
Application Domains in the Research Papers at

BENEVOL: A Retrospective

Andrea Capiluppi
Dept of Computer Science

Brunel University London, United Kingdom

Nemitari Ajienka
Dept of Computer Science

Edge Hill University, United Kingdom

Bilyaminu Auwal Romo
Dept of Engineering and Digital Technologies

Coventry University, United Kingdom

Abstract

Research on empirical software engineering
has increasingly used the data that is made
available in online repositories, specifically
Free/Libre/Open Source Software projects
(FLOSS). The latest trends for researchers is
to gather “as much data as possible” to (i)
prevent bias in the representation of a small
sample, (ii) work with a sample as close as the
population itself, and (iii) showcase the per-
formance of existing or new tools in treating
vast amount of data.

The effects of harvesting enormous amounts
of data have been only marginally considered
so far: data could be corrupted; repositories
could be forked; and developer identities could
be duplicated. In this paper we posit that
there is a fundamental flaw in harvesting large
amounts of data, and when generalising the
conclusions: the application domain, or con-
text, of the analysed systems must be the pri-
mary factor for the cluster sampling of FLOSS
projects.

This paper presents two contributions: first,
we analyse a collection of 100 BENEVOL pa-
pers that appeared showing whether (and how

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

much) FLOSS data has been harvested, and
how many times the authors flagged an issue
in their different application domains. Second,
we discuss the implications of using ‘applica-
tion domain’ as the clustering factor in the
sampling of FLOSS data, and the generalisa-
tions within and outside the clusters.

Index terms— FLOSS, application domains,
BENEVOL papers

1 Introduction

The use of open, available data has been a welcomed
accelerator in the software engineering research field.
Data on the processes and products available via an
Open Source approach has led to an increasingly large
number of workshops, conferences, papers and re-
search attempts to describe the phenomenon. Re-
searchers gathered initially in 2001 around the Open
Source Software (OSS) workshops, held annually in co-
location with the ICSE series of conferences. Before
the OSS workshop spawned into the OSS conference
in 2005, the BENEVOL community started to group
together researchers from the Software Evolution do-
main. Its initial focus was ‘(...) to bring researchers
to identify and discuss important principles, problems,
techniques and results related to software evolution re-
search and practice’1.

While the goal of a few BENEVOL papers has been
to achieve the generality of the results [1], the domain,
context and uniqueness of a software system have not
been considered very often by empirical software engi-
neering research. As in the example reported in [2], the
extensive study of all JSON parsers available would

1https://smartcare.be/events/benevol-04-workshop

1



find similarities between them or common patterns.
That type of study would focus on one particular lan-
guage (JSON), one specific domain (parsers) and in-
evitably draw limited conclusions. On the other hand,
considering the “parsers” domain (but without focus-
ing on one single language) would show the common
characteristics of developing that type of systems, and
irrespective of their language.

The underlying vision of this paper is to open a
proper debate on the importance of context for any
software system, and the uniqueness of its applica-
tion domain. This position paper stems from the
work of several prominent researchers who called the
community to ‘go deeper, not wider’ (Michael God-
frey at MSR 2017) and ‘minding the mine, mining the
mind’ [3]. We posit that past empirical investigations
using FLOSS systems have been mostly blind to these
aspects (i.e., context and domain), establishing simi-
larities between vastly different systems if they shared
a common pattern in one measured attribute. Using
an extreme example, one could establish a similarity
between the coupling of a ‘hammock‘ and a ‘bridge’
due to the fact that both are held at the sides.

The purpose of this paper is to share some find-
ings about a selection of papers discussed during the
last few years of BENEVOL workshops. The focus is
specifically based on BENEVOL papers that have used
FLOSS data. The context of our analysis is the di-
versity of FLOSS projects under study, and how that
was reflected by researchers in their findings. Some
100 papers are analysed in terms of whether FLOSS
projects are used, how many, and whether considera-
tions of application domains have been used to inform
the sampling of FLOSS projects, or the validity of the
conclusions. We assume that domains are relevant as
a fundamental construct for any empirical software en-
gineering research [4].

