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Abstract. This paper proposes the PatentTransformer framework to generate 

and measure personalized patent claims. The objective is to help inventors 

conceive better inventions by learning from relevant inventors. Patent claim 

generation is a way of “augmented inventing.” for inventors. Such patent claim 

generation leverages the recent transfer learning in the Deep Learning field, 

particularly the state-of-the-art Transformer-based models. In terms of system 

implementation, it is planned to build an "auto-complete" function for patent 

claim drafting. The auto-complete function is analyzed from four different 

perspectives: extent of generation, generative direction, proximity of 

generation, and constraint in generation. Technically, the PatentTransformer 

framework is composed of two Transformer models. One is for text generation 

and the other is for quality measurement. Specifically, the patent claim 

generation is based on GPT-2 model and the measurement of personalization is 

based on BERT model. The training data is inventor-centric and comes from the 

Inventors Endpoint API provided by the USPTO. 

Keywords: Patent, Claims, Text Generation, GPT-2, BERT, NLG, NLP, 

Personalization  

1 Introduction 

1.1 Transfer Learning & Augmented inventing  

In the computer science field, NLP (Natural Language Processing) turns text into 

structured data and NLG (Natural Language Generation) turns structured data back to 

text. Transfer learning is a method where a model trained for a task (either NLP or 

NLG) is reused as the starting point for fine-tuning the model on a second task. 
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Recently, transfer learning based on Transformer models [23], such as BERT [6] and 

GPT-2 [15], has resulted in significant state-of-the-art performances. Such transfer 

learning is implemented by pre-training an unsupervised language model on a large 

corpus and fine-tuning the model on downstream tasks with much fewer data. In 

terms of architecture, a Transformer model comprises an Encoder and a Decoder. The 

Encoder is capable of turning text into structured data, such as tensors in artificial 

neural networks, and the Decoder is capable of turning tensors back to text. Both of 

the Encoder and Decoder can work as a standalone model without the other. For 

example, BERT and GPT-2 are the most noteworthy Encoder and Decoder 

respectively. In previous works, I had experimented on a classifier based on BERT 

[12], a prototype of patent claim generation based on GPT-2 [11], and a framework to 

measure the text generation of GPT-2 by using BERT [10]. Based on these 

experiences, this paper moves forward to propose a framework for personalized 

patent claim generation.  

Transfer learning is a means to an end. The ultimate goal is to build an "augmented 

inventing" system, so that transfer learning of inventive minds is made possible. For 

example, it is planned to implement an "auto-complete" function in which, if an 

inventor is contemplating and has no whole picture in mind yet, patent claim 

generation can augment the inventor to explore relevant ideas. Such interaction 

between human and machine will also open a window for both qualitative and 

quantitative analysis on augmented inventing. By measuring how the inventor 

responds to the system, it is possible to collect human annotations for active learning. 

The second part of this paper will explain the auto-complete function in detail. 

1.2 Personalization 

It is planned to fine-tune a pre-trained model with inventor-centric data for reaching 

personalization. For example, the data may start from a seed inventor and expand to 

include more patents from other inventors through patent citations. The depth of 

citations decides how many patents to include. Extra keywords may be used to 

include or exclude patents. By collecting patents from similar minds, it is 

hypothesized that the fine-tuned GPT-2 model can generate claim text of higher 

relevancy. Such an inventor-centric approach might be possible because of the 

PatentsView API
2
 provided by the USPTO. The API provides web developers and 

researchers programmatic access to longitudinal data and metadata on patents, 

inventors, companies, and geographic locations.
3
 Notably, the Inventors Endpoint

4
 of 

the API can search for inventors who had patents granted based on date range, 

country or city, CPC classification or other criteria. A primary underlying challenge 

in the API is inventor disambiguation since the USPTO does not require an inventor 

to record a unique identifier. Searching for all of the patents associated with a specific 

inventor can be difficult, particularly if the inventor's name has multiple forms. In 

                                                           
2 http://www.patentsview.org 
3 http://www.patentsview.org/api/faqs.html 
4 http://www.patentsview.org/api/inventor.html 
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2015, the USPTO hosted an Inventor Disambiguation Workshop. The winning team, 

led by Andrew McCallum and Nicholas Monath [14], uses discriminative hierarchical 

coreference as a new approach and reached 98.27% in their F1 score [25]. Their 

algorithm was integrated into the PatentsView data platform in March 2016. Inventor 

disambiguation is the reason why inventor-centric training data in this work should be 

feasible. It is noted that the API provides seven endpoints in total, such as Assignees 

Endpoint, Location Endpoint, CPC Endpoint, etc. Therefore, if the personalization 

implemented in this paper works, the idea can be generalized and applied to different 

data perspectives, such as generating patent claims which are specific to a company or 

a city.  

