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Abstract. AffCon2020, the third AAAI Workshop on Affective
Content Analysis @ AAAI-20, focused on interactive affective
content, i.e., analysis of emotions, sentiments, and attitudes in
textual, visual, and multimodal content for applications in psy-
chology, consumer behavior, language understanding, and com-
puter vision especially in conversational content. It included the
second CL-Aff Shared Task on modeling self-disclosures. The
program comprised keynotes, original research presentations, a
poster session, and presentations by the Shared Task winners.

1 Introduction

The third Affective Content Analysis workshop AffCon@AAAI-20 was aimed at
engaging the Artificial Intelligence (AI) and Machine Learning (ML) commu-
nity around the open problems in affective content analysis and understanding.
The theme this year was Interactive Affective Responses and focused on aspects
of affect in reactions and conversations. The field of affective content analysis
refers to the interdisciplinary research space of Computational Linguistics, Psy-
cholinguists, Consumer psychology, and HCI looking at online communication,
its intentions, and the reactions it evokes. The purpose of the workshop was to
bring together cross–disciplinary research and mechanisms for affect analysis,
as well as to pool together resources for further research and development. The
workshop is supported by a committee of keen and experienced researchers in
the field of AI. 4

The workshop included the second CL-Aff Shared Task: Get it #OffMyChest
on modeling interactive affective responses. It focused on the psycholinguistic
and semantic characteristics of written accounts of casual and confessional con-
versations. The task was to predict labels for Disclosure and Supportiveness for
sentences based on a small labeled and large unlabeled training data. Six teams
completed this shared task.

4 For the full Program Committee list, see https://sites.google.com/view/affcon2020/committees
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2 Workshop Topics and Format

Presentations at the workshop featured psycholinguists, computer science re-
searchers, and experts in marketing science. Topics included new approaches
that address open problems such as deep learning for affect analysis, leverag-
ing traditional affective computing (multimodal datasets), privacy concerns in
affect analysis, and inter-relationships between various affect dimensions. These
fall under the broad topics of interest of the workshop:

– Deep learning-based models for affect modeling in content (image, audio,
and video)

– Psycho-demographic profiling
– Affective and Cognitive Content Measurement in Text
– Affect in communication
– Affectively responsive interfaces
– Affective human-agent, -computer, and -robot interaction
– Mirroring affect
– Affect-aware text generation
– Measurement and evaluation of affective content
– Consumer psychology at scale from big data
– Modeling consumer’s affective reactions
– Affect lexica for online marketing communication
– Affective commonsense reasoning
– Multimodal emotion recognition and sentiment analysis
– Computational models for consumer behavior
– Psycho-linguistics, including stylometrics and typography
– Computational linguistics for consumer psychology

3 Overview of the papers

The workshop featured five keynote talks, three paper presentations, and two
poster sessions. 38 papers were submitted to the workshop, 6 of which were Sys-
tems for the CL-Aff shared task. Finally, 4 papers were accepted as full papers,
and 4 were accepted as posters, and these will be included in the proceedings.
In addition, the winners from the CL-Aff task presented talks and posters at the
workshop. One pre-published paper was also invited for an invited talk.

The following sections briefly describe the keynote and sessions.

3.1 Keynotes

The first keynote by Prof. Louis-Philippe Morency from CMU was about Multi-
modal AI, specifically around understanding human-computer interactions and
dynamics. The talk started with laying down a foundation around human-agent
(computer) interactions and the role of affective interactions in that setup. Fur-
ther, he discussed methods of modeling multiple aspects of human communica-
tion dynamics, in the context of applications in healthcare (depression, PTSD,



suicide, autism), education (learning analytics), business (negotiation, interper-
sonal skills) and social multimedia (opinion mining, social influence).

The next speaker, Dr. Daniel McDuff from Microsoft AI, focused on Build-
ing Intelligent and Visceral Machines. The talk covered methods for physio-
logical and behavioral measurement via ubiquitous hardware and then detailed
the state-of-the-art approaches for synthesizing behavioral signals. The speaker
led with examples of new human-computer interfaces and autonomous systems
that leverage behavioral and physiological models, including affect-aware natu-
ral language conversation systems, cross-domain learning systems, and vehicles
with intrinsic emotional drives. This talk also included a discussion on ethics in
the context of affect-aware machines.

Dr. Natasha Jaques, from Google Brain, presented reinforcement learning-
based methods leveraged to generate affective dialogues. The methodology pre-
sented here was a smart application of applying RL by codifying soft concepts
such as feelings and affect. The method leveraged transfer learning to fine-tune
a pre-trained dialog model with human feedback using reinforcement learning,
and shows how learning from cues like a user’s sentiment is more effective than
relying on manual labels. These techniques were applied to applications that
learn novel conversational rewards, including reducing the toxicity of language
generated by the model.