2 Related Work

The vast literature on FLOSS systems of the last 10
years has been possible also due to a series of guidelines
on how to perform quantitative, empirical analysis on
FLOSS processes and products. When SourceForge2

was considered as the de-facto FLOSS forge, a well
received research paper shared more than one insight
on the most common mistakes to avoid when mining
data and results from the projects hosted there [5].
Among other more technical issues of mining this spe-
cific forge, this paper actively warned against an inac-
curate ‘screening’ of projects into samples: reducing a
population to, say, ‘FLOSS projects with more than 7
developers’ would inevitably reduce the variables for
the analysis, but the ‘number of developers’ variable

2https://sourceforge.net/

cannot be used as a dependent or independent variable
for any model or analysis.

The acknowledgement of GitHub as the newly es-
tablished central focus for FLOSS development gener-
ated a similar requirement, in terms of shared guide-
lines to avoid common mining mistakes [6]. Differently
from [5], the 2014 paper mostly focused on the techni-
cal aspects of GitHub, and how the collected metrics
could skew the results, due to the inner workings of the
Git toolset, and the different approach to FLOSS de-
velopment observed on GitHub (forking, non-software
development, inactivity of projects). Neither [5] or [6]
warned about the variability of FLOSS projects, the
importance of their context, or the uniqueness of their
domains.

Outside of the FLOSS literature, the diversity and
context of software systems have received some atten-
tion in the past [4, 7]. The phrase “large scale” has
been frequently used in empirical software engineering
research to denote the magnitude of the analyzed case
study or studied software sample. Notwithstanding,
Nagappan et al. argue that analyzing a high number
of projects is not always necessary [2]. But what is
even more important is the selection of the projects
studied.

Interesting patterns valuable to researchers and
practitioners are often identified in domain-based anal-
ysis of software projects. Results from one domain
might not be applicable in another. As such, it is im-
portant for results to be representative.

Software categorization or domain clustering has
gained importance over the years. For example, the
knowledge of software trends in a particular domain
can assist developers in the search for domain-specific
reusable components [8]. Tian et al. [9] proposed a
technique based on Latent Dirichlet Allocation for au-
tomatic software categorization in open-source soft-
ware repositories.

According to Haefliger et al. [10], “domain anal-
yses, documentation, and quality standards enhance
the ability to reuse software components”. However,
our survey of past BENEVOL papers that have an-
alyzed OSS projects demonstrates that software do-
mains have not been considered in most of the past
software engineering studies.

3 A Survey of BENEVOL Papers:
2012 to 2018

In order to show how FLOSS data has been used and
analysed by the BENEVOL community, we report here
an investigation of the research papers appeared in the
last 5 years of the BENEVOL event. An overall 101
papers have been considered in this study: we share
the raw data in the spreadsheet at https://tinyurl.

2



com/y69wkadr.
Each paper was read by one of the co-authors, and

summarised along the following points:

• Use of FLOSS systems (yes/no): at first we
checked whether FLOSS projects are used in the
paper at all. This served as an indicator of the
pervasiveness of FLOSS projects in the literature
produced by BENEVOL papers.

• Number of FLOSS systems used : in second in-
stance, we trawled through the paper, annotating
where the authors mentioned how many FLOSS
systems were used. In the case of full papers, the
abstract, introduction, methodology and conclu-
sion were read for that purpose.

• Analysis of application domains: thirdly, we con-
sidered the methodology, results and conclusion
of each paper, along with the threats to valid-
ity, looking for considerations of application do-
mains. We checked if the authors considered
this attribute in the sampling of FLOSS projects,
whether they limited their results against this
axis, or whether it was considered a specific threat
to validity. This attribute was coded as either
{yes — no}.

