
E2CT: Energy Efficient Cipher Technique
Harshit Bhatia 1, Rahul Johari 2, Kalpana Gupta 3

1 REVAL India Private Limited, Gurugram, India

2SWINGER (Security, Wireless IoT Network Group of Engineering and Research) Lab,

USICT, GGSIP University, Sector-16C, Dwarka, Delhi, India

3C-DAC, NOIDA, India
droid.harshit@gmail.com

rahuljohari@hotmail.com

kalpana7gupta@gmail.com

Abstract. The conventional techniques for symmetric and asymmetric cryptog-

raphy are not optimized for usage on handheld devices in their raw form. They

do not focus on optimized usage of battery over mobile devices and hence drain

significant battery when deployed over the wireless handheld devices. Fur-

thermore, they make use of a limited domain of keys and a limited number of

mathematical operations. The major portion of the existing traditional symmet-

ric cipher techniques is covered by those that rely on a single key-function for

generation of keys that are used to garble the plain-text to unintelligible text be-

fore sending it over an unsecure network. The increase in the number of encod-

ing operations and keys add significantly to the strength of a cryptographic

technique. This paper presents a power optimized symmetric key technique that

aims to reduce battery footprint without compromising on security by using

multiple keys coupled with multiple encryption operations.

Keywords: Green, Symmetric, Cryptography, Encryption, Decryption, Energy

Efficient.

1 Introduction

There exist plenty of cryptographic techniques that provide the security of the sensi-

tive data. [1, 2]. However, such traditional techniques were not aimed at catering to

the handheld devices with limited battery and resources. The techniques are not power

optimized and consume enormous amount of battery thus making them an unsuitable

choice for deployment in the mobile devices over the wireless network. The demand

for new and improved cryptographic techniques is high, especially for the intricate

hand-held devices that transmit sensitive information over network. The newer tech-

niques aimed for handheld devices need to be cheaper (in terms of battery consump-

tion) and faster without making any compromises with the security to ensure data

transmission at an overall lower energy cost. The technique proposed in this text is a

power optimized cryptographic approach aimed for mobile hand-held devices to se-

cure the data with minimal consumption of the energy and hardware resources. 1

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

mailto:droid.harshit@gmail.com
mailto:rahuljohari@hotmail.com

2

2 Proposed System

2.1 The cryptosystem

The proposed system introduces a lightweight cipher technique that aims at reduction

of overall battery consumption over a mobile handled device without making heavy

compromises on data security. The power optimized version of the predecessor, Pen-

taPlicative Cipher Technique, also uses a set of five predefined keys as an input to a

symmetric key cipher technique. However, unlike the PentaPlicative technique, the

power optimized version makes use of much cheaper mathematical operations –

XOR. In order to disguise the true length of plaintext from the sniffer, the power op-

timized technique also makes use of the bit-dispersion technique. The technique has

the strong grounds because of the multiple number of keys with multiple mathemati-

cal operations, which makes it difficult to decipher the plain text and hence effective-

ly decreasing the overall probability of the cipher text to get decrypted by anyone

other than the intended recipient.

2.2 Related Work

In [3] authors(s) present a new technique, the Cross-Language Cipher (CLCT) Tech-

nique, which is aimed at securing the plaintext data by character mapping. In [4] au-

thor(s) presented a new tool built in Java that demonstrates how the Dictionary attack

and Brute Force attacks are used to break the authentication and highlights the Injec-

tion via SQL. In [5] authors presented a rudimentary cipher technique that is aimed at

providing the security by employing three set of pre-defined keys in the process of

encryption and decryption. In [6] author(s) presented the Pentaplicative Cipher Tech-

nique which makes use of five keys to encrypt the plaintext input by the user. In [7]

author(s) had designed, implemented and evaluated a new Algorithm for Scheduling

that makes use of a neural network predictor model to power off the unused servers in

a Cloud computing environment and essentially reducing the consumption of power.

In [8] author(s) propose various queuing algorithms to utilize the resources and task

assignment is done in an efficient manner to ensure that the overall cost of operations

is reduced while also making it a cleaner approach by decreasing the ill-effects of the

data center on environment resulting in Green Eco System.

