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Abstract. One of the interesting applications of optimization layout problems is 
additive production. The problem of layout of 3D objects (parts) inside a 
container (a working chamber of a 3D printer) to minimize the container height 
is studied. It is aimed to reduce printing costs by minimizing the number of 3D-
printing layers while reducing the number of the printer starts. A mathematical 
model of the layout problem is provided in the form of nonlinear programming 
problem using the phi-function technique. A solution algorithm to search for 
optimized layouts is proposed. Computational results demonstrate the 
efficiency of our approach. 

Keywords: additive production, packing, mathematical modeling, phi-function, 
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1 Introduction 

Optimization 3D layout problems have a wide spectrum of real-word applications, 
including transportation, logistics, chemical and aerospace engineering, shipbuilding, 
robotics, additive manufacturing, materials science. In this paper the smart technique 
to optimize the 3D-printing process for selective laser sintering (SLS) additive manu-
facturing [1] is developed. The SLS technology uses high power laser sintering for 
small particles of plastic, ceramic, glass or metal flour in three-dimensional structure. 

This technology empowers the fast, flexible, cost-efficient, and easy manufacture 
of prototypes for various application of required shape and size by using powder 
based material. A physical prototype is an important for design confirmation and op-
erational examination by creating the prototype unswervingly from CAD data. 
The main feature of this technology is the use of powder, consisting of particles of 
metal coated polymer. After the sintering process piece is placed in a high tempera-
ture kiln to burn plastic and fusible took the bronze. The advantages of the technology 
include no need for material support. Parts immersed into a powder, which works on 
as a support [2]. 

 
 



 

 

Recently 3D-prototyping technologies are evolving rapidly. The purpose of the re-
search is development of smart technology to improve 3D-printing process for ad-
vanced additive production. We propose the approach for accelerating printing cycle 
due to the simultaneous printing of several parts providing dense filling the entire 
volume of the working chamber 3D printer using SLS technology.  

One of the important problems arising in the process of creating new prototypes 
(final products) is reducing the time and cost production. For each start of SLS printer 
requires time and energy for heating and maintaining temperature. In [3] data on what 
savings can be achieved by optimizing the layout of objects to be created are pro-
vided. 

Our approach allows optimizing the process of 3D printing for the following fac-
tors: 

- printing of several prototypes (products) providing dense filling the volume of the 
3D printer working chamber [4]; 

- minimizing the time and cost of 3D parts production by reducing printing cycle. 
In this paper the optimization layout problem of irregular 3D objects into opti-

mized cuboid is studied. 
 Our approach is based on the mathematical modelling of relations between irregu-

lar geometric objects by means of the phi-function technique. It allows us reducing 
the layout problem to nonlinear programming model.  

2 Literature review 

The list of publications related to the layout problem of irregular 3D objects, taking 
into account the minimum allowable distances is very scarce within the field of Pack-
ing and Cutting. Arbitrary shaped objects in most cases are approximated by sets of 
cuboids or spheres. To solve the layout problems heuristic and meta-heuristic algo-
rithms are used that resulting in the loss of optimal solutions. 

3D object layout problems is NP-hard. In order to find feasible solutions some 
researchers use different techniques, including heuristics (based on different 
approximation rules heuristics [5], genetic algorithms [6], simulated annealing 
algorithms [7], artificial bee colony algorithms [8]), extended pattern search [8], 
traditional optimization methods [9, 10], nonlinear mathematical programming [11]. 

In the majority of papers, either orientation of 3D objects is fixed or only discrete 
rotations (by 45 or 90 degrees) are allowed. In particular, paper [2] uses the parallel 
translation algorithm for packing convex polytopes. The authors of [12] propose the 
HAPE3D algorithm which can be applied to arbitrarily shaped polyhedra that can be 
rotated around each coordinate axis at eight different angles. In [13] the issue is dis-
cussed that for 3D packing problems making calculations of 0 to 360 degrees orienta-
tions of objects with respect to each axis is impossible. Analysis of irregular three-
dimensional packing problems in additive manufacturing is provided in [14]. The 
paper [15 22] presents an intelligent layout planning for rapid prototyping. 
Only few works consider continuous rotations of 3D objects (see, e.g. [16- 22]. 