The contributions to the 2016 edition of BENEVOL
are not available online, so they had to be excluded
from our analysis. The spreadsheet with the categori-
sation of the papers has been made available for in-
spection under the following link: https://tinyurl.

com/y69wkadr.

3.1 BENEVOL use of FLOSS Systems

In this section we provide the first point of our anal-
ysis: ‘how many BENEVOL papers have used FLOSS
systems in their analyses? ’. As visible in the two plots
of Figure 1, researchers (and accepted BENEVOL pa-
pers) have steadily used FLOSS systems for their pa-
pers. The first plot shows the absolute numbers of ac-
cepted BENEVOL submissions that use one or more
FLOSS projects.

The bottom plot of Figure 1 shows the ratio of
FLOSS and non-FLOSS papers in the BENEVOL
sample of papers. It is getting increasingly more com-
mon to use one or more commercial software systems,
or a combination of FLOSS and non-FLOSS projects.

3.2 Number of FLOSS systems used in
BENEVOL

In this section we report on the number of FLOSS
systems evaluated by BENEVOL papers. For this pur-
pose, we analysed the methodology description, or the

Figure 1: Papers using FLOSS (above) and use
of FLOSS and non-FLOSS projects (below) in the
BENEVOL (between 2012 and 2018)

empirical approach, of each paper to determine how
many FLOSS systems were reported in the study. Fig-
ure 2 displays the cumulative number of FLOSS sys-
tems used in BENEVOL papers, per year. The median
number of systems has increased from one analysed
OSS system in 2012 to 1,127 systems in 2018.

Figure 2: Cumulative number of FLOSS projects per
year

The exponential number of FLOSS systems being
used by BENEVOL papers has been accelerated by
many factors: (i) availability of open forges (Fresh-
Meat, SourceForge, Savannah, Apache FSF, GitHub
and many others); (ii) common, shared toolsets to per-

3



form the analyses; (iii) guidelines on how to effectively
use forges.

Below we give a summary of findings to assess the
trends observed in the number of FLOSS systems anal-
ysed by the BENEVOL papers.

Growth of sample sizes

The trend that we observed throughout the subsequent
years of the BENEVOL contributions is, fundamen-
tally, summarised as ‘the more the better’. Authors
have started to include larger and larger FLOSS sam-
ples to their papers. We can assume that this pattern
has been followed in order to achieve the generality
of a paper’s findings. At the last edition of available
BENEVOL contributions (BENEVOL 2018), over one
million FLOSS systems were considered for investiga-
tion, jointly by the accepted papers.

Uncertainty on sample sizes

Several BENEVOL papers use ecosystems [11], or um-
brella projects [12], as their cases studies, whereas
other papers either take a subset of those super-
projects, or explicitly declaring the number of subpro-
jects (e.g., Scala [13] or Python [14] projects) that they
analysed. This means that our final figures are mostly
lower bounds of the actual number of FLOSS systems
being used by the BENEVOL community.

Ecosystems vs time of analysis

Several BENEVOL papers have used umbrella projects
(for example, Gnome). In most cases we considered
them as single FLOSS systems: depending on the time
of the analysis, these larger projects can contain a vari-
able number of sub-projects. This makes it difficult to
define the status of the super-project, in terms of num-
ber of its sub-projects, as well as their domains. This
also makes it difficult to replicate those studies, as well
as their results and conclusions.

Sampling and Pruning

Throughout the editions of BENEVOL, sampling of a
few systems (see for instance [15] or [16]) has given
way to whole-forge analyses. Also, there seems to be
a general view that ‘pruning’ a sample is a good idea
for removing outliers, or for promoting quality. This
has an effect on the sample studied, and the represen-
tativeness of the population as a whole.

3.3 Application domains and FLOSS projects

The third analysis was based on the application do-
mains of the systems considered in the empirical study.
For all the papers (not only for those using FLOSS
projects), we tried to establish whether the authors

considered the results, findings or discussion as con-
strained by the type of system (e.g., its domain). This
included checking how the threats to external validity
(if any) addressed limited the conclusion to the do-
main(s) under investigation.