1.3 A Span-based Approach 

In the NLP field, language modeling is the task of predicting what word comes next. 

Specific to the patent claim language, a span-based approach is to predict what “claim 

span” comes next. A claim span is a segment of text in a patent claim based on human 

annotations. For example, claim 1 of US9229634B2 is split into spans as Fig. 1. How 

to split a claim into spans is skipped here for brevity, and interested readers can refer 

to [10, 11] for details.  

 
 

A span boundary in a patent claim is made by human and therefore a human 

annotation. Such a boundary is meaningful for patent readers. In this paper, it is 

assumed that a Transformer may learn or generate more meaningful data based on 

claim spans. My previous experiments in [10, 11, 12] showed effective results of the 

span-based approach. Coincidentally, among the various BERT-like models, Joshi et 

al. [7] propose the SpanBERT, which is a pre-training method that is designed to 

 

 

Fig. 1. Spans in the ‘634 patent 
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better represent and predict spans of text. According to the authors, SpanBERT 

consistently outperforms BERT, by masking contiguous random spans (rather than 

random tokens in the original BERT) and training the span boundary representations 

to predict the entire content of the masked span. For this paper, it is assumed that 

SpanBERT is further validation of the span idea on Transformer-based models.  

1.4 Framework 

The PatentTransformer is composed of two Transformers. In the previous work [10], I 

define a similar framework to experiment with the approach of measuring span 

relevancy in patent claim generation. In that work, conceptually, it uses a fine-tuned 

Transformer Encoder to measure a fine-tuned Transformer Decoder. In this paper, the 

concept is generalized further as Fig. 2. On its left-hand side, the first fine-tuned 

model is based on a pre-trained model. The fine-tuning is based on training data in a 

specific domain, e.g., patent claims. In order to make text generation personalized, the 

pre-trained model is further fine-tuned by inventor-centric data, e.g., patents within a 

certain degree of relevancy to an inventor. By doing so, a hypothesis to validate is that 

the generated patent claims will be more relevant to the inventor. On the right-hand 

side, the same two steps of fine-tuning with specific domain data and inventor-centric 

data are similar, except for working on a different Transformer model. 

A metric calculation on the right-hand side is designed to feed measurement results 

to the text generation on the left-hand side. For example, when the sampling 

algorithm in text generation produces multiple candidates in its search space, the 

metric can be used for choosing the best result. In the middle of the framework, the 

text processing is generalized since conceptually the text can be a token (sub-word), a 

word, a phrase, a span, or a complete sentence. The frequency of interaction between 

the left-hand side and the right-hand side is also generic. It could be real-time or 

batched. In the previous work, the text processing is span-based while the text 

generation is word by word. The metric calculation operates in a batch manner after 

generating a batch of patent claims. In brief, this paper generalizes the elements in the 

previous framework when possible. The reason for further generalization and higher 

flexibility is to meet the needs of different auto-complete functions.  

 

 
 

Fig. 2. Generic Framework of Text Generation & Measurement 
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2 Auto-complete function 

The auto-complete function is the user interface for inventors to appreciate augmented 

inventing. This function has four design perspectives: (1) extent of generation, (2) 

generative direction, (3) proximity of generation, and (4) constraint in generation. 

Respectively, the extent means how long the text to generate and measure. It can be a 

token (sub-word), a word, a phrase, a text span, or an entire sentence. The direction 

means generating text in a forward or backward manner. The proximity means how 

far the generated text may locate from the current text. The constraint means the 

requirement to include or exclude a specific text, a type of text or text pattern. The 

following sections explain these perspectives in detail. 

2.1 Extent of generation  

The extent of generation for an inventor depends on the length of the text to measure. 

Different extents of text generation and measurement pose different challenges. In 

GPT-2, the model generates a token each time by sampling among all tokens in its 

vocabulary. In fact, the sampling is to measure token probabilities and decide which 

one to select. Different sampling algorithms mean different ways to select. Most of 

the language models work at such a token or word level since, by definition, a 

language model is to predict what the next one token or word is. The reason why 

expanding the range from “next one” to “next few or many” in this paper is for 

designing more possible ways of measurement. Technically speaking, the GPT-2 in 

the PatentTransformer framework still generates one token per time, but the BERT 

model is planned to measure the generated text on a phrase, span, or sentence basis. A 

further assumption is that, in order to measure beyond the token level, a search space 

of candidate phrases, spans or sentences will be built and explored based on a 

sequence of tokens generated by GPT-2.  

