 2. All such
runs were trained considering the same features and algorithm parameterisation,
and were only di↵erent in the composition of the training data, which was the
following:

– Run #1 used all available data for Portuguese STS: ASSIN 1 PTPT/PTBR
train and test datasets + ASSIN 2 train and validation datasets, comprising
a total of ⇡17,000 sentence pairs.

– Run #2 considered that the ASSIN 2 data would be exclusively in Brazilian
Portuguese, so did not use the ASSIN 1 PTPT data, comprising a total of
⇡12,000 sentence pairs.

– Run #3 had in mind that ASSIN 1 data could be di↵erent enough from
ASSIN 2, thus not useful in this case, so used only the ASSIN 2 training and
validation data, comprising a total of ⇡7,000 sentence pairs.

Despite originally exploiting the full set of 71 features, all submitted runs were
based on a reduced featured set. Features were selected based on the Pearson ⇢

of a model trained in all available data except the ASSIN 2 validation pairs,
and validated in the latter pairs. In the end, models considered only 27 features,
which were the 40% most relevant according to Univariate Statistics for di↵erent
percentiles. In this case, this was the feature selection method that lead to the
best performance. These are the 27 features e↵ectively considered:

– Jaccard, Overlap and Dice coe�cients, each computed between the sets of
token 1/2/3-grams and character 2/3/4-grams.

– Averaged token vectors, computed with the following word embeddings:
word2vec-cbow, GloVe (300-sized, from NILC [17]), fastText.cc [9], Num-
berbatch [22] and PT-LKB [15].

– TF-IDF-weighted averaged token vectors, computed with the following
word embeddings: word2vec-cbow, GloVe (300-sized, from NILC [17]), fast-
Text.cc [9] and Numberbatch [22].

Table 5 shows the o�cial results of each run in the ASSIN 2 test collection.
The best performance was achieved by run #3, with ⇢ = 0.74 and MSE = 0.60,
despite the fact that this was the model that used the least amount of training
data. Having no improvements with ASSIN 1 data is an indication of the (known)
di↵erences between the ASSIN 1 and ASSIN 2 collections. Such di↵erences may
explain the performance obtained in run #3, in which the data used for training,
being exclusively from ASSIN 2, resulted in a model that could fit better the
testing data. In opposition to the di↵erences in the Pearson ⇢, MSE was similar
for every run, but slightly higher precisely for run #3.

After the evaluation, we repeated this experiment using the full set of 71
features, to conclude that using all features is not a good option. Pearson ⇢

achieved this way are equally poor and were 0.65, 0.66 and 0.66, respectively for
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Runs #1 #2 #3
⇢ 0.726 0.730 0.740

MSE 0.58 0.58 0.60
Table 5. O�cial results of ASAPPpy in ASSIN 2 STS.

the configuration of the runs #1, #2 and #3. A curious result is that the MSE
was significantly higher for run #3 configuration (0.85), the one trained only on
the ASSIN 2 training data, when compared to the others (0.65 and 0.71). In the
o�cial results, run #3 had also the highest MSE, but only by a small margin.

4.3 Textual Entailment

Although it was not the primary focus of ASAPPpy, we tried to learn a classifier
for textual entailment using the same features extracted for STS. Three models
were trained, respectively with the features used in each run, with the config-
urations shown in the table 6. Yet, unlike the STS training phase, we chose to
use the entire ASSIN 1 and training part of ASSIN 2 collection for the first two
runs (⇡17,000), selecting the best one (according to 10-fold cross-validation) to
train a third model only on the training part of the ASSIN 2 dataset (⇡7,000).
Regarding the ASSIN 1 dataset, where there were three classes: Entailment,
None and Paraphrase, this third class was considered as Entailment, in order to
standardize the two datasets, since ASSIN 2 contains only the first 2 classes.

The performance of ASAPPpy in this task, below both baselines, is clearly
poor. However, this was not the main goal of our participation. If more e↵ort
was dedicated to this task, we would probably analyse the most relevant features
specifically for entailment, and possibly train new models from this knowledge.

Runs #1 #2 #3
Training ASSIN 1+2 ASSIN 1+2 ASSIN 2 (train)
Model SVC RFC RFC

F1 0.401 0.656 0.649
Accuracy 53.10% 66.67% 65.52%

Table 6. Performance of the Textual Entailment models in ASSIN 2.

5 Conclusion

We described the participation of ASAPPpy in ASSIN 2 and explained some
decisions that lead to using SVR-based models trained with a reduced set of lex-
ical and distributional features. The main di↵erence between the three submitted
runs is the training data and the best performance (⇢ = 0.74 and MSE = 0.60)
was achieved by the model trained only in ASSIN 2 data. Using ASSIN 1 data
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lead to no improvements, which supports the di↵erences between the two collec-
tions. For instance, ASSIN 2 does not include complex linguistic phenomena nor
named entities, which is not the case of ASSIN 1. But this does not necessarily
mean that ASSIN 2 is easier, which is also suggested by the performance of our
models, only slightly better in ASSIN 2.

We see the results achieved as satisfactory, at least for an approach based on
traditional machine learning. Yet, they are clearly outperformed by approaches
of other teams relying in deep learning or its products. On the other hand, our
results can be interpreted, not only during the extraction of each feature, but also
by applying feature selection during the training phase. For instance, features
exploiting word embeddings and distance metrics between sentences shown to
be the most relevant when computing the STS between phrases in Portuguese.

The curent version of ASAPPpy and its source code is available from
https://github.com/ZPedroP/ASAPPpy. Still, in the future we would like to
experiment with contextual word embeddings [11] given their recent positive
performance in a set of di↵erent Natural Language Processing tasks. Pre-trained
embeddings of that kind may be further fine-tuned on the ASSIN data, and be
used alone as the representation of each sentence, or as additional features.
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5. Alves, A., Simões, D., Gonçalo Oliveira, H., Ferrugento, A.: ASAP-II: From the
alignment of phrases to textual similarity. In: 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). n/a (2015)
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