We grouped the papers into two categories (and
plotted them accordingly per year):

1. papers that directly considered application do-
mains as drivers in the variability of the results
(stack ”YES” in Figure 3);

2. papers that didn’t considered application domains
as drivers (stack ”NO” in Figure 3).

The results of this analysis are shown in Figure 3:
a ratio (%) is used to separate the papers in the
two categories. It is clear from the visualisation that
BENEVOL papers do not generally acknowledge the
variability of results as driven by the domains of the
systems involved. Earlier papers (especially from the
2012 batch) have a good cover of domains in the eval-
uation of the results, but this is not reflected in the
later editions of BENEVOL.

Figure 3: Application domains in papers using FLOSS
projects

As visible in the Figure, the majority of findings
on FLOSS, as reported by BENEVOL papers, do
not mention application domains. In some cases, re-
searchers have acknowledged the variability of the re-
sults [17,18], and hinted that other factors could play
a role in such variability. We considered as a “lim-
ited” acknowledgment of the relevance of the applica-
tion domain when authors mentioned the diversity of
the systems under study.

4 BENEVOL: FLOSS and Domains

The birdseye view on the type of BENEVOL contri-
butions (Sections 3.1, 3.2 and 3.3 above) reveals some
interesting trends when dealing with FLOSS projects.
Below we discuss in more detail whether FLOSS pa-
pers were analysed (”YES” or ”NO”), and whether

4



domains were considered in the analysis (”YES” or
”NO”).

4.1 FLOSS: YES, Domains: YES

So far in the BENEVOL series, few papers explicitly
addressed the importance of domains when analysing
systems, or when discussing findings. An interesting
perspective is given in [19], since it considers a very
specific type of systems, the ‘cross-system packages’.
These systems are likely to show similar characteristics
since they are supposed to act as vectors to an from
the overarching system.

By drawing on the importance of the application
domains in this paper [20], the authors signify the
importance of domain analysis when creating a theo-
retical and practical framework that supports the de-
velopment and the evolution of adaptive data-intensive
software systems for ubiquitous environments in their
study. Thus, they focus on data and in particular on
the problem of finding the most suitable portion of
data that have to be provided by the application in
the of context of ‘self-adaptive system’.

Likewise in the 11th edition of BENEVOL (2012),
[21] examined the impact and role of social media on
software development. The authors argued that “so-
cial media is poised to bring about a paradigm shift
in software engineering research” particularly in OSS
community.

In the 2014 edition, only one BENEVOL study
focusing on OSS projects implicitly highlighted the
need to investigate projects from various domains [22].
The authors studied an OSS project called DrJava
and implicitly mentioned domains but did not investi-
gate multiple projects clustered into several domains.
According to the authors, “we chose an IDE since
they contain elements of multiple domains. The IDE
project was taken from the Qualitas Corpus and it con-
sists of 3000 revisions since 2000 and the system grew
from 30K SLOC in 2003 to 200K SLOC in 2013.

We concluded that application domains are not well
represented or studied in the papers that use FLOSS
data.

4.2 FLOSS: YES, Domains: NO

The vast majority of BENEVOL contributions, based
on FLOSS systems, do not consider domains as one
of the factors to take in consideration. An interesting
example of this approach is given in [1], where the
authors pose that ‘... (to) gather as much as possible
should be the aim of empirical software engineering ’.

More in general, the approach of researchers is to
focus on specific languages or source code models (see
for instance the paper in [23], focused on all available

meta-models from GitHub), hence representing conve-
nience sampling. For example in the study on control
flow, Landman et al., [24] focused on the Sourcerer
Corpus which contains 18K (13K non empty) Java
projects. In an empirical analysis of the maintainabil-
ity of CRAN packages, Claes et al., [25] presented early
results on analysing the dependencies of the CRAN R
packages repository.