Measuring at the token level is built in GPT-2. A planned experiment is to 

benchmark performance comparing fine-tuning a pre-trained model by OpenAI and 

training a model from scratch with patent claims. The token level is the starting point 

of augmented inventing for inventors, i.e., one word per time. The next level of text 

generation is to generate phrases. A phrase is a few words with a specific meaning. 

The phrase could be an inventive element to describe the invention. In order to meet 

the written requirement mandated by patent law and to avoid ambiguity in patent 

litigation, it is common to define a key phrase and reuse it elsewhere in patent claims. 

Such constraint implies that the quality measurement of text generation should be 

capable of working on a phrase basis. How well the GPT-2 model can meet the 

written requirement is unknown yet 

The next level of text generation is span generation. For human readability, a 

patent practitioner usually splits a patent claim into several spans. Generally, a patent 

claim combines several ideas to be innovative. Since the readability in a patent claim 

aligns with the human comprehension of ideas, a claim span becomes a convenient 

approximation to represent an idea in a patent. My previous experiment in [10] 

indicates that, at a span level, it is possible to use BERT to measure the relevancy 
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between two spans. Therefore, working on a span basis is an option in terms of 

measuring text generation. The actual effectiveness of such “a span as an idea” 

approach remains to be verified. If not compelling enough, a follow-up topic will be 

how to split a patent claim into more fine-grained or coarse-grained spans. On a span 

basis, the auto-complete function can provide several generated claim spans for the 

user's selection. Most of patent claims are more prolonged than ordinary sentences. 

Therefore, text measurement and generation on spans is a middle ground for human 

comprehension. 

The last level of text generation is to generate a complete sentence, i.e., an 

independent or dependent patent claim. A well-generated independent claim is the 

combined results of being able to generate the next word, next phrase and next spans 

well. How to generate a dependent claim is a different challenge because of claim 

dependency. In patent law, a dependent claim is to describe its corresponding 

independent claim with specific details. How PatentTransformer could learn such 

claim dependency is to be explored. For example, is it possible to formulate the 

problem as a Q&A problem by creating an independent claim as a question and its 

dependent claim as an answer? In this way, the artificial neural network is trained to 

identify a specific element in the independent claim and generate text to describe the 

element in detail. Section 3.1 will address the issue in training data concerning claim 

dependency. 

2.2 Generative direction  

After experiments, it was found possible to generate text in a backward manner. By 

reversing the order of words in input data, the GPT-2 model can be fine-tuned to 

generate patent claims backwardly. Such backward capability implies that an inventor 

does not have to draft a patent claim from the beginning. Writing a few words in the 

middle can develop into both directions. It remains to be seen whether a backward 

generation can be used to calibrate a forward generation. Another purpose of the 

backward direction is to explore the possibility of mutual searching between two 

ideas. For example, the text generation of one claim span can go forward, and the 

other can go backward. Is it possible to generate a patent claim incrementally by 

generating a new claim span to connect two existing claim spans?  

2.3 Proximity of generation  

The proximity means the distance between the current text and the generated text. The 

reason why this perspective is needed is because of the compositionality in patent 

claim language. Such compositionality comes from two observations: (i) Technical 

inventions are generally compositional by combining steps in method/process or 

different arrangement of components or matters, and (ii) Compositionality is literally 

codified in patent laws. When drafting patent claims, one can describe and arrange the 

inventive elements of patent claims in different orders. This indicates that the distance 

of two inventive elements in prior arts may be different from the order in an inventor's 
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mind. Therefore, it is crucial for the PatentTransformer to look ahead and provide 

multiple claim spans at a user’s discretion.   

It can also be noted that the Transformer models referred to so far work in a 

Euclidean domain. A Euclidean domain is a domain that has a fixed distance from a 

given center. For example, the training data for GPT-2 is sequential. The distance 

between two words in the sequential data is fixed. The distance in attentions to 

calculate is also fixed. By being not limited to Euclidean, the “proximity” perspective 

may open a new window to a non-Euclidean domain such as a graph, in which the 

distance between words, phrases, spans can be dynamic. In this paper, a hypothesis is 

that a non-Euclidean approach may fit better the nature of the compositionality in 

patent claims. Graph-based Transformer model is an emerging field of its own, for 

example,  Koncel-Kedziorski et al. [8] proposed text generation from knowledge 

graphs with graph Transformers. Whether a graph Transformer can handle the 

compositionality better is the core issue in my new project granted by the Ministry of 

Science and Technology (MOST) in Taiwan recently. Therefore, if an issue of a 

Euclidean domain in this paper could not be solved, there is a chance to solve it in a 

non-Euclidean domain. 