 

 

3 Problem statement 

In order to minimize the time of 3D parts production using SLS-technology the num-
ber of layers should be minimized. The problem of minimizing layers can be formu-
lated as a problem of layout (packing) of parts in the container of minimum height 
(fig.1). 

 

 

Fig. 1. Minimizing of the height of the occupied part  
of the 3D printer working chamber   

 
Let the set of irregular 3D objects ,iT },{1,2,...,= nIi n  and container 
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and 2h  are variable. Denote the container   of variable sizes  by 1 2( , )h h . 

 
Each object iT is presented by a union of convex polyhedra 
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where ikT  is defined by the collection of vertices { }ikp . 

Layout of iT  in 3R determined by the translation vector = ( , , )i i i iv x y z  and the 

vector of rotation angles = ( , , ),i i i i     ni I  Thus, vector = ( , )i i iu v   determines 

placement of iP  in the tree-dimensional space 3.R   

Further object iT , translated on the vector iv  and rotated by angles ,i i  , i  is 

denoted by ( )i iT u .   

Optimization layout problem. Find vector 1( ,..., )nu u u  that provides layout of 



 

 

objects ( ),i iT u  ,i I  inside the container 1 2( , )h h  so that the height 2 1H h h   

will reach the minimum value. 

4 Mathematical model and its properties 

Using the phi-function technique [16-22] a mathematical model of the optimization 
layout problem can be presented as the following nonlinear programming problem: 

 min
X W

H

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where 1 2( , , , )X h h u u , ( , , )ij i j iju u u   is the quasi phi-function for polyhedra iT  

and jT  [18, 21], ( , < )ij nu u i j I   ,  iju  is the vector auxiliary variables for the 

quasi phi-function ( , , )ij i j iju u u  , 1 2( , , )i iu h h  is the phi-function for objects iT  and 

* 3 \R int   . 
The inequality ( , , ) 0ij i j iju u u    provides non-overlapping iT  and jT  and 

inequality 1 2( , , ) 0i iu h h   provides containment of iT  into  .  

The problem (1)-(2) is an exact formulation of the optimization layout problem of 
3D objects.  

The feasible region W of the problem (1)-(2), in the general case, is a disconnected 
set, and each of its connected components is a multiply connected. 

 

5 Solution approach  

Our solution approach is addressed to the placement of non-convex continuously 
rotated objects. To construct feasible starting points the clustering algorithm is pro-
posed. Local optimization is performed using the IPOPT code combined with the 
decomposition strategy. To search for local extrema, a multistart strategy is used. 

Firstly we solve the problem of clustering of pairs of 3D objects into optimized 
containing spheres or cuboids. Then depending on the shape of clusters auxiliary sub-
problems of packing cuboids or spheres are solved, employing the clusters homothetic 
transformations. This allows constructing fast feasible starting points. 

The reduction of computational costs is also facilitated by the fact that the process 
of finding a local extremum of the problem is divided into two stages: solving NLP 
subproblems by fixing the rotation angles and solving NLP subproblems allowing free 
object rotations. In addition, the strategy of finding an approximation to the global 
extremum is used. 

As an approximation to the global minimum of the optimization layout problem 
(1)-(2) the best local minimum found by our approach is considered. 



 

 

5.1 Generation of feasible starting points 

In order to generate a feasible starting point for problem (1) - (2) we use the following 
algorithm. Firstly, pairs of non-overlapping objects are placed into containing regions 
(cuboids or spheres) of the minimum volume. Then we solve the problem of packing 
the set of the obtained clusters into the container (cuboid) of minimum height. This 
algorithm returns feasible placement parameters for each polyhedron. To compute 
rotation angles of each of polyhedra the following algorithm is proposed. 