The next session focused on the marketing science perspective of interac-
tions. Prof. Tom Novak and Prof. Donna Hoffman from George Washington
University presented a machine learning-based approach in the context of IoT
and real-world data. They presented a computational approach that enabled op-
erationalization and visualization of an assemblage theory interpretation of the
emergence of automation practices in the Internet of Things. Their approach
created a representation of the possibility space of automation assemblages that
revealed the boundaries of territorialized automation practices and used this rep-
resentation as a basis for qualitative analysis, theory development, and estimates
of future growth. Extending these methodologies towards affective interactions
is an exciting research space. Their keynote was followed by an invited talk from
Alain Lemaire from the University of Columbia, who presented his work with
Prof. Netzer on linguistic matching of products and consumers. Their empirical
analysis suggests that preferences for products can be inferred from the similar-
ity between prospective customers’ linguistic style, as well as the language used
by other customers to describe a product.

Prof. Robert Kraut, from CMU, presented the final keynote. Dr. Kraut con-
tributed a social psychology perspective to the discussion of interactive affect,
covering aspects of social agency and support in support groups. An automated
analysis that studied the interactions and dependency patterns in support groups
was discussed. An insightful study around understanding how the language in
these sites influences how long people stay, the support they receive, and their
satisfaction with it. These findings form the basis of methods of interventions
to better match support providers with support recipients in both online and
in-person support groups environments.



3.2 Papers:

The workshop included 4 full paper presentations and 4 posters. Lin et al. [40]
presented their work on context-dependent models for facial expression predic-
tion. Their method aimed to predict expressiveness from visual signals. The
models beat baselines and perform at par with human annotations in terms of
correlation with the ground truth.

Schoene et al. [75] presented their work on a bidirectional LSTM-based model
for Fine-grained emotion classification in Tweets. Their approach showed that a
dilated Bi-LSTM with attention achieved state-of-the-art performances beating
automated baselines for multiple datasets. The method also outperforms human
benchmarks for the emotion classification task.

Fong and Kumar [26] presented an interesting paper based on a hierarchical
approach for emotion classification. They present baseline models for both coarse
and fine-grained emotion classification. This paper presented a novel 24-way
classification scheme for emotion classes. The results showed that the proposed
models outperform other baselines across various classes.

Chen et al. [13] presented a fusion-based approach for multi-feature, multi-
modal sentiment analysis. Their approach combined audio and text features for
sentiment classification. They report state-of-the-art results on the IEMOCAP
database for multimodal emotion recognition.

3.3 Posters

Four posters were accepted to the workshop. Two of these posters leveraged
audio / music data for affective analysis [25,12], Xu et al. [93] modeled customer
needs using sentiment based model, and Bara et al. [2] presented an approach
for stress detection using multi-modal data.

3.4 CL-Aff Shared Task

Another highlight of the workshop was the 2nd Computational Linguistics Af-
fect Understanding (CL-Aff) Shared Task on modeling interactive affective re-
sponses. A new dataset, titled the OffMyChest dataset, was released alongwith
two complementary challenges to model disclosure and supportive behavior in
social media discussions. Six teams participated in the task. An overview of the
approaches and the results is provided as a part of this proceedings [32]. The sys-
tem approaches were presented as a part of the poster session and are included
in this proceedings volume [74,31,83,58,1,92].

4 Related Workshops

Many workshops and conferences are now exploring the problems around affec-
tive computing. This suggests the increasing importance of the research problem
and the timeliness of this workshop for the AI community. The following work-
shops focused mainly on text analysis, sentiment, and subjectivity of the text
content:



– SENTIRE series: The workshop on Sentiment Elicitation from Natural Text
for Information Retrieval and Extraction has been a continuing series for the
past few years at ICDM 5. The organizers of this workshop series are part
of the program committee for the proposed workshop.

– WASSA: The workshop on Computational Approaches to Subjectivity, Sen-
timent & Social Media Analysis is a workshop series that concentrates on
sentiment analysis in text and looks at various aspect–based and subjectivity
analysis of text in that context. The workshop has been a popular workshop
at top NLP conferences such as EMNLP, ACL, and NAACL in recent years
6. The organizers of this workshop series as well are a part of the program
committee of this proposed workshop.

The following workshops focused on multimodal sensory data in their analysis.
Text and language analysis is, however, not the focus of these workshops. This
makes the AAAI Workshop on Affective Content Analysis rather unique in its
pitch to bring the two communities together.

– The first workshop on Affective Computing (IJCAI 2017) concentrates on
measuring human affect based on sensors and wearable devices.

– 1st Workshop on Tools and Algorithms for Mental Health and Wellbeing,
Pain, and Distress (MHWPD)

– Multimodal Emotion Recognition Challenge (MEC 2017) @ 2018 Asian Con-
ference on Affective Computing and Intelligent Interaction (AACII)

Other current relevant events include ACII7, HUMANAIZE8, and NLP+CSS9.

5 Outlook

This workshop received a promising number of submissions and generated a lot
of interest from scholars and industry. The response to the Shared Task was also
successful at identifying a community of researchers and a variety of resources
for affect analysis in text. The program comprising interdisciplinary keynotes,
original research presentations, a poster session, and a Shared Task has proven
to be a successful and agile format. We will continue this multi–disciplinary
workshop in an attempt to establish the space of computational approaches for
affective content analysis.
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