2.4 Constraint in generation  

Setting a constraint to include or exclude a specific text or text pattern is conceptually 

rule-based. How to train a neural network to learn a rule-based constraint is still an 

open challenge. Recently, Keskar et al. [4] propose a conditional Transformer 

language model for controllable generation. The model is trained to condition on 

control codes that govern style, content, and task-specific behavior in text generation. 

Shen et al. [26] point out that current neural encoder-decoder models conflate both 

"content selection" and "surface realization" into a black-box architecture. As a result, 

the content to be described in the text cannot be explicitly controlled. The authors 

propose a general framework based on variational inference and decoupling content 

selection from the decoder. Papers like these are pointers for learning and exploring 

how to control patent claim generation. 

In Section 2.1, the necessity of working on a phrase basis was explained regarding 

the written requirement. Such a requirement is a constraint on patent claim 

generation. Another example is the antecedent basis in definiteness requirement in 

patent law. The antecedent basis is a judicially created requirement that stems from 

written requirement. A claim is indefinite when it contains words or phrases whose 

meaning is unclear. In practice, if an indefinite article indicates an element, the 

element as a phrase to be referred by a definite article later should be the same so that 

definiteness will not be an issue. How well the GPT-2 model can meet the antecedent 

basis requirement is a research topic in this paper. 
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3 Implementation & Challenge 

3.1 Data 

The first challenge encountered is how to combine independent claims and dependent 

claims as training data. For example, in Fig. 1, claim 2 depends on claim 1. The 

dependency between claims is a unique issue in patent claim processing, compared 

with most domains in natural language processing. In other domains, when pre-

training or fine-tuning a model, it is common to treat text as a stream of tokens after 

tokenization. One record in training data may mean one sentence or a paragraph. No 

dependency exists between two records. The issue with the claim dependency in 

training data is that, if a record means a dependent claim without including its 

corresponding independent claim, the context of the dependent claim will be missing. 

Preferably, the independent claim should be placed in front of its dependent claim so 

that the model can learn both of them together. However, an independent claim has 

multiple dependent claims most of the time. Therefore, the model is forced to learn an 

independent claim repetitively in order to learn its respective multiple dependent 

claims. Also, an independent claim is longer than its dependent claims usually. If it is 

longer than the whole length of a training record, the model will not be able to learn 

the actual part of the dependent claim.  

When an independent claim has multiple dependent claims, its dependent claim is 

likely to be relevant to only a subset of elements in the independent claim. A 

pragmatic approach is to extract the subset and rewrite the dependent claim to 

combine the subset as a new independent claim. Such a rewrite algorithm is a 

challenge of its own. Furthermore, if it is to rewrite all dependent claims as new 

independent claims, all generated patent claims will be independent claims. A tougher 

challenge will be how to split generated claims into independent and dependent 

claims.  

At the moment of this writing, two versions of baseline training data are under 

preparation without any rewrite algorithm. One version is treating a dependent claim 

as one single training record. The other is prepending the independent claim before a 

dependent claim to concatenate them as one single record. The purpose is to 

benchmark and observe the outcome of text generation. In parallel, it is useful for 

benchmark and test different ways of quality measurement. 

3.2 Pre-trained Model 

How to design and benchmark different PatentTransformer models and 

hyperparameters is the most challenging task in this paper. In my previous work [10, 

11], it is convenient to leverage the pre-trained GPT-2 model released by OpenAI. A 

follow-up research topic is to explore how the fine-tuning result will differ if the 

GPT-2 model is trained from scratch with patent claims and patent claims only. 

OpenAI has not released their code for training yet. Therefore, my recent experiment 

is still a work in progress while trying to learn from different GitHub repositories, 

hyperparameter settings, tokenization mechanisms, and data structures. The size of 
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the model matter a lot too. The current progress is being able to train the smallest 

GPT-2 model (117M) from scratch on Google Colab for free. It is planned to test 

different tokenization mechanisms, such as BPE (Byte Pair Encoding) [17] and 

SentencePiece [9]. After figuring out suitable experimental settings, it is planned to 

try bigger GPT-2 models, such as medium (355M), large (774M) and the largest 

(1.5B). The large model is already beyond what Google Colab can run.  