The set of objects ,iT  ,ni I  is divided into k  groups. Each group involves kl  

identical polyhedra.  

Each object iT  is contained into the sphere iS  of minimum radius *
ir  , using the 

following NLP subproblem:  
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Denote a local minimum point of the subproblem by * *( , )i iv r . Then each object iT
 
 

is translated by the vector *
iv . 

Further 2
nС n  subproblems of packing the objects ,iT  ,ni I  into cuboid ij  of 

minimum volume C
ijD  are solved: 
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where ni j I  ,  

1 2 2 1 2 1 2 1( , ) = ( )( )( )c
ijD h h h h w w l l   , 1 2 2 1 2 1 2 1( , ) = min{ , , }F h h h h w w l l   . 

The inequality ( , ) 0ij i ju u   implies that int int =i jT T  , while the inequali-

ties 1 2( , , ) 0i iu h h   and 1 2( , , ) 0j ju h h   guarantee the arrangement of iT  and jT  

fully inside containing region ij . 

Next we solve the layout problem of subset of clusters ,iQ  ,i M  inside the cu-

boid  of minimum height.  
Now the problem (1)-(2) is reduced to the following NLP model: 
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where 1 2, 2 1H(h h )= h - h . 

Let the point * * * 6 6
1 2( , , )u h h R   be an approximation to the global minimum point 

of the problem (5) - (6). The point corresponds to packing clusters *( ),i iQ u  i M  

into cuboid * *
1 2( , )h h . Each cluster .iQ  contains the pair of polyhedra ki

T  and ti
T  

with placement parameters Q
ki

u  and Q
ti

u  in the local coordinate system of the cluster 

.iQ  

In order to construct a feasible point 0 0 0
1 2( , , )u h h W  of the problem (1) - (2) re-

garding the arrangement of clusters ,iQ  ,i M  we set the arrangement of object iT  

using the equation 0 * Q
i i iv v v   for ni I  . 

To define the rotation angles 0
i  of polyhedra ,iT  ,ni I  we solve the sequence of 

n  subproblems of the following form: 
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where 1
iV , 2

iV , 3
iV  are vectors of initial coordinates of the first three vertices of the 

polyhedron ,iP  *( )i Q i Q
j i i j iV R R V v   , 1, 2,3,j   iR  is the rotation matrix, ni I . Let 

*
ir  be a solution of the problem (7) - (8). Then the angles of iT  can be derived in the 

form: *
13arcsin  i

i r   *
23arcsin( / cos )i

i ir    , *
12arccos( / cos )i

i ir    . 

5.2 Local optimization 

To find a local extremum of the problem (1)-(2) the following algorithm is used. This 
algorithm allows reducing CPU.  

The feasible region of the problem (1)-(2) can be always represented by a union of 
subregions (see e.g. [21]). It enables to search for a local minimum of the problem 
(1)-(2) by solving a collection of NLP subproblems with a considerably smaller num-
ber of inequalities. 



 

 

The key idea of the proposed algorithm is based on the decomposition strategy 
(see, e.g. [23]). The large scale problem (1)-(2) is reduced to a sequence of subprob-
lems of smaller dimension. The following stages are performed:  

 generating feasible subregions of the feasible region (2) related to the appro-
priate starting points;  

 forming the system of   active constraints; 
 searching for local extrema of the subproblems generated at the first step, 

employing state-of-the-art NLP-solvers;  
 replacing subregions.  

Now we consider the algorithm in detail. 

Let the point X W  be a starting point. Then we select an appropriate subregion 

0W , such that 0X W W    and substitute the point X 
 in the inequality system (2). 

Each quasi phi-function has the form 

     ' , , max , , , 1, ,s
ij i j ij i j iju u u u u u s      . 

Then we select one of the functions  , ,ija
ij i ju u u ,  1, ,ij ija   , i j I  , 

such that  

  ' , ,ij i ju u u      , ,ija
ij i j iju u u     . 