3 Methodology

The Energy Efficient extension of PentaPlicative cipher technique aims at being

readily used in mobile handheld devices. This expects the technique to be stricter

when it comes to resource consumption and in turn battery consumption. Considering

this, Energy Efficient Cipher technique makes use of caching principle to store the

keys to cut down the dependency of gathering keys from device’s GPS and physical

address for every operation performed. Furthermore, the technique is lightweight

without making significant compromises with the security.

3

The GPS along with the mobile network data consumes a considerable amount of

battery from device, hence limiting the pings made to them for grabbing the location

helps in reduction of battery usage by a noticeable amount. Biggest culprits in faster

battery discharge is Screen brightness and CPU usage [9]. The PentaPlicative Cipher

technique caters to this problem of on-screen time by reduction of screen brightness

during the process. The CPU and memory usage have been notably reduced by em-

ploying garbage collection to free up memory and killing any lingering daemon

threads upon completion of encryption/decryption process, thereby making an ob-

servable reduction in the overall battery consumption by the handheld device.

3.1 Key Arrangement

The Energy Efficient Cipher technique makes use of a set of five private keys (kept

secret) which are derived from the physical information of the handheld device. The

set of keys is unique to every device; hence authentication of sender can easily be

made. The IMEI number along with the location coordinates form the input key vec-

tor. The five keys (K1, K2, K3, K4 and K5) are derived from the input domain as the

following text describes. The unique International Mobile Equipment Identity (IMEI)

number forms the first three keys (K1, K2, K3) with each key of length five integer

numbers and the other two keys (K4, K5) are given by first five integers (without dec-

imal) derived from latitude and longitude coordinates respectively. The length of keys

has been fixed to five to make computations faster and cheaper in terms of resource

consumption. This allows for an optimized lightweight technique that would limit the

actual battery discharge.

Additionally, using the physical information available on devices decreases the

human intervention to bare minimum in the complete process, thus enabling the tech-

nique to be easily plugged in with other data storage or transmission applications that

require data encryption.

The caching mechanism is also embedded in the key generation process. This is

necessary because the key generation relies heavily on the physical information of the

device and this would require the technique to make connection to the network for

grabbing the location coordinates and reading of the hardware chipset for the IMEI

number. This entire process wastes many precious CPU cycles as well as adds an

additional burden by using the heavy battery sucking resources of the device. The

technique makes sure to close the network connections if there are cached keys avail-

able to it and hence saving an appreciable number of unnecessary pings that would

have been wasted otherwise.

3.2 Encryption operation

The paper introduces the technique with an example that draws by taking a sample

plaintext and sample keys portraying the encryption and decryption on input domain.

The technique, like its predecessor, also makes use of the ASCII character set. The

input characters of the plaintext are first converted into the decimal numbers by mak-

4

ing use of the ASCII character to decimal conversion and then further mathematical

operations are performed on them with the set of five input keys.

In order to mask the true length of the Plaintext (PT), the technique makes use of an

operation called the “Bit-Dispersion”. This operation first converts the ASCII charac-

ters to their corresponding decimal values and then converts the decimal values to a

Base2 Binary number. Each decimal number is thus converted to an 8-digit binary

number. These 8-digit binary numbers are grouped together to form a long stream of

binaries. The function further makes a group of 6 bits from this stream and then con-

verts this -bit binary number to the corresponding ASCII character. If there are any

remainder bits which are left after the grouping, are appending with padding of zeroes

to make it a 6-bit binary number and this is converted to the corresponding ASCII

character too. This new set of ASCII characters will be the final Cipher Text (CT)

which would be of a different length as the original Plaintext.

There are five other pre-defined mathematical operations other than the Bit-

Dispersion that the technique uses. These mathematical operations when performed in

a sequential manner would result in the Ciphertext (CT) which can then be sent out by

the sender to the receiver. These operations, denoted by E1, E2, E3, E4, E5, are as fol-

lows:

 E1 = (PT XOR K1) (1)

 E2 = (E1 + K2) mod 256 (2)

 E3 = (E2 * K3) mod 256 (3)

 E4 = (E3 - K4) mod 256 (4)

 E5 = (E4 XOR K5) (5)

 CT = bit dispersion (E5) (6)

The table 1and 2 depicts the process of encryption with the help of an example. The

example clearly defines the input domain of plaintext and secret set of keys, followed

by the set of encoding operations. Please note that for this example the keys that are

selected are very small and simplistic numbers to ease the demonstration of mathe-

matical operations, but in the practical world much larger keys would be used.