3.3 Personalization 

Section 1.2 explains the inventor-centric data approach in this paper. It is also a 

hypothesis that fine-tuning a model with inventor-centric data can generate more 

relevant patent claims to the inventor. Such a hypothesis remains to be validated. A 

critical issue on validation is how to measure the degree of personalization between 

the generated patent claims and the original inventor-centric data. One idea is to 

leverage patent classification as an approximation to measure the relevancy in 

personalization. For example, the more the classification labels overlap with each 

other, the higher the personalization relevancy should be. This is also a hypothesis to 

be validated. In order to calculate the overlap, it is required to predict the 

classification labels of the generated patent claims. For such a task, it is planned to 

leverage my previous codebase for patent classification in [12]. Two follow-up topics 

to explore are: (1) Is classification label a valid approximation to measure 

personalization? If not, what else? (2) Does the distribution of measurement in a 

BERT model cover the whole generated text well? Or, does the BERT model measure 

only a few segments of text instead of the whole? 

3.4 Fine-tuning a fine-tuned model 

A few days after my ai.patent.bot in [11] was online, I observed an interesting text 

generation that looks partly like a patent and partly like a letter. The suspected root 

cause is that the email fed into the patent bot contains a more extended email 

signature with an address. The original GPT-2 model was trained with lots of web 

data. The web data likely contains emails and addresses. Therefore, a mixed input 

may make GPT-2 generate a mixed result. This scenario is intriguing and made me 

recalled that, in the image domain, a weird image could emerge in the transition of 

transfer learning when learning from lion images to dog images, for example. Can a 

new patent claim be generated during a transition of transfer learning? Can more of a 

specific kind of patent claims be generated?  

In order to figure it out, an experiment was conducted recently by fine-tuning a 

fine-tuned model in a “slow-motion” manner. Three stages in the experiment: First, 

the original GPT-2 model (355M) released by OpenAI is fine-tuned for 6,000 steps 

with patent claims. Such steps are sufficient to generate text that looks like a patent 

claim. Second, the original BERT-Base model is fine-tuned with three epochs for 

patent classification based on CPC section labels (A~H & Y). Third, the fine-tuned 

GPT-2 model is further fine-tuned with a patent set S1 (belongs to CPC section A but 

not section G) and fine-tuned slowly to the other patent set S2 (belongs to CPC 
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section G and some belong to section A too). The slow transition from the set S1 to 

the set S2 is for observing closely by minimal steps in order to catch the fine details in 

fine-tuning. For example, 512 patent claims are generated after every ten steps of 

fine-tuning. In terms of observation, the metric is the number of CPC labels measured 

by BERT. The experiment turned out that, in the transition from set S1 to S2, the total 

number of label G increases while the total number of label A decreases. 

Unfortunately, the number of patents with both labels A and G does not increase as 

anticipated. How to generate more patent claims of a specific category by fine-tuning 

remains a difficult problem. 

4 Related Work 

In the patent field, Aristodemou et al. [2] reviewed 57 recent articles on the use of 

artificial intelligence methods, machine learning, and deep learning approaches for 

analyzing intellectual property data. Lupu et al. [13] reviewed the state-of-the-art 

progress on Intellectual Property analytics and pointed out that, among patent-related 

applications, modern neural networks are applied for machine translation primarily. 

The authors further anticipated that the remarkable success of deep learning would 

certainly be tested on patent data someday. To my knowledge, my previous work in 

[11] is the first to propose patent claim generation, and this paper is to push the idea 

further to personalization.  

In the computer science field, the two-stage framework (pre-training & fine-

tuning) of Transformer models is so effective that it is declared the arrival of the 

“ImageNet moment for NLP” [16]. Right after BERT and GPT-2, a variety of 

Transformer-based models emerged in a relatively short period, notably Grover by the 

University of Washington [18], Transformer-XL [5] and XLNet [24] by CMU and 

Google, ERNIE 2.0 by Baidu [22], MASS by Microsoft [20], Evolved Transformer 

by Google [19], SciBERT by the Allen Institute for Artificial Intelligence [3], 

VideoBERT by Google [21], DocBERT by the University of Waterloo [1], etc. It is 

foreseeable that, by the time the prototype of PatentTransformer is built in the 

following months, more advancement in the NLP field and better Transformer models 

will be available. It should be fruitful to keep an iterative approach and apply state-of-

the-art techniques to PatentTransformer.  

5 Summary 

The PatentTransformer framework in this paper leverages both of the GPT-2 model 

and the BERT model. Although these models are state-of-the-art Transformer models, 

constructing a framework on these building blocks is a new challenge. Applying the 

framework to the patent corpus is another challenge, due to unique properties in 

patent claim language and legal requirements in patent law. A further challenge is 

how to measure and generate personalized patent claims by inventor-centric data and 

fine-tuning. In the era of artificial intelligence, it is generally accepted that human 

creativity is what sets humans apart from machines. This paper proposes that 
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“augmented inventing” is a tool to help inventors be more creative in technical 

inventions.  
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