Similarly we choose  , 0,i iu u i I   . It results in the system of inequalities 

 0 0X   describing the subregion 0W . Then the subproblem  

    
0

0* = min
X W R

F u F u
 

 
 

is solved. The inequality system  0 0* 0X   distinguishes the active inequality 

 0*
0 0,j j    0 0{1,..., }j   {1,..., }    . Denote the subsystem by 

( , ) 0,a
ij i ju u   

10 ,i I I   
20j I I  . This allows choosing quasi phi-functions 

 ' , ,ij i ju u u  that involve functions ( , ),a
ij i ju u  for 

10 ,i I   
20j I  . 

Then we calculate the values of the functions at the point 0*X .  
Let 

  ' 0 0 0 0 0, ( , ) ,с
ij i j ij i j iju u u u         

10 ,i I   
20j I  . 

If 0 0,ij   
10 ,i I   

20j I  then replace subsystems ( , ) 0a
ij i ju u   by systems 

( , ) 0с
ij i ju u  ,

10 ,i I   
20j I  . Thus a new subsystem of inequalities defining a 



 

 

new subregion 1W W  is generated. Obviously, 0
1.X W    

Taking the starting point 0X 
,  we solve the problem  

    
1

1* = min ,
mX W R

F u F u 
 

 

and search for a local minimum point 1*X . 

The computational process is repeated until     ( 1)* *F u F u 
  . 

The search for a local minimum of the problem (1) - (2) can be divided into two 
stages: optimization of the system with linear constraints and nonlinear optimization. 

The first stage is realized by fixing the rotation angles 0
i  of objects ,iT  ni I  at the 

feasible starting point 0 0( , )u u W  . Fixing rotation angles significantly reduces the 

dimension of the problem (1) - (2) switching to the linear constraints to describe the 
feasible region.  

Figure 3 depicts layout of irregular 3D objects that corresponds to a) a feasible 
starting point and b) the appropriate local minimum found by our algorithm. 

 

 

a)                                         b) 

Fig. 1. Example of layouts of irregular objects corresponding: a) a starting point; b) a local 
minimum point 

6 Computation experiments 

We present some examples to demonstrate the efficiency of our methodology. We 
have run all experiments on an Intel I5 2320 computer, programming language C++, 
Windows 10 OS. To solve NLP problems IPOPT [24] is used, which is available at an 
open access software depository (https://projects.coin-or.org/Ipopt). 

Figure 2 demonstrates some benchmark examples of irregular layouts obtained by 
our approach. 

In order to show the efficiency of our approach a number of benchmarks instances 



 

 

given in [12] are tested. The results are shown in Table 1. 
 

    
 

Fig. 2. Examples of 3D irregular object layouts  

Table 1. Comparison of our results with those publised in [12]  

Approach HAPE3D Our algorithm 

The result of packing 20 irregular 3D objects 

Volume  32550 28500 

Runtime (sec) 26202 6656 

The result of packing 30 irregular 3D objects 

Volume  12480 10720 

Runtime (sec) 9637 4789 

The result of packing 36 irregular 3D objects 

Volume  48300 42450 

Runtime (sec) 53741 9543 

The result of packing 40 irregular 3D objects 

Volume  61950 56012 

Runtime (sec) 99952 24543 

The result of packing 50 irregular 3D objects 
Volume  77280 71800 

Runtime (sec) 125210 36543 

7 Conclusions 

The 3D-printing procedure using SLS technology takes a long time (many hours or 
even days) and requires a great financial cost associated with: the printer running, the 



 

 

camera heating and the temperature stabilization. Development of the optimization 
techniques allowing saving time and material is of paramount importance. 

The optimization problem of layout of irregular 3D objects into cuboid of mini-
mum height is formulated. The mathematical model is constructed, using the phi-
function technique. The solution strategy is proposed. To demonstrate the efficiency 
of our methodology some instances are provided. Obtainment of optimized layouts of 
3D objects makes possible reducing the printing cost by minimizing the number of 
layers of 3D printing and therefore reducing the number of the printer starts. 
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