Plaintext (PT) - CIPHER

Let the private keys be:

K1 = 17

K2 = 19

K3 = 17

K4 = 13

K5 = 15

5

Table 1. Encryption Table

PT E1= (P.T.

XOR K1)

E2= (E1 + K2)

mod 256

E3= (E2 * K3)

mod 256

E4= (E3 – K4)

mod 256

E5 = (E4

XOR K5)

C(67) (67 XOR 17)

= 82 (R)

(82 + 29) mod

256 = 111 (o)

(111 * 13) mod

256 = 163 (ú)

(163 - 57) mod

26 = 106 (j)

(106 XOR 19)

= 121 (y)

I(73) (73 XOR 17)

= 88 (X)

(88 + 29) mod

256 = 117 (u)

(117 * 13) mod

256 = 241 (±)

(241 - 57) mod

256 = 184 (©)

(184 XOR 19)

= 171 (½)

P(80) (80 XOR 17)

= 65 (A)

(65 + 29) mod

256 = 94 (^)

(94 * 13) mod

256 = 198 (ã)

(198 - 57) mod

256 = 141 (ì)

(141 XOR 19)

= 158 (×)

H(72) (72 XOR 17)

= 89 (Y)

(89 + 29) mod

256 = 118 (v)

(118 * 13) mod

256 = 254 (■)

(254 - 57) mod

256 = 197 (┼)

(197 XOR 19)

= 214 (Í)

E(69) (69 XOR 17)

= 84 (T)

(84 + 29) mod

256 = 113 (q)

(113 * 13) mod

256 = 189 (¢)

(189 - 57) mod

256 = 132 (ä)

(132 XOR 19)

= 151 (ù)

R(82) (82 XOR 17)

= 67 (C)

(67 + 29) mod

256 = 96 (`)

(96 * 13) mod

256 = 224 (Ó)

(224 - 57) mod

256 = 167 (º)

(167 XOR 19)

= 180 (┤)

Table 2. Bit dispersion Operation

Ob-

tained E5
121 171 158 214 151 180

E5 bi-

nary

01111

001

10101

011

10011

110

11010

110

10010

111

10110

100

Ci-

pher

01111

0

01101

0

10111

0

01111

0

11010

1

10100

1

01

0001

11

0100

Ci-

pher Text
36 32 56 36 65 51 36 64

Final transmitted Cipher text for ‘CIPHER’ plaintext is $ 8$A3$@

3.3 Decryption operation

The Ciphertext received at the receiver’s end needs to be converted to the actual plain

text message and this process is called the decryption. In order to decrypt the garbled

cipher text message, the receiver also uses the same set of keys that sender used to

encrypt the message. The first step is to change the length of the cipher text to match

the original length of the plain text message. The Bit-dispersion operation that sender

performed needs to be neutralized by the reverse bit-dispersion mechanism. This pro-

cess now re-groups the 6-bit binary characters to the 8-bit binary characters and then

converts the 8-bit binary to the corresponding ASCII Character. The extra padding

bits in the form of zeroes, that were added during the Bit-Dispersion process are also

6

removed and the original length of plaintext is restored on received cipher text. This is

followed by the set of pre-defined mathematical operations using the set of private

keys to count the effects of encryption to finally obtain the original desired plaintext

message. The mathematical steps are denoted as D1, D2, D3, D4 and Dc denoted the

reverse bit-dispersion operation. The mathematical operations to compute the

plaintext (PT) on the receiver’s end are depicted as follows:

 Dc = reverse bit dispersion (CT) (7)

 D1 = (Dc XOR K5) (8)

 D2 = (D1 + K4) mod 256 (9)

 D3 = (D1 * K3
-1) mod 256 (10)

 D4 = (D3 – K2) mod 256 (11)

 PT = (D4 XOR K1) (12)

The tables 3 and 4 depict the usage of the mathematical operations in the decryption

process by making use of an example. The example depicted here is an extension of

the same example depicted in Tables 1 and 2. The decryption operation takes in the

input the same set of five keys as private keys and also uses the output of encryption

operation as the input of decryption operation as a cipher text.