We concluded that most of the papers studied from
the BENEVOL series do not consider the application
domains as an important factor for software analysis
or evolution.

4.3 FLOSS: NO, Domains: YES

A few of the papers that we analysed are not based on
FLOSS systems, but more in general on commercial,
or in-house software. In a few cases, we observed that
the authors actually considered the limitations of their
case studies to the one domain that was investigated.

As a few of such examples, we noted a paper
based on a banking system [26]; and one focused on
the specific features of home-automation system [27].
Both these papers clearly acknowledged the limitations
given by the chosen application domains that their sys-
tems are based on. In other cases, the authors specif-
ically focused on one domain (for example, GIS sys-
tems [28], or the larger business domain [29]).

In general, the BENEVOL papers using non-OSS
software as their case studies do not use the domains
to aggregate results. Nonetheless a few BENEVOL
contributions have shown a clear pathway into not gen-
eralising the findings to all domains.

5 Conclusion

This paper analysed how open source software has
been used by the BENEVOL contributions between
2012 and 2018. We showed the increasing number of
BENEVOL contributions that used FOSS projects for
their analyses.

Although the majority of contributions do not ac-
nowledge the importance of domains when discussing
the findings, there is an increasing number of papers
that limit the results, or the data sampling, to specific
domains. We believe that one of the major challenges
for empirical software engineering is to better under-
stand the role of domains, especially in the evolution
of software systems. We propose for papers that em-
pirically analyse software systems to acknowledge such
challenge in a ‘threat to domain validity’.

5



References

[1] Antoine Pietri and Stefano Zacchiroli. To-
wards universal software evolution analysis. In
BENEVOL, pages 6–10, 2018.

[2] Meiyappan Nagappan, Thomas Zimmermann,
and Christian Bird. Diversity in software engi-
neering research. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engi-
neering, pages 466–476. ACM, 2013.

[3] A. J. Ko. Mining the mind, minding the mine:
grand challenges in comprehension and mining.
In Andy Zaidman, Yasutaka Kamei, and Emily
Hill, editors, Proceedings of the 15th Interna-
tional Conference on Mining Software Reposito-
ries, MSR 2018, Gothenburg, Sweden, May 28-
29, 2018, page 118. ACM, 2018.

[4] Steve Easterbrook, Janice Singer, Margaret-Anne
Storey, and Daniela Damian. Selecting empiri-
cal methods for software engineering research. In
Guide to advanced empirical software engineering,
pages 285–311. Springer, 2008.

[5] James Howison and Kevin Crowston. The perils
and pitfalls of mining sourceforge. In Proceedings
of the International Workshop on Mining Soft-
ware Repositories (MSR 2004. Citeseer, 2004.

[6] Eirini Kalliamvakou, Georgios Gousios, Kelly
Blincoe, Leif Singer, Daniel M German, and
Daniela Damian. The promises and perils of min-
ing github. In Proceedings of the 11th working
conference on mining software repositories, pages
92–101. ACM, 2014.

[7] Carmine Vassallo, Sebastiano Panichella, Fabio
Palomba, Sebastian Proksch, Andy Zaidman, and
Harald C Gall. Context is king: The developer
perspective on the usage of static analysis tools.
In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 38–49. IEEE, 2018.

[8] Yunwen Ye and Gerhard Fischer. Reuse-
conducive development environments. Automated
Software Engineering, 12(2):199–235, 2005.

[9] Kai Tian, Meghan Revelle, and Denys Poshy-
vanyk. Using latent dirichlet allocation for auto-
matic categorization of software. In 6th IEEE In-
ternational Working Conference on Mining Soft-
ware Repositories, 2009. MSR’09., pages 163–
166. IEEE, 2009.

[10] Stefan Haefliger, Georg Von Krogh, and Sebas-
tian Spaeth. Code reuse in open source software.
Management Science, 54(1):180–193, 2008.

