
Adopting Program Synthesis for Test Amplification

Mehrdad Abdi, Henrique Rocha
Universiteit Antwerpen

België

Serge Demeyer
Universiteit Antwerpen and Flanders Make

België

Abstract

Program synthesis is the task of enabling a
computer system to automatically write pro-
gram code based on user intent. Test ampli-
fication on the other hand is an emerging re-
search area, where the goal is to generate new
test cases from manually written ones. From
this perspective, test amplification is awfully
similar to program synthesis. Therefore, in
this short paper, we explore the benefits of us-
ing program synthesis for test amplification.

Index terms— test amplification, program syn-
thesis, test generation, big code

1 Introduction
Software is used in most aspects of modern human life
and the importance of reliability in software is unde-
niable. Software testing is the de facto technique for
reducing the risk of defects, thus making software sys-
tems more reliable.

Test cases can be generated automatically by tools
or can be written manually by developers. Auto-
generated test cases provide reasonable test coverage
but in most cases are hard to maintain because genera-
tors fail to generate human understandable test cases.
On the other hand, manually written test cases cover
most of the main functionality of the program but may
suffer from low coverage. Test amplification serves as
a kind of middle ground [1]. Test amplifiers exploit
the knowledge of the manually written tests in order
to enhance existing test cases to increase coverage.

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

In an earlier paper we demonstrated the feasibility
of test amplification for Pharo Smalltalk, a dynami-
cally typed programming language [2]. Nevertheless,
we observed some areas for improvement, especially
with regard to the readability of the amplified test
cases. Therefore, in this paper, we explore the ben-
efits of using program synthesis for test amplification.

The remainder of this paper is organized as follows.
In section 2, we describe the Small-Amp tool proto-
type, discussing some of its shortcomings. In section 3
we describe promising ideas from program synthesis as
a potential way for addressing these shortcomings. In
section 4 we suggest possible benefits of program syn-
thesis for test amplification. Finally in 5 we conclude
this paper.

2 Test Amplification: Small-Amp

DSpot is an example of a test amplification tool cre-
ated for Java [3]. We created Small-Amp as a replica-
tion of DSpot for the Pharo Smalltalk ecosystem [2]
Small-Amp generates new test cases using an evo-
lutionary algorithm, to increase mutation coverage.
In this evolutionary algorithm, many versions of the
existing test methods are created by making small
changes on the test body (Input amplification). Then,
each test method is executed and the state of the ob-
ject under test is captured during the execution of the
test body. After that, the collected data obtained
from observations is used to insert new observation
statements in the test body (Assertion amplification).
Finally, the generated test methods are compared to
their original one (parent). If the generated method
improves the coverage, it will be promoted to the next
generation instead of its parent, else the generated test
method is ignored.

With our Small-Amp tool prototype, we demon-
strated the feasibility of test amplification, even for a
dynamically types programming language [2]. Never-
theless, we observed some areas for improvement. We
list them below.

1



• Type Information Dynamic languages lack type
information in the source code. So, during static
analysis, the type information is not directly
accessible. We need type information to add
new method calls during input amplification. In
Small-Amp we used a dynamic profiling step to
discover type information of variables in existing
test methods. But still, some methods are not
covered during the profiling step.

• State Information In order to generate valid ora-
cles, Small-Amp observes objects at run-time and
generate corresponding assert statements. For
capturing the state of the object under test, the
tool saves the values returned from getter meth-
ods (methods in accessing protocol in the context
of Pharo). Unfortunately, there is no clear dis-
tinction of which function serves as just a get-
ter and it doesn’t update the state of the object.
Furthermore, the tool generates the same assert
statements every time regardless of the previous
update statements.

• Readbility. The automatically generated test
cases are not easy to understand for humans. This
is especially worrisome because incomprehensible
test cases will not incorporated by test engineers.

3 Program Synthesis
Program Synthesis is the task of automatically creat-
ing programs from the underlying programming lan-
guage that satisfy user intent [4]. This user intent
is typically expressed in some form of constraints like
input-output examples, demonstrations, natural lan-
guage, partial programs, and assertions.

In this section, we enumerate a few recent advances
in the program synthesis area which may benefit test
amplification.

3.1 Predicting Program Properties

JSNice uses a probabilistic model that is learned
from existing data to predict the properties of new
programs[5]. The program properties can be classic
semantic properties like type annotation or syntactic
program elements like identifiers.

DeepTyper is a similar tool, uses a deep learning
model that understands which types are most probable
used in certain contexts[6]. It can be applied to code
in Javascript and Python. To solve the problem of
type inference with machine learning, the authors got
inspiration from natural language processing, such as
part-of-speech tagging and named entity recognition.

3.2 Code Completion

Allamanis at al. used gated graph neural networks [7]
to represent a snippet of a program code [8]. This

graph includes relations between tokens like Child,
NextToken edges as well as LastUse, LastRead and
ComputedFrom to model program code as a graph. Us-
ing such a deep learning model, they solved VarNam-
ing and VarMisuse problems. In VarMisuse problem,
a variable usage is masked, and the synthesizer is asked
to guess which variable is most suitable to use in the
hole.

Raychev et al. reduced the problem of code comple-
tion: given a program with holes, complete the holes
with the most likely sequence of method calls[9]. They
incorporated a natural language technique, predicting
probabilities of sentences. They construct a statistical
language model by extract a large number of histo-
ries of API method calls from code snippets obtained
from Github and use regularities found in sequences of
method invocations to predict and synthesize a similar
method invocation sequence. This idea is implemented
in a tool called SLANG.