The Cipher text (CT) is: $ 8$A3$@

The modulo inverse of the Key K3 is denoted as K3
-1 and is computed to be: 197 (sat-

isfies K3 K3
-1 ≡ 1 mod 256)

Table 3. Reverse Bit Dispersion Operation

Ob-

tained C
36 32 56 36 65 51 36 64

C in

binary

01111

0

01101

0

10111

0

01111

0

11010

1

10100

1

01

0001

11

0100

Re-

Dispersed

01111

001

10101

011

10011

110

11010

110

10010

111

10110

100

Dis-

persed

ASCII

121 171 158 214 151 180

Dispersed text to be used to obtain plaintext is y½×Íù┤

7

Table 4. Decryption Table

Dc D1 = (C XOR

K5)
D2 = (D1 + K4)

mod 256

D3 = (D2 * K3
-1)

mod 256

D4= (D3 - K2)

mod 256

D5= (D4

XOR K1)

y

(121)
(121 XOR 19)

= 106 (j)
(106 + 57) mod

256 = 163 (ú)

(163 * 197) mod

256 = 111 (o)

(111 - 29) mod

256 = 82 (R)

(82 XOR 17)

= 67 (C)

½

(171)
(171 XOR 19)

= 184 (©)
(184 + 57) mod

256 = 241 (±)

(241 * 197) mod

256 = 117 (u)

(117 - 29) mod

256 = 88 (X)

(88 XOR 17)

= 73 (I)

×

(158)

(158 XOR 19)

= 241 (ì)
(241 + 57) mod

256 = 198 (ã)

(198 * 197) mod

256 = 94 (^)

(94 - 29) mod

256 = 65 (A)

(65 XOR 17)

= 80 (P)

Í

(214)
(214 XOR 19)

= 197 (┼)
(197 + 57) mod

256 = 254 (■)

(254 * 197) mod

256 = 118 (v)

(118 - 29) mod

256 = 89 (Y)

(89XOR 17)

= 72 (H)

ù

(151)

(151 XOR 19)

= 132 (ä)

(132 + 57) mod

256 = 189 (¢)

(189 * 197) mod

256 = 113 (q)

(113 - 29) mod

256 = 84 (T)

(84 XOR 17)

= 69 (E)

┤

(180)

(180 XOR 19)

= 167 (º)
(167 + 57) mod

256 = 224 (Ó)

(224 * 197) mod

256 = 96 (`)

(197 - 29) mod

256 = 67 (C)

(67 XOR 17)

= 82 (R)

Final intended plain text message is ‘CIPHER’

4 Mathematical Modelling

The mathematical operations cannot be applied directly to the plain text which is a

string of characters. Before the encryption operations may be applied, the plain text

character needs to be converted from the text format to the corresponding ASCII dec-

imal number value. Upon this ASCII decimal encoding, the encryption operation can

be summarized as a set of mathematical equations which when applied in the correct

order result in the final cipher text which can then be transmitted to the receiver. Each

individual encryption equation from the set of mathematical equations can be denoted

by En(x); and each equation when applied on the plain text, denoted by P(x), outputs

the final Cipher text which is denoted by C(x) as follows:

 C(x) = fdispersion (E5(x)) (13)

 where, E5(x) = (E4(x) XOR K5(x)), (14)

 and, E4(x) = (E3(x) - K4(x)) mod 256, (15)

 and, E3(x) = (E2(x) * K3(x)) mod 256, (16)

 and, E2(x) = (E1(x) + K2(x)) mod 256, (17)

 and, E2(x) = (P(x) XOR K1(x)) (18)

The Bit-dispersion function in the above equations, is given by the function fdis-

persion(En(x)) and the private keys are given by the function Kn(x), where n 𝜖 [1, 5].

The length of the plain text is given as ‘n’ and that of cipher text is denoted by ‘m’

8

where n < m, since the bit dispersion function eliminates the one-to-one character

mapping and thus changes the length of final cipher text.

1. The conversion of the string of characters into their corresponding ASCII decimal

numbers is the first operation which is performed. This encoding of plan text char-

acters can be represented as a function P(x), where P(x) comprises of individual

decimal values and each of these decimal value for ‘n’ number of characters of

plain text can be represented as P1(x) P2(x) P3(x) … Pn(x) and each character Pi(x)

represented in Base10 decimal value belongs to the range 0 ≤ Pi(x) ≤ 255.