[11] Tom Mens, Bram Adams, and Josianne Marsan.
Towards an interdisciplinary, socio-technical anal-
ysis of software ecosystem health. arXiv preprint
arXiv:1711.04532, 2017.

[12] Maëlick Claes. Applying biological evolution to
software ecosystems a case study with gnome.

[13] Yunior Pacheco, Jonas De Bleser, Tim Molderez,
Dario Di Nucci, Wolfgang De Meuter, and Coen
De Roover. Mining extension point patterns in
scala. In BENEVOL, pages 16–20, 2018.

[14] José Javier Merchante and Gregorio Robles. From
python to pythonic: Searching for python idioms
in github.

[15] Ward Muylaert and Coen De Roover. Untangling
source code changes using program slicing. In
BENEVOL, pages 36–38, 2017.

[16] Jie Tan, Mircea Lungu, and Paris Avgeriou. To-
wards studying the evolution of technical debt
in the python projects from the apache software
ecosystem. In BENEVOL, pages 43–45, 2018.

[17] Zeeger Lubsen, Andy Zaidman, and Martin
Pinzger. Using association rules to study the co-
evolution of production & test code. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE
International Working Conference on, pages 151–
154. IEEE, 2009.

[18] Christian Rodŕıguez-Bustos and Jairo Aponte.
How distributed version control systems impact
open source software projects. In Mining Soft-
ware Repositories (MSR), 2012 9th IEEE Work-
ing Conference on, pages 36–39. IEEE, 2012.

[19] Eleni Constantinou, Alexandre Decan, and Tom
Mens. Breaking the borders: an investigation of
cross-ecosystem software packages. arXiv preprint
arXiv:1812.04868, 2018.

[20] Marco Mori and Anthony Cleve. A framework
to support the development and evolution of self-
adaptive data-intensive systems. In 11th edition
of the BElgian-NEtherlands software eVOLution
symposium (BENEVOL 2012), 01 2012.

[21] Maëlick Claes. Applying biological evolution to
software ecosystems a case study with gnome.
In 11th edition of the BElgian-NEtherlands soft-
ware eVOLution symposium (BENEVOL 2012),
01 2012.

6



[22] Davy Landman, Alexander Serebrenik, and Jur-
gen Vinju. The relationship between cc and sloc:
a preliminary analysis on its evolution. In Benevol
2014 (Seminar on Software Evolution in Belgium
and the Netherlands, Amsterdam, The Nether-
lands, November 27-28, 2014), pages 29–30. Cen-
trum voor Wiskunde en Informatica, 2014.

[23] Önder Babur, Loek Cleophas, and Mark van den
Brand. Metamodel clone detection with samos.
BENEVOL, 2018.

[24] Davy Landman, Alexander Serebrenik, and Jur-
gen Vinju. Control flow in the wild a first look
at 13k java projects. BENEVOL 2013, page 35,
2013.

[25] Maëlick Claes, Tom Mens, and Philippe Gros-
jean. Towards an empirical analysis of the main-
tainability of cran packages. BENEVOL 2013,
page 42.

[26] Elvan Kula, Ayushi Rastogi, Hennie Huijgens,
and Arie van Deursen. Characterizing rapid re-
leases in a large banking company: A case study.
In BENEVOL, pages 56–60, 2018.

[27] Tim Molderez, Coen De Roover, and Wolfgang
De Meuter. Towards a domain-specific lan-
guage for automated network management. In
BENEVOL, pages 39–43, 2017.

[28] Cosmin Tomozei, Iulian Furdu, and Simona-Elena
Vârlan. Gis sdks dynamics echoed by social re-
quirements transformations. In BENEVOL, pages
22–25, 2017.

[29] Gururaj Maddodi and Slinger Jansen. Responsive
software architecture patterns for workload vari-
ations: A case-study in a cqrs-based enterprise
application. In BENEVOL, page 30, 2017.

7