3.3 Program Sketching

In sketching, the programmer provides her/his high-
level insights using partial programs, and the synthe-
sizer implements the low-level details. This low-level
implementation is generated using counterexample-
guided inductiove synthesis (CEGIS). The cegis algo-
rithm relies on an important empirical hypothesis; for
most sketches, only a small set of inputs is needed to
fully constrain the solution [10].

3.4 Learning to write code

DeepCoder is an approach to write programs for solv-
ing competition-style problems from input-output ex-
amples [11]. In this work, a simple Domain Specific
Language (DSL) is defined and DeepCoder solves the
problem by finding a program among all possible pro-
grams that can be written using this language and can
produce desired outputs processing the inputs. For
minimizing the search space, they use a machine learn-
ing model to predict which statements are most prob-
able to be used in the resulting program.

3.5 Big Code

In recent years, academics and practitioners have seen
arising the valuable resource of Big code. Big code
is the vast amount of code available on the web from
open source projects mainly hosted in publicly shared
repositories like Github. These projects contain not
only source code, but also the history of development,
issues, reported bugs and review processes. The avail-
ability of big code suggests a new, data-driven ap-
proach to developing software [12].

2



4 Program Synthesis For Test Amplifi-
cation

In this section we suggest some possible direction in
using program synthesis advances in test generations.

4.1 Amplification in Dynamic Languages

The type of objects in a dynamic language like
Javascript, Python and Pharo Smalltalk is not directly
accessible. Type information is helpful in the Input
amplification phase when the tool adds new method
calls to the test body to manipulate the state of the
object under test. Recent advances in type inference
[6] and predicting program properties [5] are promising
to benefit type system information indirectly.

4.2 Intelligent Assert Amplification

Automatically generating test oracles, compared to
other aspects of software testing, has received less at-
tention [13].

Using methods in [8], [9] and [11] promises to find
patterns between updating methods sequence and the
asserted method considering the internal elements of
the object under test. Using these relations, the am-
plifier can generate more relevant asserts regarding to
the updates on the object under test.

4.3 Measuring the Readability of the Tests

But there is a question: what is a readable test case?
A possible answer is a test case that is similar to the
test that is written by humans is readble.

Benefiting from big code, we can mine existing test
case codes from open source project (Similar to [14])
to find some patterns in tests made by humans. Then,
we can rate generated test suites to find out how much
these tests are readable.

5 Conclusions
In this paper, we explore the benefits of using program
synthesis for test amplification. We discussed the op-
portunity of using machine learning and big code to
improve the readability of amplified tests.

We hope to hear from the community some related
ideas including introducing potential challenges, other
possible use cases, or any previous experiences on us-
ing machine learning in generating code or software
testing.

Acknowledgments
This work is supported by (a) the Fonds de la Recherche
Scientifique-FNRS and the FondsWetenschappelijk Onder-
zoek - Vlaanderen (FWO) under EOS Project 30446992

SECO-ASSIST (b) Flanders Make vzw, the strategic re-
search centre for the manufacturing industry.

References
[1] Benjamin Danglot, Oscar Vera-Perez, Zhongxing

Yu, Andy Zaidman, Martin Monperrus, and Benoit
Baudry. A snowballing literature study on test ampli-
fication. Journal of Systems and Software, 157:110398,
2019.

[2] Mehrdad Abdi, Henrique Rocha, and Serge Demeyer.
Test amplification in the pharo smalltalk ecosystem.
In International Workshop on Smalltalk Technologies
(IWST), 2019.

[3] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit
Baudry, and Martin Monperrus. Automatic test im-
provement with dspot: a study with ten mature
open-source projects. Empirical Software Engineer-
ing, 24(4):2603–2635, Apr 2019.

[4] Sumit Gulwani, Oleksandr Polozov, and Rishabh
Singh. Program synthesis. Foundations and
TrendsÂ® in Programming Languages, 4(1-2):1–119,
2017.

[5] Veselin Raychev, Martin Vechev, and Andreas
Krause. Predicting program properties from big code.
In ACM SIGPLAN Notices, volume 50, pages 111–
124. ACM, 2015.

[6] Vincent J Hellendoorn, Christian Bird, Earl T Barr,
and Miltiadis Allamanis. Deep learning type inference.
In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 152–162. ACM, 2018.

[7] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural net-
works. arXiv preprint arXiv:1511.05493, 2015.

[8] Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. Learning to represent programs with
graphs. In International Conference on Learning Rep-
resentations, 2018.

[9] Veselin Raychev, Martin Vechev, and Eran Yahav.
Code completion with statistical language models.
In Acm Sigplan Notices, volume 49, pages 419–428.
ACM, 2014.

[10] Armando Solar-Lezama. Program sketching. Inter-
national Journal on Software Tools for Technology
Transfer, 15(5-6):475–495, 2013.

[11] Matej Balog, Alexander L Gaunt, Marc
Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. DeepCoder: Learning to write programs. In
5th International Conference on Learning Represen-
tations (ICLR), 2017.

[12] Miltiadis Allamanis, Earl T. Barr, Premkumar De-
vanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Com-
puting Surveys, 51(4):1–37, Jul 2018.

3



[13] Earl T Barr, Mark Harman, Phil McMinn, Muzammil
Shahbaz, and Shin Yoo. The oracle problem in soft-
ware testing: A survey. IEEE transactions on software

engineering, 41(5):507–525, 2014.

[14] 2019.

4


	Introduction
	Test Amplification: Small-Amp
	Program Synthesis
	Predicting Program Properties
	Code Completion
	Program Sketching
	Learning to write code
	Big Code

	Program Synthesis For Test Amplification
	Amplification in Dynamic Languages
	Intelligent Assert Amplification
	Measuring the Readability of the Tests

	Conclusions