2. Each encryption operation is a linear mathematical operation which involves the

five private keys and each encryption mathematical operation can be represented as

the function E(x) comprised of a mathematical operation (represented as 𝜙) and a

key function K(x) and is represented as, Ei(x) = Ei-1(x) 𝜙 Ki(x)

3. The Base10 decimal number that is obtained from the encryption functions E4(x)

needs to be converted to a Base2 binary number. This Decimal to Binary conver-

sion is carried out for each individual decimal number from the set of ‘n’ numbers

and for a decimal number represented as xi the binary number can be obtained as a

set of following procedure – “Keep dividing the quotient by 2 until the quotient is

0 and the all the remainder represented in a reverse order is the binary number”.

This can be illustrated as a set of equations:

 Q0 = xi / 2 remainder R0 (19)

 Q1 = Q0 / 2 remainder R1 (20)

 Qj = Qj-1 /2 remainder Rj, Qj 𝜖 [1, 0] (21)

 Qj+1 = Qj / 2 remainder Rj+1, Rj+1 𝜖 [1, 0] (22)

The Base2 binary number representation of decimal integer xi is Rj+1Rj …. R2

R1

4. The bit-dispersion function fdispersion
 groups all the 8-bit binary numbers together

and then combine them into a 6-bit binary number which is then converted back to

the Base10 decimal number. The binary numbers need to be converted back to the

decimal numbers and this Base2 to Base10 conversion involves, “multiplying the

sum total by 2 and adding the remainder bit to it” and is shown as follows for a bi-

nary number Rj+1Rj …. R2R1 the final Decimal number is Dj+1:

 D1 = 2 x 0 + R1 (23)

 D2 = 2 x D1 + R2 (24)

 Dj = 2 x Dj-1 + Rj (25)

 Dj+1 = 2 x Dj + Rj+1 (26)

5. Conclusively, these transformed decimal integers obtained as the result of encryp-

tion operation E5(x) is mapped to an ASCII character each and this reverse ASCII

9

mapping gives the final Cipher text C(x) which is then returned to the receiver as

the message. This transmitted cipher text is of length ‘m’ which is greater than the

length of plaintext ‘n’, i.e. m > n.

6. The average execution time is given by equation, T = (∆T0 +∆T1 +∆T2+ ∆T3+ ∆T4+

∆T5+ ∆T6+ ∆T7+∆T8+ ∆T9+∆T10) / 11.

7. The Time complexity can be computed and depicted in Big-Oh notation as ‘O(n)’

where ‘n’ is the length of the plaintext. The calculation of the Time taken for vari-

ous process is specified in table 5.

Table 5. Time Calculation.

S. No. Operations Time taken

1. E1(y) ∆T0

2. E2(y) ∆T1

3. E3(y) ∆T2

4. E4(y) ∆T3

5. E5(y) ∆T4

6. C(y) ∆T5

7. ASCII convert ∆T6

8. Base10 to Base2 ∆T7

9. Bit Dispersion ∆T8

10. Base2 to Base10 ∆T9

11. Reverse ASCII ∆T10

10

Fig. 1. Battery Usage of PentaPlicative vs Affine cipher

Fig. 1. Discharge Speed - PentaPlicative vs Affine cipher

Fig. 2. Battery Usage Foreground and Background of PentaPlicative vs Affine Cipher

11

Fig. 3. CPU Usage of PentaPlicative vs Affine Cipher

Fig. 5. Flowchart of Encryption in PentaPlicative Cipher

5 Results: PentaPlicative vs Affine Cipher Technique

A comparison is drawn between two symmetric key techniques, PentaPlicative Cipher

technique and Affine Cipher technique. The PentaPlicative Cipher technique uses five

keys as opposed to the two-key cryptosystem of affine cipher. The use of limited keys

makes the affine cipher highly vulnerable to attacks that make use of a system of line-

ar equations to decipher the text. However, the use of increased number of keys and

operations coupled with the bit dispersion operation used in PentaPlicative cipher

technique makes it impenetrable to such attacks. It would be expected that since af-

fine cipher uses lesser keys and lesser operations, hence it would also result in a lower

consumption of battery than PentaPlicative. However, this would have been true if no

12

battery discharge optimizations were not included for PentaPlicative technique. It

makes use of cached keys thus reducing the hefty battery consumption as opposed to

the standard implementation of the affine cipher with the same input vector of keys of

IMEI number and location coordinates. The PentaPlicative also reduces screen

brightness and prompts garbage collection upon exit, thus making a significant im-

provement in effectively curbing memory as well as battery utilization. Battery usage

and discharge speed were measured for both PentaPlicative and Affine Cipher using

AccBattery App [10]. It reveals that battery usage for Affine Cipher is relatively

higher than PentaPlicative (Fig 1) and the former has a greater battery discharge speed

over the period (Fig 2). The CPU Usage along with foreground and background bat-

tery usage has also been included for the comparative analysis of the two apps pro-

vided by GSamBattery [11] and TrepnProfiler [12]. It indicates a greater foreground

task and higher usage of CPU in the background and as result a larger resource utili-

zation for Affine Cipher (Fig 3 and 4). The obtained results have been briefed in the

mentioned table. Please note that the simulation of the Energy Efficient Cipher Tech-

nique was carried out in a controlled environment (Table. 6). Both techniques were

coded as android applications and the performance results were measured under the

same conditions. The running time of Pentaplicative Cipher Technique is 1.9 milli-

seconds. [6]

Table 6. Simulation environment

Simulation Environment

O.S. used Android 8.0.0

Mobile Model OnePlus 3T (A3003)

RAM 6 GB

Development IDE Android Studio 2.3.1

Compile SDK Version 25

Development Lang Java, XML

Java Version 1.8.0 build 221-b11

6 Conlusion

The Energy Efficient Cipher technique is a Green Cryptographic technique that is

robust and lightweight to cater to the handheld devices. It has been optimized to make

minimal use of the hardware resources and to use light-weight operations to secure

the data. This, in turn, reduces the battery consumption by the Energy Efficient Ci-

pher Technique. The additional mechanisms implemented in the crypto system in

form of caching greatly reduce the number of CPU cycles and thereby significantly

reducing the battery consumption and making it a perfect fit for the hand-held devic-

13

es. Moreover, the reduction of human interaction in the process of the selection of

private keys by automatically selecting the five private keys as the physical infor-

mation of the device, contributes to the security and make it much more difficult for

the keys to be deciphered. Furthermore, the obtained results clearly support the Ener-

gy Efficient Cipher Technique in terms of the battery drainage and CPU usage over a

less secure traditional affine cipher technique. Conclusively, the result is a strong

green cipher technique.

References

1. Behrouz A. Forouzan, “Cryptography and Network Security”, Tata McGraw-Hill Special

Indian Edition 2007.

2. William Stallings. “Cryptography and Network Security-Principles and Practices” Pearson

Education, fourth Edition 2007.

3. L. Singh, R. Johari. "CLCT: Cross Language Cipher Technique." In International Sympo-

sium on Security in Computing and Communication, pp. 217-227. Springer International

Publishing, 2015.

4. I. Jain, R. Johari, R.L Ujjwal “CAVEAT: Credit Card Vulnerability Exhibition and Au-

thentication Tool”. In: Second International Symposium on Security in Computing and

Communications (SSCC‟14), pp 391- 399.Springer 2014.

5. R. Johari, H. Bhatia, S. Singh and M. Chauhan. “Triplicative Cipher Technique” Procedia

Computer Science 78: 217-223, 2016.

6. Garg N., Bhatia H., Johari R. (2019) Pentaplicative Cipher Technique. In: Bhattacharyya

S., Hassanien A., Gupta D., Khanna A., Pan I. (eds) International Conference on Innova-

tive Computing and Communications. Lecture Notes in Networks and Systems, vol 55.

Springer, Singapore.

7. Duy, Truong Vinh Truong, Yukinori Sato, and Yasushi Inoguchi. "Performance evaluation

of a green scheduling algorithm for energy savings in cloud computing." In Parallel &

Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International

Symposium on, pp. 1-8. IEEE, 2010.

8. Sanjeevi, P., and P. Viswanathan. "A green energy optimized scheduling algorithm for

cloud data centers." In Computing and Network Communications (CoCoNet), 2015 Inter-

national Conference on, pp. 941-945. IEEE, 2015.

9. Shye, Alex, Benjamin Scholbrock, and Gokhan Memik. "Into the wild: studying real user

activity patterns to guide power optimizations for mobile architectures." In Microarchitec-

ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 168-

178. IEEE, 2009.

10. AccuBattery Application downloaded from

https://play.google.com/store/apps/details?id=com.digibites.accubattery&hl=en

11. GSamBattery Application downloaded from

https://play.google.com/store/apps/details?id=com.gsamlabs.bbm&hl=en

12. TrepnProfiler Application downloaded from

https://play.google.com/store/apps/details?id=com.quicinc.trepn&hl=en

